1
|
Zinellu A, Tommasi S, Carru C, Sotgia S, Mangoni AA. A systematic review and meta-analysis of nitric oxide-associated arginine metabolites in schizophrenia. Transl Psychiatry 2024; 14:439. [PMID: 39414767 PMCID: PMC11484908 DOI: 10.1038/s41398-024-03157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
There is increasing interest in the pathophysiological role of arginine metabolism in schizophrenia, particularly in relation to the modulation of the endogenous messenger nitric oxide (NO). The assessment of specific arginine metabolites that, unlike NO, are stable can provide useful insights into NO regulatory enzymes such as isoform 1 of dimethylarginine dimethylaminohydrolase (DDAH1) and arginase. We investigated the role of arginine metabolomics in schizophrenia by conducting a systematic review and meta-analysis of the circulating concentrations of arginine metabolites associated with DDAH1, arginase, and NO synthesis [arginine, citrulline, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), dimethylamine, and ornithine] in this patient group. We searched PubMed, Scopus, and Web of Science from inception to the 31st of May 2023 for studies investigating arginine metabolites in patients with schizophrenia and healthy controls. The JBI Critical Appraisal Checklist for analytical studies and GRADE were used to assess the risk of bias and the certainty of evidence, respectively (PROSPERO registration number: CRD42023433000). Twenty-one studies were identified for analysis. There were no significant between-group differences in arginine, citrulline, and SDMA. By contrast, patients with schizophrenia had significantly higher ADMA (DDAH1 substrate, standard mean difference, SMD = 1.23, 95% CI 0.86-1.61, p < 0.001; moderate certainty of evidence), dimethylamine (DDAH1 product, SMD = 0.47, 95% CI 0.24-0.70, p < 0.001; very low certainty of evidence), and ornithine concentrations (arginase product, SMD = 0.32, 95% CI 0.16-0.49, p < 0.001; low certainty of evidence). In subgroup analysis, the pooled SMD for ornithine was significantly different in studies of untreated, but not treated, patients. Our study suggests that DDAH1 and arginase are dysregulated in schizophrenia. Further studies are warranted to investigate the expression/activity of these enzymes in the brain of patients with schizophrenia and the effects of targeted treatments.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital of Sassari (AOU), Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia.
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Kozlova AA, Rubets E, Vareltzoglou MR, Jarzebska N, Ragavan VN, Chen Y, Martens-Lobenhoffer J, Bode-Böger SM, Gainetdinov RR, Rodionov RN, Bernhardt N. Knock-out of the critical nitric oxide synthase regulator DDAH1 in mice impacts amphetamine sensitivity and dopamine metabolism. J Neural Transm (Vienna) 2023; 130:1097-1112. [PMID: 36792833 PMCID: PMC10460711 DOI: 10.1007/s00702-023-02597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/28/2023] [Indexed: 02/17/2023]
Abstract
The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.
Collapse
Affiliation(s)
- Alena A Kozlova
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Elena Rubets
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Magdalini R Vareltzoglou
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Natalia Jarzebska
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Vinitha N Ragavan
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | | | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine and Saint-Petersburg University Hospital, Saint-Petersburg State University, 199034, Saint-Petersburg, Russia
| | - Roman N Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, Technische Universität Dresden, 01307, Dresden, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
3
|
Patel S, Sharma D, Uniyal A, Gadepalli A, Tiwari V. Recent advancements in biomarker research in schizophrenia: mapping the road from bench to bedside. Metab Brain Dis 2022; 37:2197-2211. [PMID: 35239143 DOI: 10.1007/s11011-022-00926-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a severe progressive neurodegenerative as well as disruptive behavior disorder affecting innumerable people throughout the world. The discovery of potential biomarkers in the clinical scenario would lead to the development of effective methods of diagnosis and would provide an understanding of the prognosis of the disease. Moreover, breakthrough inventions for the treatment and prevention of this mysterious disease could evolve as a result of a thorough understanding of the clinical biomarkers. In this review, we have discussed about specific biomarkers of SZ an emphasis has been laid to delineate (1) diagnostic biomarkers like neuroimmune biomarkers, metabolic biomarkers, oligodendrocyte biomarkers and biomarkers of negative and cognitive symptoms, (2) therapeutic biomarkers like various neurotransmitter systems and (3) prognostic biomarkers. All the biomarkers were evaluated in drug-naïve (at least for 4 weeks) patients in order to achieve a clear comparison between schizophrenic patients and healthy controls. Also, an attempt has been made to elucidate the potential genes which serve as predictors and tools for the determination of biomarkers and would ultimately help in the prevention and treatment of this deadly illness.
Collapse
Affiliation(s)
- Shivangi Patel
- Department of Pharmacology, Bombay College of Pharmacy, 400098, Mumbai, India
| | - Dilip Sharma
- Rutgers New Jersey Medical School, 07103, Newark, NJ, United States
| | - Ankit Uniyal
- Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005, Varanasi, U.P, India
| | - Anagha Gadepalli
- Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005, Varanasi, U.P, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), 221005, Varanasi, U.P, India.
| |
Collapse
|
4
|
Abstract
Serum concentrations of asymmetric dimethylarginine (ADMA) in patients with schizophrenia, schizoaffective disorder, bipolar disorder, and depression were determined and compared to serum concentrations in healthy individuals. In all psychiatric diseases investigated, the ADMA concentration was elevated compared to the control group. Patients with recurrent depressive disorder had higher ADMA levels than patients with only one depressive episode. No differences between women and men were found. The elevated ADMA levels suggest that ADMA is involved in the pathophysiology of psychiatric diseases.
Collapse
|
5
|
Xiong JW, Zhan JQ, Luo T, Chen HB, Wan QG, Wang Y, Wei B, Yang YJ. Increased Plasma Level of Longevity Protein Klotho as a Potential Indicator of Cognitive Function Preservation in Patients With Schizophrenia. Front Neurosci 2020; 14:610. [PMID: 32612508 PMCID: PMC7308714 DOI: 10.3389/fnins.2020.00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Cognitive impairments are a core feature of schizophrenia. Klotho is an anti-aging protein with demonstrated cognitive-enhancing effects on the brain. The purpose of this study was to investigate the differences in levels of plasma klotho between patients with schizophrenia and healthy controls, as well as the relationship between klotho level and cognitive function in patients. Forty patients with schizophrenia and 40 gender- and age-matched healthy individuals were recruited. Positive and Negative Syndrome Scale (PANSS) was used to assess the psychopathology of patients. A neuropsychological battery was performed to evaluate the cognitive function of participants. Plasma klotho was measured using enzyme-linked immunosorbent assay. We show that patients with schizophrenia performed worse in the neurocognitive tests than the healthy controls. The levels of plasma klotho were significantly higher in schizophrenia patients than in healthy controls (p < 0.001). In patients, plasma klotho levels were positively correlated with cognitive function with regard to attention (p = 0.010), working memory (p < 0.001), verbal memory (p = 0.044), executive function (p < 0.001), and composite cognitive score (p < 0.001). Stepwise linear regression analysis shows that executive function had the highest correlation with plasma klotho levels (β = 0.896, t = 8.290, p < 0.001). Collectively, these results indicate that anti-aging protein klotho may be implicated in the pathogenesis of schizophrenia, and increased klotho may act as a compensatory factor for the preservation of cognitive function in schizophrenia. Further studies are needed to investigate the dynamic changes of klotho and the mechanisms by which klotho modulates cognition in schizophrenia.
Collapse
Affiliation(s)
- Jian-wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Jin-qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Tao Luo
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Hai-bo Chen
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Qi-gen Wan
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yan Wang
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Bo Wei
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| | - Yuan-jian Yang
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Huo Z, Yu L, Yang J, Zhu Y, Bennett DA, Zhao J. Brain and blood metabolome for Alzheimer's dementia: findings from a targeted metabolomics analysis. Neurobiol Aging 2020; 86:123-133. [PMID: 31785839 PMCID: PMC6995427 DOI: 10.1016/j.neurobiolaging.2019.10.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022]
Abstract
The development of Alzheimer's dementia (AD) accompanies both central and peripheral metabolic disturbance, but the metabolic basis underlying AD and metabolic markers predictive of AD risk remain to be determined. It is also unclear whether the metabolic changes in the peripheral blood and brain are overlapping in relation to AD. The present study addresses these questions by targeted metabolomics in both antemortem blood and postmortem brain samples in 2 community-based longitudinal cohorts of aging and dementia. We found that higher serum levels of 3 acylcarnitines, including decanoylcarnitine (C10), pimelylcarnitine (C7-DC), and tetradecadienylcarnitine (C14:2), significantly predict a lower risk of incident AD (composite hazard ratio = 0.368, 95% CI [0.207, 0.653]) after an average of 4.5-year follow-up, independent of age, sex, and education. In addition, baseline serum levels of ten glycerophospholipids, one amino acid, and 5 acylcarnitines predict the longitudinal change in cognitive functions. Moreover, 28 brain metabolites were associated with AD phenotypes. Of the putative metabolites identified in the serum and brain, 4 metabolites (3 glycerophospholipids [PC aa C30:0, PC ae C34:0, PC ae C36:1] and 1 acylcarnitine [C14:2]) were present in both the postmortem brain and antemortem blood, but only one metabolite (C14:2) was associated with AD in the same direction (i.e., protective). Partial correlation and network analyses suggest a potential tissue-specific regulation of metabolism, although other alternatives exist. Together, we identified significant associations of both central and peripheral metabolites with AD phenotypes, but there seems to be little overlap between the 2 tissues.
Collapse
Affiliation(s)
- Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Yun Zhu
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|