1
|
Nani JV, Ushirohira JM, Bradshaw NJ, Machado-de-Sousa JP, Hallak JEC, Hayashi MA. Sodium nitroprusside as an adjunctive treatment for schizophrenia reduces Ndel1 oligopeptidase activity. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2023; 46:e20233315. [PMID: 37994832 PMCID: PMC11474453 DOI: 10.47626/1516-4446-2023-3315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE To assess nuclear distribution element-like 1 (Ndel1) enzyme activity following acute administration of sodium nitroprusside (sNP) in a rodent model of schizophrenia (SCZ) and in a cohort of chronic SCZ patients. METHODS Ndel1 activity was measured following sNP infusions in spontaneously hypertensive rats (SHR) (2.5 or 5.0 mg/kg) and in a double-blind randomized trial with 15 SCZ patients (0.5 µg/kg/min). Patients were randomized into two groups (group I: n=7; group II: n=8), with one group receiving placebo and the other sNP in phase A. In phase B, the groups switched treatments. sNP was administered as an infusion of 0.5 µg/kg/min, for 4 h, while placebo was a 5% glucose solution infused under the same conditions. The infusions were administered once weekly over 4 weeks. Psychopathology was assessed using the 18-item figure 5 (BPRS-18 - Bech's version) and the negative subscale of the Positive and Negative Syndrome Scale. RESULTS Ndel1 activity was significantly reduced after sNP infusion in SHR and in patients receiving sNP (t = 7.756, degrees of freedom [df] = 97, p < 0.0001, dcohen=1.44) compared to placebo. Reduced Ndel1 activity from baseline to the end of infusion was only seen in patients after treatment with sNP. CONCLUSION SCZ patients may benefit from adjunctive therapy with sNP and that the Ndel1 enzyme is a candidate biomarker of psychopathology in the disorder. Future research should look into the role of Ndel1 in SCZ and the potential effects of sNP and drugs with similar profiles of action in both animals and patients.
Collapse
Affiliation(s)
- João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Ribeirão Preto, SP, Brazil
| | - Juliana Mayumi Ushirohira
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Ribeirão Preto, SP, Brazil
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nicholas J. Bradshaw
- School of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - João Paulo Machado-de-Sousa
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Ribeirão Preto, SP, Brazil
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Jaime Eduardo Cecílio Hallak
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Ribeirão Preto, SP, Brazil
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mirian A.F. Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Perini F, Nazimek JM, Mckie S, Capitão LP, Scaife J, Pal D, Browning M, Dawson GR, Nishikawa H, Campbell U, Hopkins SC, Loebel A, Elliott R, Harmer CJ, Deakin B, Koblan KS. Effects of ulotaront on brain circuits of reward, working memory, and emotion processing in healthy volunteers with high or low schizotypy. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:49. [PMID: 37550314 PMCID: PMC10406926 DOI: 10.1038/s41537-023-00385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Ulotaront, a trace amine-associated receptor 1 (TAAR1) and serotonin 5-HT1A receptor agonist without antagonist activity at dopamine D2 or the serotonin 5-HT2A receptors, has demonstrated efficacy in the treatment of schizophrenia. Here we report the phase 1 translational studies that profiled the effect of ulotaront on brain responses to reward, working memory, and resting state connectivity (RSC) in individuals with low or high schizotypy (LS or HS). Participants were randomized to placebo (n = 32), ulotaront (50 mg; n = 30), or the D2 receptor antagonist amisulpride (400 mg; n = 34) 2 h prior to functional magnetic resonance imaging (fMRI) of blood oxygen level-dependent (BOLD) responses to task performance. Ulotaront increased subjective drowsiness, but reaction times were impaired by less than 10% and did not correlate with BOLD responses. In the Monetary Incentive Delay task (reward processing), ulotaront significantly modulated striatal responses to incentive cues, induced medial orbitofrontal responses, and prevented insula activation seen in HS subjects. In the N-Back working memory task, ulotaront modulated BOLD signals in brain regions associated with cognitive impairment in schizophrenia. Ulotaront did not show antidepressant-like biases in an emotion processing task. HS had significantly reduced connectivity in default, salience, and executive networks compared to LS participants and both drugs reduced this difference. Although performance impairment may have weakened or contributed to the fMRI findings, the profile of ulotaront on BOLD activations elicited by reward, memory, and resting state is compatible with an indirect modulation of dopaminergic function as indicated by preclinical studies. This phase 1 study supported the subsequent clinical proof of concept trial in people with schizophrenia.Clinical trial registration: Registry# and URL: ClinicalTrials.gov NCT01972711, https://clinicaltrials.gov/ct2/show/NCT01972711.
Collapse
Affiliation(s)
- Francesca Perini
- Faculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Jadwiga Maria Nazimek
- Faculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Shane Mckie
- Faculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Liliana P Capitão
- University Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Jessica Scaife
- University Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Deepa Pal
- University Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Michael Browning
- University Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
- P1vital LTD, Manor House, Howbery Business Park, Wallingford, OX10 8BA, UK
| | - Gerard R Dawson
- P1vital LTD, Manor House, Howbery Business Park, Wallingford, OX10 8BA, UK
| | - Hiroyuki Nishikawa
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Una Campbell
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Seth C Hopkins
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA.
| | - Antony Loebel
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| | - Rebecca Elliott
- Faculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford and Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, UK
| | - Bill Deakin
- Faculty of Biology, Medicine and Health, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Kenneth S Koblan
- Sunovion Pharmaceuticals Inc., 84 Waterford Drive, Marlborough, MA, 01752, USA
| |
Collapse
|
3
|
Kocsis B, Pittman-Polletta B. Neuropsychiatric consequences of COVID-19 related olfactory dysfunction: could non-olfactory cortical-bound inputs from damaged olfactory bulb also contribute to cognitive impairment? Front Neurosci 2023; 17:1164042. [PMID: 37425004 PMCID: PMC10323442 DOI: 10.3389/fnins.2023.1164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | |
Collapse
|
4
|
Iasevoli F, D’Ambrosio L, Ciccarelli M, Barone A, Gaudieri V, Cocozza S, Pontillo G, Brunetti A, Cuocolo A, de Bartolomeis A, Pappatà S. Altered Patterns of Brain Glucose Metabolism Involve More Extensive and Discrete Cortical Areas in Treatment-resistant Schizophrenia Patients Compared to Responder Patients and Controls: Results From a Head-to-Head 2-[18F]-FDG-PET Study. Schizophr Bull 2023; 49:474-485. [PMID: 36268829 PMCID: PMC10016407 DOI: 10.1093/schbul/sbac147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND HYPOTHESIS Treatment resistant schizophrenia (TRS) affects almost 30% of patients with schizophrenia and has been considered a different phenotype of the disease. In vivo characterization of brain metabolic patterns associated with treatment response could contribute to elucidate the neurobiological underpinnings of TRS. Here, we used 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) to provide the first head-to-head comparative analysis of cerebral glucose metabolism in TRS patients compared to schizophrenia responder patients (nTRS), and controls. Additionally, we investigated, for the first time, the differences between clozapine responders (Clz-R) and non-responders (Clz-nR). STUDY DESIGN 53 participants underwent FDG-PET studies (41 patients and 12 controls). Response to conventional antipsychotics and to clozapine was evaluated using a standardized prospective procedure based on PANSS score changes. Maps of relative brain glucose metabolism were processed for voxel-based analysis using Statistical Parametric Mapping software. STUDY RESULTS Restricted areas of significant bilateral relative hypometabolism in the superior frontal gyrus characterized TRS compared to nTRS. Moreover, reduced parietal and frontal metabolism was associated with high PANSS disorganization factor scores in TRS (P < .001 voxel level uncorrected, P < .05 cluster level FWE-corrected). Only TRS compared to controls showed significant bilateral prefrontal relative hypometabolism, more extensive in CLZ-nR than in CLZ-R (P < .05 voxel level FWE-corrected). Relative significant hypermetabolism was observed in the temporo-occipital regions in TRS compared to nTRS and controls. CONCLUSIONS These data indicate that, in TRS patients, altered metabolism involved discrete brain regions not found affected in nTRS, possibly indicating a more severe disrupted functional brain network associated with disorganization symptoms.
Collapse
Affiliation(s)
- Felice Iasevoli
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi D’Ambrosio
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Unit of Treatment Resistant Psychosis, Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development - University of Naples Federico II, Naples, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, National Research Council, Via T. De Amicis 95, 80145, Naples, Italy
| |
Collapse
|
5
|
Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines 2023; 11:biomedicines11030895. [PMID: 36979877 PMCID: PMC10046109 DOI: 10.3390/biomedicines11030895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Treatment resistant schizophrenia (TRS) is characterized by a lack of, or suboptimal response to, antipsychotic agents. The biological underpinnings of this clinical condition are still scarcely understood. Since all antipsychotics block dopamine D2 receptors (D2R), dopamine-related mechanisms should be considered the main candidates in the neurobiology of antipsychotic non-response, although other neurotransmitter systems play a role. The aims of this review are: (i) to recapitulate and critically appraise the relevant literature on dopamine-related mechanisms of TRS; (ii) to discuss the methodological limitations of the studies so far conducted and delineate a theoretical framework on dopamine mechanisms of TRS; and (iii) to highlight future perspectives of research and unmet needs. Dopamine-related neurobiological mechanisms of TRS may be multiple and putatively subdivided into three biological points: (1) D2R-related, including increased D2R levels; increased density of D2Rs in the high-affinity state; aberrant D2R dimer or heteromer formation; imbalance between D2R short and long variants; extrastriatal D2Rs; (2) presynaptic dopamine, including low or normal dopamine synthesis and/or release compared to responder patients; and (3) exaggerated postsynaptic D2R-mediated neurotransmission. Future points to be addressed are: (i) a more neurobiologically-oriented phenotypic categorization of TRS; (ii) implementation of neurobiological studies by directly comparing treatment resistant vs. treatment responder patients; (iii) development of a reliable animal model of non-response to antipsychotics.
Collapse
|
6
|
Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system. Mol Divers 2022; 27:959-985. [PMID: 35819579 DOI: 10.1007/s11030-022-10489-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
CNS disorders are indications with a very high unmet medical needs, relatively smaller number of available drugs, and a subpar satisfaction level among patients and caregiver. Discovery of CNS drugs is extremely expensive affair with its own unique challenges leading to extremely high attrition rates and low efficiency. With explosion of data in information age, there is hardly any aspect of life that has not been touched by data driven technologies such as artificial intelligence (AI) and machine learning (ML). Drug discovery is no exception, emergence of big data via genomic, proteomic, biological, and chemical technologies has driven pharmaceutical giants to collaborate with AI oriented companies to revolutionise drug discovery, with the goal of increasing the efficiency of the process. In recent years many examples of innovative applications of AI and ML techniques in CNS drug discovery has been reported. Research on therapeutics for diseases such as schizophrenia, Alzheimer's and Parkinsonism has been provided with a new direction and thrust from these developments. AI and ML has been applied to both ligand-based and structure-based drug discovery and design of CNS therapeutics. In this review, we have summarised the general aspects of AI and ML from the perspective of drug discovery followed by a comprehensive coverage of the recent developments in the applications of AI/ML techniques in CNS drug discovery.
Collapse
|
7
|
Perez-Rando M, Elvira UKA, García-Martí G, Gadea M, Aguilar EJ, Escarti MJ, Ahulló-Fuster MA, Grasa E, Corripio I, Sanjuan J, Nacher J. Alterations in the volume of thalamic nuclei in patients with schizophrenia and persistent auditory hallucinations. Neuroimage Clin 2022; 35:103070. [PMID: 35667173 PMCID: PMC9168692 DOI: 10.1016/j.nicl.2022.103070] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Analysis of structural MRI images using a probabilistic atlas for segmentation of several nuclei of the thalamus. Comparison of chronic patients with schizophrenia, with and without auditory hallucinations and matched healthy controls. Volumetric reductions in patients with AH vs controls: Medial geniculate nucleus, anterior pulvinar nucleus and lateral and medial mediodorsal nuclei. In patients without AH we found reductions in the volume of the pulvinar and mediodorsal nuclei, but not in the medial geniculate nucleus. Found also some significant correlations between the volume of these nuclei and the total score of the PSYRATS scale.
The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| | - Uriel K A Elvira
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Institutes of Biomedical Technologies and Neuroscience, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Gracian García-Martí
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Marien Gadea
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain; Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eduardo J Aguilar
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Psychiatry Unit, Faculty of Medicine, Universitat de València, Valencia, Spain
| | - Maria J Escarti
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain
| | - Mónica Alba Ahulló-Fuster
- Department of Radiology, Rehabilitation and Physiotherapy. Faculty of Nursing, Physiotherapy and Podiatry. Universidad Complutense de Madrid, Spain
| | - Eva Grasa
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Iluminada Corripio
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Servicio de Psiquiatría. Instituto de Investigación Biomédica Sant Pau (IIB-SANT PAU), Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Julio Sanjuan
- Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Quironsalud Hospital, Valencia, Spain
| | - Juan Nacher
- Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain; Spanish National Network for Research in Mental Health, (CIBERSAM), Madrid, Spain; Institute of Research of the Clinic Hospital from Valencia (INCLIVA), Valencia, Spain.
| |
Collapse
|
8
|
Talarico F, Costa GO, Ota VK, Santoro ML, Noto C, Gadelha A, Bressan R, Azevedo H, Belangero SI. Systems-Level Analysis of Genetic Variants Reveals Functional and Spatiotemporal Context in Treatment-resistant Schizophrenia. Mol Neurobiol 2022; 59:3170-3182. [DOI: 10.1007/s12035-022-02794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
|
9
|
Rema J, Novais F, Telles-Correia D. Precision Psychiatry: Machine learning as a tool to find new pharmacological targets. Curr Top Med Chem 2021; 22:1261-1269. [PMID: 34607546 DOI: 10.2174/1568026621666211004095917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/20/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022]
Abstract
There is an increasing amount of data arising from neurobehavioral sciences and medical records that cannot be adequately analyzed by traditional research methods. New drugs develop at a slow rate and seem unsatisfactory for the majority of neurobehavioral disorders. Machine learning (ML) techniques, instead, can incorporate psychopathological, computational, cognitive, and neurobiological underpinning knowledge leading to a refinement of detection, diagnosis, prognosis, treatment, research, and support. Machine and deep learning methods are currently used to accelerate the process of discovering new pharmacological targets and drugs. OBJECTIVE The present work reviews current evidence regarding the contribution of machine learning to the discovery of new drug targets. METHODS Scientific articles from PubMed, SCOPUS, EMBASE, and Web of Science Core Collection published until May 2021 were included in this review. RESULTS The most significant areas of research are schizophrenia, depression and anxiety, Alzheimer´s disease, and substance use disorders. ML techniques have pinpointed target gene candidates and pathways, new molecular substances, and several biomarkers regarding psychiatric disorders. Drug repositioning studies using ML have identified multiple drug candidates as promising therapeutic agents. CONCLUSION Next-generation ML techniques and subsequent deep learning may power new findings regarding the discovery of new pharmacological agents by bridging the gap between biological data and chemical drug information.
Collapse
Affiliation(s)
- João Rema
- Faculdade de Medicina da Universidade de Lisboa. Portugal
| | - Filipa Novais
- Faculdade de Medicina da Universidade de Lisboa. Portugal
| | | |
Collapse
|
10
|
Gammon D, Cheng C, Volkovinskaia A, Baker GB, Dursun SM. Clozapine: Why Is It So Uniquely Effective in the Treatment of a Range of Neuropsychiatric Disorders? Biomolecules 2021; 11:1030. [PMID: 34356654 PMCID: PMC8301879 DOI: 10.3390/biom11071030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Clozapine is superior to other antipsychotics as a therapy for treatment-resistant schizophrenia and schizoaffective disorder with increased risk of suicidal behavior. This drug has also been used in the off-label treatment of bipolar disorder, major depressive disorder (MDD), and Parkinson's disease (PD). Although usually reserved for severe and treatment-refractory cases, it is interesting that electroconvulsive therapy (ECT) has also been used in the treatment of these psychiatric disorders, suggesting some common or related mechanisms. A literature review on the applications of clozapine and electroconvulsive therapy (ECT) to the disorders mentioned above was undertaken, and this narrative review was prepared. Although both treatments have multiple actions, evidence to date suggests that the ability to elicit epileptiform activity and alter EEG activity, to increase neuroplasticity and elevate brain levels of neurotrophic factors, to affect imbalances in the relationship between glutamate and γ-aminobutyric acid (GABA), and to reduce inflammation through effects on neuron-glia interactions are common underlying mechanisms of these two treatments. This evidence may explain why clozapine is effective in a range of neuropsychiatric disorders. Future increased investigations into epigenetic and connectomic changes produced by clozapine and ECT should provide valuable information about these two treatments and the disorders they are used to treat.
Collapse
Affiliation(s)
- Dara Gammon
- Saba University School of Medicine, Saba, The Netherlands; (D.G.); (A.V.)
| | - Catherine Cheng
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Anna Volkovinskaia
- Saba University School of Medicine, Saba, The Netherlands; (D.G.); (A.V.)
| | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Serdar M. Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
11
|
Camacho-Abrego I, González-Cano SI, Aguilar-Alonso P, Brambila E, la Cruz FD, Flores G. Changes in nitric oxide, zinc and metallothionein levels in limbic regions at pre-pubertal and post-pubertal ages presented in an animal model of schizophrenia. J Chem Neuroanat 2020; 111:101889. [PMID: 33197552 DOI: 10.1016/j.jchemneu.2020.101889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
Recent data suggest that rats with neonatal ventral hippocampal lesion (NVHL) show changes related to inflammatory processes and oxidative stress at the prefrontal cortex (PFC) level at post-pubertal age. The NVHL model is considered an animal model in schizophrenia. Here we analyzed the levels of nitrite, zinc, and metallothionein (MT) in cortical and subcortical regions of NVHL rats at pre-pubertal and post-pubertal ages. Nitric oxide (NO) levels were evaluated through measurement of nitrite levels. The locomotor activity was also evaluated in a novel environment. Animals with NVHL showed an increase in locomotor activity only at post-pubertal age. Furthermore, at pre-pubertal age, NVHL rats showed an increase in NO levels in ventral and dorsal hippocampus, thalamus, Caudate-putamen (CPu) and brainstem, in zinc levels in ventral and dorsal hippocampus, and CPu, and the MT level also in the ventral hippocampus and occipital cortex. In addition, at pre-pubertal age, a reduction in MT levels was also found in the PFC, parietal and temporal cortices, the CPu and the cerebellum. However, after puberty, NVHL caused an increase in NO levels in the PFC, and also zinc levels in the PFC and occipital and parietal cortices, with a reduction in MT levels in the thalamus and NAcc. Our results show the changes of these three molecules over time, among lesion (PD7), pre-pubertal and post-pubertal ages. This suggests changes at pre-pubertal age directly related to the site of the lesion, while at post-pubertal age, our data highlight changes in the PFC, a region mainly involved in schizophrenia.
Collapse
Affiliation(s)
- Israel Camacho-Abrego
- Laboratorio de Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico
| | - Sonia Irais González-Cano
- Laboratorio de Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), CDMX, 11340, Mexico
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, CP: 72570, Puebla, Mexico
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), CDMX, 11340, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría. Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, 72570, Mexico.
| |
Collapse
|
12
|
Kätzel D, Wolff AR, Bygrave AM, Bannerman DM. Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia. Front Pharmacol 2020; 11:486811. [PMID: 33178010 PMCID: PMC7596262 DOI: 10.3389/fphar.2020.486811] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
The development of current neuroleptics was largely aiming to decrease excessive dopaminergic signaling in the striatum. However, the notion that abnormal dopamine creates psychotic symptoms by causing an aberrant assignment of salience that drives maladaptive learning chronically during disease development suggests a therapeutic value of early interventions that correct salience-related neural processing. The mesolimbic dopaminergic output is modulated by several interconnected brain-wide circuits centrally involving the hippocampus and key relays like the ventral and associative striatum, ventral pallidum, amygdala, bed nucleus of the stria terminalis, nucleus reuniens, lateral and medial septum, prefrontal and cingulate cortex, among others. Unraveling the causal relationships between these circuits using modern neuroscience techniques holds promise for identifying novel cellular-and ultimately molecular-treatment targets for reducing transition to psychosis and symptoms of schizophrenia. Imaging studies in humans have implicated a hyperactivity of the hippocampus as a robust and early endophenotype in schizophrenia. Experiments in rodents, in turn, suggested that the activity of its output region-the ventral subiculum-may modulate dopamine release from ventral tegmental area (VTA) neurons in the ventral striatum. Even though these observations suggested a novel circuit-level target for anti-psychotic action, no therapy has yet been developed along this rationale. Recently evaluated treatment strategies-at least in part-target excess glutamatergic activity, e.g. N-acetyl-cysteine (NAC), levetiracetam, and mGluR2/3 modulators. We here review the evidence for the central implication of the hippocampus-VTA axis in schizophrenia-related pathology, discuss its symptom-related implications with a particular focus on aberrant assignment of salience, and evaluate some of its short-comings and prospects for drug discovery.
Collapse
Affiliation(s)
- Dennis Kätzel
- Institute for Applied Physiology, Ulm University, Ulm, Germany
| | - Amy R. Wolff
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Alexei M. Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - David M. Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
D-amino acids in foods. Appl Microbiol Biotechnol 2019; 104:555-574. [PMID: 31832715 DOI: 10.1007/s00253-019-10264-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
With the only exception of glycine, all amino acids exist in two specular structures which are mirror images of each other, called D-(dextro) and L-(levo) enantiomers. During evolution, L-amino acids were preferred for protein synthesis and main metabolism; however, the D-amino acids (D-AAs) acquired different and specific functions in different organisms (from playing a structural role in the peptidoglycan of the bacterial cell wall to modulating neurotransmission in mammalian brain). With the advent of sophisticated and sensitive analytical techniques, it was established during the past few decades that many foods contain considerable amounts of D-AAs: we consume more than 100 mg of D-AAs every day. D-AAs are present in a variety of foodstuffs, where they fulfill a relevant role in producing differences in taste and flavor and in their antimicrobial and antiaging properties from the corresponding L-enantiomers. In this review, we report on the derivation of D-AAs in foods, mainly originating from the starting materials, fermentation processes, racemization during food processing, or contamination. We then focus on leading-edge methods to identify and quantify D-AAs in foods. Finally, current knowledge concerning the effect of D-AAs on the nutritional state and human health is summarized, highlighting some positive and negative effects. Notwithstanding recent progress in D-AA research, the relationships between presence and nutritional value of D-AAs in foods represent a main scientific issue with interesting economic impact in the near future.
Collapse
|
14
|
Kraal AZ, Arvanitis NR, Jaeger AP, Ellingrod VL. Could Dietary Glutamate Play a Role in Psychiatric Distress? Neuropsychobiology 2019; 79:13-19. [PMID: 30699435 PMCID: PMC6667320 DOI: 10.1159/000496294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022]
Abstract
Glutamate is an amino acid that functions as an excitatory neurotransmitter. It has also been associated with somatic and psychiatric distress and is implicated in the pathophysiology of psychiatric disorders such as schizophrenia. Ingestion of dietary glutamate, such as monosodium glutamate (MSG), has been mechanistically linked with greater distress among patients with chronic pain conditions, though findings have been equivocal. Preliminary research suggests that an MSG-restricted diet confers beneficial effects on somatic symptoms and well-being for some individuals with chronic pain conditions. In addition to associations with somatic distress, glutamate has been associated with the onset and progression of psychiatric symptoms. Thus, the role of dietary glutamate in psychiatric distress represents an underdeveloped and potentially important area for future research aimed at clarifying pathophysiological mechanisms and identifying targets for dietary intervention in psychiatric illnesses.
Collapse
Affiliation(s)
- A. Zarina Kraal
- University of Michigan, Department of Psychology, Ann Arbor, MI, USA,University of Michigan, College of Pharmacy, Ann Arbor, MI, USA
| | | | | | - Vicki L Ellingrod
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA, .,College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA,
| |
Collapse
|
15
|
Bygrave AM, Kilonzo K, Kullmann DM, Bannerman DM, Kätzel D. Can N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia Be Localized to an Individual Cell Type? Front Psychiatry 2019; 10:835. [PMID: 31824347 PMCID: PMC6881463 DOI: 10.3389/fpsyt.2019.00835] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2019] [Indexed: 01/07/2023] Open
Abstract
Hypofunction of N-methyl-D-aspartate glutamate receptors (NMDARs), whether caused by endogenous factors like auto-antibodies or mutations, or by pharmacological or genetic manipulations, produces a wide variety of deficits which overlap with-but do not precisely match-the symptom spectrum of schizophrenia. In order to understand how NMDAR hypofunction leads to different components of the syndrome, it is necessary to take into account which neuronal subtypes are particularly affected by it in terms of detrimental functional alterations. We provide a comprehensive overview detailing findings in rodent models with cell type-specific knockout of NMDARs. Regarding inhibitory cortical cells, an emerging model suggests that NMDAR hypofunction in parvalbumin (PV) positive interneurons is a potential risk factor for this disease. PV interneurons display a selective vulnerability resulting from a combination of genetic, cellular, and environmental factors that produce pathological multi-level positive feedback loops. Central to this are two antioxidant mechanisms-NMDAR activity and perineuronal nets-which are themselves impaired by oxidative stress, amplifying disinhibition. However, NMDAR hypofunction in excitatory pyramidal cells also produces a range of schizophrenia-related deficits, in particular maladaptive learning and memory recall. Furthermore, NMDAR blockade in the thalamus disturbs thalamocortical communication, and NMDAR ablation in dopaminergic neurons may provoke over-generalization in associative learning, which could relate to the positive symptom domain. Therefore, NMDAR hypofunction can produce schizophrenia-related effects through an action on various different circuits and cell types.
Collapse
Affiliation(s)
- Alexei M Bygrave
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
| | - Kasyoka Kilonzo
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Dimitri M Kullmann
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| |
Collapse
|