1
|
He E, Liu M, Gong S, Fu X, Han Y, Deng F. White Matter Alterations in Depressive Disorder. Front Immunol 2022; 13:826812. [PMID: 35634314 PMCID: PMC9133348 DOI: 10.3389/fimmu.2022.826812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Depressive disorder is the most prevalent affective disorder today. Depressive disorder has been linked to changes in the white matter. White matter changes in depressive disorder could be a result of impaired cerebral blood flow (CBF) and CBF self-regulation, impaired blood-brain barrier function, inflammatory factors, genes and environmental factors. Additionally, white matter changes in patients with depression are associated with clinical variables such as differential diagnosis, severity, treatment effect, and efficacy assessment. This review discusses the characteristics, possible mechanisms, clinical relevance, and potential treatment of white matter alterations caused by depressive disorders.
Collapse
|
2
|
Liu M, He E, Fu X, Gong S, Han Y, Deng F. Cerebral blood flow self-regulation in depression. J Affect Disord 2022; 302:324-331. [PMID: 35032508 DOI: 10.1016/j.jad.2022.01.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Depression is a common neuropsychiatric disease with a high prevalence rate. Sleep problems, memory decline, dizziness and headaches are the most common neurological symptoms in depressed patients. Abnormality of cerebral blood flow (CBF) has been observed in depressive patients, but those patients did not have intracranial structural damage. Both of those phenomena might be related to cerebral blood flow self-regulation (CBFSR: cerebral blood flow self-regulation). CBFSR can maintain CBF relatively stable in response to changes in neurological and metabolic factors. Therefore, this review aimed to discuss CBFSR in depression. METHODS We searched for keywords such as "depression", "cerebral blood flow", "cerebral autoregulation", "cerebrovascular reactivity" and the words related to depression. We analyzed whether there is a change in the CBFSR in depression, further explored whether there is a relationship between the pathogenesis of depression and the CBFSR, and discussed the possible mechanism of impaired CBFSR in patients with depression. RESULTS Discovered by the literature review, CBFSR is significantly impaired in depressed patients. The level of circulating markers of endothelial dysfunction, nitric oxide, inflammatory cytokines, glucocorticoid and monoamine neurotransmitters is mostly abnormal in depression, which affected the CBFSR to varying degrees. LIMITATIONS Limitations include the small number of direct studies about depression and CBFSR mechanisms. CONCLUSION CBFSR is impaired in depression. The underlying mechanisms include endothelial dysfunction, overactivation of microglia and changes of cytokines, hyperactivation of the HPA axis, increased oxidative stress, monoamine neurotransmitter disorders, etc. These deepened our understanding of the clinical symptoms of depressed patients.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Enling He
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Xiyao Fu
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Sizhu Gong
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Yue Han
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China
| | - Fang Deng
- Department of Neurology, The First Hospital of Jilin University, No.1, Xinmin Street, Changchun, China.
| |
Collapse
|
3
|
Investigating the association between depression and cerebral haemodynamics-A systematic review and meta-analysis. J Affect Disord 2022; 299:144-158. [PMID: 34800572 DOI: 10.1016/j.jad.2021.11.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/25/2021] [Accepted: 11/14/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Vascular mechanisms may play a role in depression. The aim of this review is to summarise the evidence on alterations in cerebral haemodynamics in depression. METHODS MEDLINE (1946- present), Embase (1947-present), Web of Science (1970-present), PsycINFO (1984-present), CINAHL (1976-present) and CENTRAL were searched using a predefined search strategy. A meta-analysis was conducted in four groups: 1) global cerebral blood flow (CBF) in ml/min/100 g, 2) CBF velocity (CBFv) in cm/s (maximum flow of left middle cerebral artery, 3) combined CBF and CBFv, 4) Ratio of uptake of Tc 99 m HMPAO (region of interest compared to whole brain). Data are presented as mean difference or standardised mean difference and 95% confidence interval (95% CI). A narrative synthesis of the remaining studies was performed. RESULTS 87 studies were included. CBF was significantly reduced in depressed patients compared to HC [15 studies, 538 patients, 416 HC, MD: -2.24 (95% CI -4.12, -0.36), p = 0.02, I2 = 64%]. There were no statistically significant differences in other parameters. The narrative synthesis revealed variable changes in CBF in depressed patients, particularly affecting the anterior cingulate and prefrontal cortices. LIMITATIONS There were various sources of heterogeneity including the severity of depression, use of antidepressant medication, imaging modality used and reporting of outcomes. All of these factors made direct comparisons between studies difficult. CONCLUSIONS The reduction in CBF in depressed patients compared to HCs may indicate a role for assessment and CBF altering interventions in high-risk groups. However, results were inconsistent across studies, warranting further work to investigate specific subgroups.
Collapse
|
4
|
Desmidt T, Dujardin PA, Brizard B, Réméniéras JP, Gissot V, Dufour-Rainfray D, Atanasova B, Kazour F, Belzung C, Camus V, El-Hage W. Decrease in ultrasound Brain Tissue Pulsations as a potential surrogate marker of response to antidepressant. J Psychiatr Res 2022; 146:186-191. [PMID: 34995994 DOI: 10.1016/j.jpsychires.2021.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022]
Abstract
Previous cross-sectional studies found excessive Brain Tissue Pulsations (BTP) in mid-life depression, which could constitute a mechanism of brain damage in depression. However, it remains unclear whether successful antidepressant therapy restores BTP amplitudes. In this prospective study, we investigated longitudinal changes in BTP in patients with a major depressive episode (MDE), among responders and non-responders to escitalopram. Fifty-two individuals with a MDE, free of antidepressants at baseline, were included in an 8-week open-labeled escitalopram trial. Ultrasound Tissue Pulsatility Imaging (TPI) was applied to measure resting BTP and BTP reactivity in an orthostatic challenge, at baseline and at week 8. TPI data were available for 48 participants divided into responders (n = 28, 58.3%) and non-responders (n = 20, 41.7%) according to change in the MADRS score. MaxBTP significantly decreased between baseline and week 8, only in responders. In addition, changes in MaxBTP during the orthostatic challenge were no longer significant at week 8 but only in responders. Because excessive BTP constitutes a potential mechanism for brain damage, our results suggest that a successful pharmacotherapy could benefit patients to lower the risk of brain damage in individuals with depression, a population exposed to stroke, small arteries disease and brain atrophy. TPI could provide a surrogate biomarker to monitor antidepressant response and brain health in depression in clinical routine.
Collapse
Affiliation(s)
- Thomas Desmidt
- UMR 1253, IBrain, Université de Tours, Inserm, Tours, France; CHU de Tours, Tours, France.
| | | | - Bruno Brizard
- UMR 1253, IBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Diane Dufour-Rainfray
- UMR 1253, IBrain, Université de Tours, Inserm, Tours, France; CHU de Tours, Tours, France
| | | | - François Kazour
- UMR 1253, IBrain, Université de Tours, Inserm, Tours, France; CHU de Tours, Tours, France
| | | | - Vincent Camus
- UMR 1253, IBrain, Université de Tours, Inserm, Tours, France; CHU de Tours, Tours, France
| | - Wissam El-Hage
- UMR 1253, IBrain, Université de Tours, Inserm, Tours, France; CIC 1415, CHU de Tours, Inserm, Tours, France; CHU de Tours, Tours, France
| |
Collapse
|
5
|
Zhang W, Fu W, Yan L, Wang M, Ning B, Mo X, Xiong L, Liu J, Zhang P, Zhong J, Sun L, Fu W. Impaired dynamic cerebral autoregulation in young adults with mild depression. Psychophysiology 2021; 59:e13949. [PMID: 34587299 DOI: 10.1111/psyp.13949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023]
Abstract
The incidence of depression is increasing, especially in the young adult population. Impaired cognitive function is one of the characteristics of depression, which may be related to impaired cerebral autoregulation (CA). We investigated the characteristics of CA in young adults with mild depression, as well as its validity for identifying patients with depression. Patients (aged 18-35 years) with Hamilton Depression Rating Scale (HAMD) scores ranging from 8 to 17 and a first episode of mild depression were enrolled in this study. Healthy volunteers were recruited as controls. Noninvasive continuous arterial blood pressure and bilateral middle cerebral artery blood flow velocity were simultaneously recorded from each subject. Transfer function analysis was applied to derive phase difference, gain, coherence and rate of recovery for the assessment of CA. Forty-three patients and 43 healthy controls were enrolled. Phase difference values were significantly compromised in young adults with mild depression and were negatively correlated with HAMD scores. Rate of recovery values estimated from depressed patients was significantly lower. The validity in identifying patients with depression was favorable for the phase difference. The cutoff phase difference value was 29.66. Our findings suggest that dynamic CA was impaired in young patients with mild depression and negatively correlated with HAMD scores. CA represented by phase difference can be used as an objective auxiliary examination of depression, and has clinical diagnostic value for the early identification of patients with depression.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Cerebral Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Fu
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Luda Yan
- Shenzhen Bao'an Research Center for Acupuncture and Moxibustion, Shenzhen, China
| | - Mengyu Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baile Ning
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuyun Mo
- Department of Cerebral Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Xiong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jia Liu
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pandeng Zhang
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingxin Zhong
- Department of Cerebral Function, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Sun
- Department of Psychosomatics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Fu
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Empana JP, Boutouyrie P, Lemogne C, Jouven X, van Sloten TT. Microvascular Contribution to Late-Onset Depression: Mechanisms, Current Evidence, Association With Other Brain Diseases, and Therapeutic Perspectives. Biol Psychiatry 2021; 90:214-225. [PMID: 34325805 DOI: 10.1016/j.biopsych.2021.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Depression is common in older individuals and is associated with high disability and mortality. A major problem is treatment resistance: >50% of older patients do not respond to current antidepressants. Therefore, new effective interventions for prevention and treatment of depression in older individuals need to be developed, which requires a better understanding of the mechanisms underlying depression. The pathophysiology of depression is multifactorial and complex. Microvascular dysfunction may be an early and targetable mechanism in the development of depression, notably depression that initiates in late life (late-onset depression). Late-onset depression commonly co-occurs with other diseases or syndromes that may share a microvascular origin, including apathy, cognitive impairment, dementia, and stroke. Together, these disabilities may all be part of one large phenotype resulting from global cerebral microvascular dysfunction. In this review, we discuss the pathophysiology of microvascular dysfunction-related late-onset depression, summarize recent epidemiological evidence on the association between cerebral microvascular dysfunction and depression, and indicate potential drivers of cerebral microvascular dysfunction. We also propose the hypothesis that depression may be a manifestation of a larger phenotype of cerebral microvascular dysfunction, highlight potential therapeutic targets and interventions, and give directions for future research.
Collapse
Affiliation(s)
- Jean-Philippe Empana
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France
| | - Pierre Boutouyrie
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France
| | - Cédric Lemogne
- Université de Paris, AP-HP, Hôpital Hôtel-Dieu, DMU Psychiatrie et Addictologie, Service de Psychiatrie de l'adulte, INSERM, Institut de Psychiatrie et Neurosciences de Paris, UMR_S1266, Paris, France
| | - Xavier Jouven
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France
| | - Thomas T van Sloten
- Université de Paris, INSERM, U970, Paris Cardiovascular Research Center, Paris, France; School for Cardiovascular Diseases Maastricht and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands.
| |
Collapse
|
7
|
Deng F, Zhang Y, Zhang R, Tang Q, Guo Z, Lv Y, Wang Z, Yang Y. Compromised Dynamic Cerebral Autoregulation in Patients With Central Disorders of Hypersomnolence. Front Neurol 2021; 12:634660. [PMID: 33776891 PMCID: PMC7991911 DOI: 10.3389/fneur.2021.634660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/16/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: We aimed to investigate the dynamic cerebral autoregulation (dCA) in patients with central disorders of hypersomnolence during wakefulness. Methods: Thirty-six patients with central disorders of hypersomnolence were divided into three groups according to polysomnography and multiple sleep latency test results: the idiopathic hypersomnia group (IH), narcolepsy type 1 without rapid-eye-movement sleep behavior disorder group (NT1-RBD), and narcolepsy type 1 with rapid-eye-movement sleep behavior disorder group (NT1 + RBD), with 12 patients in each group. Twelve sex- and age-matched healthy controls were recruited. We assessed the Epworth sleepiness scale (ESS) and dCA of all subjects. dCA was assessed by analyzing the phase difference (PD) using transfer function analysis. The ESS and dCA were analyzed before and after standardized treatment in 24 patients with narcolepsy type 1. Results: The overall PD of the IH, NT1-RBD, and NT1 + RBD groups were lower than that of the control group (P < 0.001). There were no significant differences between the overall PD of the NT1-RBD and NT1 + RBD group (P > 0.05). The ESS scores decreased and the overall PD increased after treatment in 24 patients with narcolepsy type 1 (P < 0.001). Multivariable analysis showed that mean sleep latency in multiple sleep latency test was independently associated with impaired overall PD (P < 0.05). Conclusions: The dCA is impaired in patients with central disorders of hypersomnolence. The impairment of dCA occurs irrespective of NT1-RBD/+RBD. The ESS score and dCA improved in patients with narcolepsy type 1 after medication treatment. The mean sleep latency in multiple sleep latency test was independently associated with impaired dCA. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT02752139.
Collapse
Affiliation(s)
- Fang Deng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yanan Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ran Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Qi Tang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhenni Guo
- Department of Neurology, Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yudan Lv
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Zhang Y, Wu X, Sun Q, Tang Q, Guo ZN, Wang Z, Yang Y. Biomarkers and Dynamic Cerebral Autoregulation of Obstructive Sleep Apnea-Hypopnea Syndrome. Nat Sci Sleep 2021; 13:2019-2028. [PMID: 34785966 PMCID: PMC8579875 DOI: 10.2147/nss.s328348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Patients with obstructive sleep apnea-hypopnea syndrome (OSAHS) have impaired dynamic cerebral autoregulation (dCA). This study aimed to explore whether serum levels of apolipoprotein B-100 (ApoB-100), fibronectin (FN), and ceruloplasmin (CP) were related to impaired dCA in OSAHS. METHODS A total of 90 patients with OSAHS from our database management system were enrolled and further divided into three subgroups according to the apnea-hypopnea index (AHI) using polysomnography results: mild (5 ≤ AHI ≤ 15), moderate (15 < AHI ≤ 30), and severe OSAHS (AHI > 30), with 30 patients in each group. Thirty sex- and age-matched healthy controls were recruited for this study. The serum levels of ApoB-100, FN, and CP were measured by enzyme-linked immunosorbent assays. dCA was assessed by analyzing the phase difference (PD) using transfer function analysis. RESULTS Serum levels of ApoB-100, FN, and CP were significantly higher in the mild, moderate, and severe OSAHS groups than that in the control group (P<0.001, respectively). The average PD of the moderate and severe OSAHS groups was lower than that of the control group (P=0.001 and P<0.001, respectively). Receiver operating curve analysis revealed that ApoB-100, FN, and CP might be able to distinguish patients with OSAHS from healthy individuals (area under the curve = 0.959 [95% CI 0.92-1.00], 0.987 [95% CI 0.96-1.01], 0.982 [95% CI 0.96-1.00]), respectively, P<0.001). The average PD was linearly correlated with the serum levels of ApoB-100, FN, and CP in patients with OSAHS. Multivariable analysis showed that FN and arousal index in polysomnography were associated with impaired average PD (P<0.001 and P=0.025, respectively). CONCLUSION Serum levels of ApoB-100, FN, and CP increased in patients with OSAHS. dCA was compromised in patients with OSAHS and was positively correlated with ApoB-100, FN, and CP serum levels, and FN serum levels and arousal index in polysomnography were independently associated with impaired dCA.
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaodan Wu
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Qingqing Sun
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Qi Tang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhen-Ni Guo
- Department of Neurology and Neuroscience Center, Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zan Wang
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yi Yang
- Department of Neurology and Neuroscience Center, Clinical Trial and Research Center for Stroke, the First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|