1
|
Chen S, Xing L, Xie Z, Zhao M, Yu H, Gan J, Zhao H, Ma Z, Li H. Single-cell transcriptomic reveals a cell atlas and diversity of chicken amygdala responded to social hierarchy. iScience 2024; 27:109880. [PMID: 38952686 PMCID: PMC11215297 DOI: 10.1016/j.isci.2024.109880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 07/03/2024] Open
Abstract
Amygdala serves as a highly cellular, heterogeneous brain region containing excitatory and inhibitory neurons and is involved in the dopamine and serotoninergic neuron systems. An increasing number of studies have revealed the underpinned mechanism mediating social hierarchy in mammal and vertebrate, however, there are rare studies conducted on how amygdala on social hierarchy in poultry. In this study, we conducted food competition tests and determined the social hierarchy of the rooster. We performed cross-species analysis with mammalian amygdala, and found that cell types of human and rhesus monkeys were more closely related and that of chickens were more distant. We identified 26 clusters and divided them into 10 main clusters, of which GABAergic and glutamatergic neurons were associated with social behaviors. In conclusion, our results provide to serve the developmental studies of the amygdala neuron system and new insights into the underpinned mechanism of social hierarchy in roosters.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Limin Xing
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Zhijiang Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Mengqiao Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Jiankang Gan
- Guangdong Tinoo’s FOODS Group Co., Ltd, Qingyuan 511500, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528250, China
- Guangdong Tinoo’s FOODS Group Co., Ltd, Qingyuan 511500, China
| |
Collapse
|
2
|
Bienboire-Frosini C, Marcet-Rius M, Orihuela A, Domínguez-Oliva A, Mora-Medina P, Olmos-Hernández A, Casas-Alvarado A, Mota-Rojas D. Mother-Young Bonding: Neurobiological Aspects and Maternal Biochemical Signaling in Altricial Domesticated Mammals. Animals (Basel) 2023; 13:ani13030532. [PMID: 36766424 PMCID: PMC9913798 DOI: 10.3390/ani13030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mother-young bonding is a type of early learning where the female and their newborn recognize each other through a series of neurobiological mechanisms and neurotransmitters that establish a behavioral preference for filial individuals. This process is essential to promote their welfare by providing maternal care, particularly in altricial species, animals that require extended parental care due to their limited neurodevelopment at birth. Olfactory, auditory, tactile, and visual stimuli trigger the neural integration of multimodal sensory and conditioned affective associations in mammals. This review aims to discuss the neurobiological aspects of bonding processes in altricial mammals, with a focus on the brain structures and neurotransmitters involved and how these influence the signaling during the first days of the life of newborns.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán Izcalli 54740, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
3
|
Dwortz MF, Curley JP, Tye KM, Padilla-Coreano N. Neural systems that facilitate the representation of social rank. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200444. [PMID: 35000438 PMCID: PMC8743891 DOI: 10.1098/rstb.2020.0444] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Across species, animals organize into social dominance hierarchies that serve to decrease aggression and facilitate survival of the group. Neuroscientists have adopted several model organisms to study dominance hierarchies in the laboratory setting, including fish, reptiles, rodents and primates. We review recent literature across species that sheds light onto how the brain represents social rank to guide socially appropriate behaviour within a dominance hierarchy. First, we discuss how the brain responds to social status signals. Then, we discuss social approach and avoidance learning mechanisms that we propose could drive rank-appropriate behaviour. Lastly, we discuss how the brain represents memories of individuals (social memory) and how this may support the maintenance of unique individual relationships within a social group. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Madeleine F. Dwortz
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| | - Kay M. Tye
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Nancy Padilla-Coreano
- Systems Neuroscience Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Neuroscience, University of Florida, Gainesville, FN 32611, USA
| |
Collapse
|
4
|
Fulton SL, Hsieh C, Atkin T, Norris R, Schoenfeld E, Tsokas P, Fenton AA, Sacktor TC, Coplan JD. Lifelong reductions of PKMζ in ventral hippocampus of nonhuman primates exposed to early-life adversity due to unpredictable maternal care. Learn Mem 2021; 28:341-347. [PMID: 34400535 PMCID: PMC8372566 DOI: 10.1101/lm.053468.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023]
Abstract
Protein kinase Mζ (PKMζ) maintains long-term potentiation (LTP) and long-term memory through persistent increases in kinase expression. Early-life adversity is a precursor to adult mood and anxiety disorders, in part, through persistent disruption of emotional memory throughout life. Here we subjected 10- to 16-wk-old male bonnet macaques to adversity by a maternal variable-foraging demand paradigm. We then examined PKMζ expression in their ventral hippocampi as 7- to 12-yr-old adults. Quantitative immunohistochemistry reveals decreased PKMζ in dentate gyrus, CA1, and subiculum of subjects who had experienced early-life adversity due to the unpredictability of maternal care. Adult animals with persistent decrements of PKMζ in ventral hippocampus express timid rather than confrontational responses to a human intruder. Persistent down-regulation of PKMζ in the ventral hippocampus might reduce the capacity for emotional memory maintenance and contribute to the long-lasting emotional effects of early-life adversity.
Collapse
Affiliation(s)
| | | | | | | | | | - Panayiotis Tsokas
- Department of Physiology and Pharmacology,Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - André Antonio Fenton
- Department of Physiology and Pharmacology,Center for Neural Science, New York University, New York, New York 10003, USA,Neuroscience Institute at the NYU Langone Medical Center, New York, New York 10016, USA
| | - Todd Charlton Sacktor
- Department of Physiology and Pharmacology,Department of Anesthesiology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA,Department of Neurology
| | - Jeremy D. Coplan
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| |
Collapse
|
5
|
Schoenfeld EM, Gupta NK, Syed SA, Rozenboym AV, Fulton SL, Jackowski AP, Perera TD, Coplan JD. Developmental Antecedents of Adult Macaque Neurogenesis: Early-Life Adversity, 5-HTTLPR Polymorphisms, and Adolescent Hippocampal Volume. J Affect Disord 2021; 286:204-212. [PMID: 33740637 DOI: 10.1016/j.jad.2021.02.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Attenuated adult hippocampal neurogenesis may manifest in affective symptomatology and/or resistance to antidepressant treatment. While early-life adversity and the short variant ('s') of the serotonin transporter gene's long polymorphic region (5-HTTLPR) are suggested as interacting risk factors for affective disorders, no studies have examined whether their superposed risk effectuates neurogenic changes into adulthood. Similarly, it is not established whether reduced hippocampal volume in adolescence, variously identified as a marker and antecedent of affective disorders, anticipates diminished adult neurogenesis. We investigate these potential developmental precursors of neurogenic alterations using a bonnet macaque model. METHODS Twenty-five male infant bonnet macaques were randomized to stressed [variable foraging demand (VFD)] or normative [low foraging demand (LFD)] rearing protocols and genotyped for 5-HTTLPR polymorphisms. Adolescent MRI brain scans (mean age 4.2y) were available for 14 subjects. Adult-born neurons were detected post-mortem (mean age 8.6y) via immunohistochemistry targeting the microtubule protein doublecortin (DCX). Models were adjusted for age and weight. RESULTS A putative vulnerability group (VG) of VFD-reared 's'-carriers (all 's/l') exhibited reduced neurogenesis compared to non-VG subjects. Neurogenesis levels were positively predicted by ipsilateral hippocampal volume normalized for total brain volume, but not by contralateral or raw hippocampal volume. LIMITATIONS No 's'-carriers were identified in LFD-reared subjects, precluding a 2×2 factorial analysis. CONCLUSION The 's' allele (with adverse rearing) and low adolescent hippocampal volume portend a neurogenic deficit in adult macaques, suggesting persistent alterations in hippocampal plasticity may contribute to these developmental factors' affective risk in humans.
Collapse
Affiliation(s)
- Eric M Schoenfeld
- Department of Psychiatry and Behavioral Sciences, State University of New York-Downstate Medical Center, Brooklyn, NY.
| | - Nishant K Gupta
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Shariful A Syed
- Department of Psychiatry and Behavioral Sciences, Stony Brook, NY
| | - Anna V Rozenboym
- Department of Biological Sciences, Kingsborough Community College, Brooklyn, NY
| | | | - Andrea P Jackowski
- UNIFESP Departamento de Psiquiatria, Universidade Federal de Sao Paulo, SP, Brazil
| | | | - Jeremy D Coplan
- Department of Psychiatry and Behavioral Sciences, State University of New York-Downstate Medical Center, Brooklyn, NY.
| |
Collapse
|
6
|
Deng FL, Pan JX, Zheng P, Xia JJ, Yin BM, Liang WW, Li YF, Wu J, Xu F, Wu QY, Qu CH, Li W, Wang HY, Xie P. Metabonomics reveals peripheral and central short-chain fatty acid and amino acid dysfunction in a naturally occurring depressive model of macaques. Neuropsychiatr Dis Treat 2019; 15:1077-1088. [PMID: 31118641 PMCID: PMC6501704 DOI: 10.2147/ndt.s186071] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Depression is a complex psychiatric disorder. Various depressive rodent models are usually constructed based on different pathogenesis hypotheses. MATERIALS AND METHODS Herein, using our previously established naturally occurring depressive (NOD) model in a non-human primate (cynomolgus monkey, Macaca fascularis), we performed metabolomics analysis of cerebrospinal fluid (CSF) from NOD female macaques (N=10) and age-and gender-matched healthy controls (HCs) (N=12). Multivariate statistical analysis was used to identify the differentially expressed metabolites between the two groups. Ingenuity Pathways Analysis and MetaboAnalyst were applied for predicted pathways and biological functions analysis. RESULTS Totally, 37 metabolites responsible for discriminating the two groups were identified. The NOD macaques were mainly characterized by perturbations of fatty acid biosynthesis, ABC transport system, and amino acid metabolism (eg, aspartate, glycine, serine, and threonine metabolism). Interestingly, we found that eight altered CSF metabolites belonging to short-chain fatty acids and amino acids were also observed in the serum of NOD macaques (N=13 per group). CONCLUSION Our findings suggest that peripheral and central short-chain fatty acids and amino acids are implicated in the onset of depression.
Collapse
Affiliation(s)
- Feng-Li Deng
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, People's Republic of China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun-Xi Pan
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,The First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China
| | - Peng Zheng
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jin-Jun Xia
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Bang-Min Yin
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, People's Republic of China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Wei-Wei Liang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, People's Republic of China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Yi-Fan Li
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jing Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Fan Xu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Qing-Yuan Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,Department of Neurology, Three Gorges Central Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chao-Hua Qu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Wei Li
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, People's Republic of China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| |
Collapse
|
7
|
Bauman MD, Murai T, Hogrefe CE, Platt ML. Opportunities and challenges for intranasal oxytocin treatment studies in nonhuman primates. Am J Primatol 2018; 80:e22913. [PMID: 30281820 DOI: 10.1002/ajp.22913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 01/12/2023]
Abstract
Nonhuman primates provide a human-relevant experimental model system to explore the mechanisms by which oxytocin (OT) regulates social processing and inform its clinical applications. Here, we highlight contributions of the nonhuman primate model to our understanding of OT treatment and address unique challenges in administering OT to awake behaving primates. Prior preclinical research utilizing macaque monkeys has demonstrated that OT can modulate perception of other individuals and their expressions, attention to others, imitation, vigilance to social threats, and prosocial decisions. We further describe ongoing efforts to develop an OT delivery system for use in experimentally naïve juvenile macaque monkeys compatible with naturalistic social behavior outcomes. Finally, we discuss future directions to further develop the rhesus monkey as a preclinical test bed to evaluate the effects of OT exposure and advance efforts to translate basic science OT research into safe and effective OT therapies.
Collapse
Affiliation(s)
- Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, California.,The UC Davis MIND Institute, University of California, Davis, California.,California National Primate Research Center, University of California, Davis, California
| | - Takeshi Murai
- California National Primate Research Center, University of California, Davis, California.,Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Casey E Hogrefe
- California National Primate Research Center, University of California, Davis, California
| | - Michael L Platt
- Departments of Neuroscience, Psychology, and Marketing, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Coplan JD, Gupta NK, Flynn SK, Reiner WJ, Gaita D, Fulton SL, Rozenboym AV, Tang JE, Cooper TB, Mann JJ. Maternal Cerebrospinal Fluid Glutamate in Response to Variable Foraging Demand: Relationship to Cerebrospinal Fluid Serotonin Metabolites in Grown Offspring. ACTA ACUST UNITED AC 2018; 2. [PMID: 30246167 PMCID: PMC6145812 DOI: 10.1177/2470547018785625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Maternal response to allostatic overload during infant rearing may alter
neurobiological measures in grown offspring, potentially increasing
susceptibility to mood and anxiety disorders. We examined maternal
cerebrospinal fluid (CSF) glutamate response during exposure to variable
foraging demand (VFD), a bonnet macaque model of allostatic overload,
testing whether activation relative to baseline predicted concomitant CSF
elevations of the stress neuropeptide, corticotropin-releasing factor. We
investigated whether VFD-induced activation of maternal CSF glutamate
affects maternal–infant attachment patterns and offspring CSF
5-hydroxyindoleacetic acid concentrations. Methods Mother–infant dyads were exposed to the “VFD stressor,” a paradigm in which
mothers experience 16 weeks of foraging uncertainty while rearing their
infant offspring. Through staggering the infant age of VFD onset, both a
cross-sectional design and a longitudinal design were used. Maternal CSF
glutamate and glutamine concentrations post-VFD exposure were
cross-sectionally compared to maternal VFD naive controls. Proportional
change in concentrations of maternal glutamate (and glutamine), a
longitudinal measure, was evaluated in relation to VFD-induced elevations of
CSF corticotropin-releasing factor. The former measure was related to
maternal–infant proximity scores obtained during the final phases of VFD
exposure. Maternal glutamatergic response to VFD exposure was used as a
predictor variable for young adolescent offspring CSF metabolites of
serotonin, dopamine, and norepinephrine. Results Following VFD exposure, maternal CSF glutamate concentrations correlated
positively with maternal CSF CRF concentrations. Activation relative to
baseline of maternal CSF glutamate concentrations following VFD exposure
correlated directly with a) increased maternal-infant proximity during the
final phases of VFD and b) offspring CSF concentrations of monoamine
metabolites including 5-hydroxyindoleacetic acid, which was elevated
relative to controls. Conclusions Activation of maternal CSF glutamate in response to VFD-induced allostasis is
directly associated with elevations of maternal CSF corticotropin-releasing
factor. Maternal CSF glutamate alterations induced by VFD potentially
compromise serotonin neurotransmission in grown offspring, conceivably
modeling human vulnerability to treatment-resistant mood and anxiety
disorders.
Collapse
Affiliation(s)
- Jeremy D Coplan
- Department of Psychiatry and Behavioral Sciences, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Nishant K Gupta
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sarah K Flynn
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Wade J Reiner
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - David Gaita
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sasha L Fulton
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Anna V Rozenboym
- Department of Biological Sciences, Kingsborough Community College, City University of New York, Brooklyn, NY, USA
| | - Jean E Tang
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Thomas B Cooper
- Department of Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, USA.,Division of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
9
|
Coplan JD, Gupta NK, Karim A, Rozenboym A, Smith ELP, Kral JG, Rosenblum LA. Maternal hypothalamic-pituitary-adrenal axis response to foraging uncertainty: A model of individual vs. social allostasis and the "Superorganism Hypothesis". PLoS One 2017; 12:e0184340. [PMID: 28880949 PMCID: PMC5589238 DOI: 10.1371/journal.pone.0184340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION Food insecurity is a major global contributor to developmental origins of adult disease. The allostatic load of maternal food uncertainty from variable foraging demand (VFD) activates corticotropin-releasing factor (CRF) without eliciting hypothalamic-pituitary-adrenal (HPA) activation measured on a group level. Individual homeostatic adaptations of the HPA axis may subserve second-order homeostasis, a process we provisionally term "social allostasis." We postulate that maternal food insecurity induces a "superorganism" state through coordination of individual HPA axis response. METHODS Twenty-four socially-housed bonnet macaque maternal-infant dyads were exposed to 16 weeks of alternating two-week epochs of low or high foraging demand shown to compromise normative maternal-infant rearing. Cerebrospinal fluid (CSF) CRF concentrations and plasma cortisol were measured pre- and post-VFD. Dyadic distance was measured, and blinded observers performed pre-VFD social ranking assessments. RESULTS Despite marked individual cortisol responses (mean change = 20%) there was an absence of maternal HPA axis group mean response to VFD (0%). Whereas individual CSF CRF concentrations change = 56%, group mean did increase 25% (p = 0.002). Our "dyadic vulnerability" index (low infant weight, low maternal weight, subordinate maternal social status and reduced dyadic distance) predicted maternal cortisol decreases (p < 0.0001) whereas relatively "advantaged" dyads exhibited maternal cortisol increases in response to VFD exposure. COMMENT In response to a chronic stressor, relative dyadic vulnerability plays a significant role in determining the directionality and magnitude of individual maternal HPA axis responses in the service of maintaining a "superorganism" version of HPA axis homeostasis, provisionally termed "social allostasis."
Collapse
Affiliation(s)
- Jeremy D. Coplan
- Department of Psychiatry and Behavioral Sciences, Biological Science Unit, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
- * E-mail:
| | - Nishant K. Gupta
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Asif Karim
- College of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Anna Rozenboym
- Kingsborough Community College, Brooklyn, New York, United States of America
| | - Eric L. P. Smith
- Department of Psychiatry and Behavioral Sciences, Biological Science Unit, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
| | - John G. Kral
- Departments of Internal Medicine and Surgery, SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Leonard A. Rosenblum
- Department of Psychiatry and Behavioral Sciences, Biological Science Unit, State University of New York (SUNY) Downstate Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|