1
|
Singh S, Kannan M, Oladapo A, Deshetty UM, Ray S, Buch S, Periyasamy P. Ethanol modulates astrocyte activation and neuroinflammation via miR-339/NLRP6 inflammasome signaling. Free Radic Biol Med 2025; 226:1-12. [PMID: 39522566 DOI: 10.1016/j.freeradbiomed.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Alcohol is the most abused substance among adolescents and has a profound impact on health, society, and the economy. Alcohol intoxication is linked to neuroinflammation and neuronal damage, which result in behavioral alterations such as motor dysfunction, neuronal injury, cognitive deficits, and inflammation. Alcohol-induced neuroinflammation is associated with the activation of central nervous system cells, including astrocytes, and the release of proinflammatory cytokines. In this study, we investigated the role of the NLRP6 inflammasome signaling pathway in inducing cellular activation and neuroinflammation in human primary astrocytes exposed to ethanol. Our results demonstrated that ethanol upregulates the expression of NLRP6 inflammasome signaling mediators, including NLRP6, caspase 1, and proinflammatory cytokines IL-1β and IL-18, in human primary astrocytes. Gene silencing studies using NLRP6 siRNA further validate ethanol-mediated activation of NLRP6, cleavage of caspase 1, IL-1β, and IL-18 in human primary astrocytes. miR array analysis of ethanol-exposed human primary astrocytes reveals decreased levels of miR-339, accompanied by an upregulation of NLRP6 inflammasome signaling and astrocyte activation. Through bioinformatics analyses, Argonaute immunoprecipitation assays, and miR-339 overexpression experiments, we identify NLRP6 as a novel 3'-UTR target of miR-339. Overall, our findings confirmed the involvement of miR-339 in NLRP6 inflammasome signaling and its association with cellular activation and neuroinflammation in human primary astrocytes exposed to ethanol and provide novel insights highlighting a previously unrecognized mechanism in alcohol-induced neuroinflammation.
Collapse
Affiliation(s)
- Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Uma Maheswari Deshetty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
2
|
Pierson SR, Kolling LJ, James TD, Pushpavathi SG, Marcinkiewcz CA. Serotonergic dysfunction may mediate the relationship between alcohol consumption and Alzheimer's disease. Pharmacol Res 2024; 203:107171. [PMID: 38599469 PMCID: PMC11088857 DOI: 10.1016/j.phrs.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | | |
Collapse
|
3
|
Tap SC. The potential of 5-methoxy-N,N-dimethyltryptamine in the treatment of alcohol use disorder: A first look at therapeutic mechanisms of action. Addict Biol 2024; 29:e13386. [PMID: 38600715 PMCID: PMC11007263 DOI: 10.1111/adb.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/24/2023] [Accepted: 02/13/2024] [Indexed: 04/12/2024]
Abstract
Alcohol use disorder (AUD) remains one of the most prevalent psychiatric disorders worldwide with high economic costs. Current treatment options show modest efficacy and relapse rates are high. Furthermore, there are increases in the treatment gap and few new medications have been approved in the past 20 years. Recently, psychedelic-assisted therapy with psilocybin and lysergic acid diethylamide has garnered significant attention in the treatment of AUD. Yet, they require significant amounts of therapist input due to prolonged subjective effects (~4-12 h) leading to high costs and impeding implementation. Accordingly, there is an increasing interest in the rapid and short-acting psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). This paper offers a first look at potential therapeutic mechanisms for AUD by reviewing the current literature on 5-MeO-DMT. Primarily, 5-MeO-DMT is able to induce mystical experiences and ego-dissolution together with increases in psychological flexibility and mindfulness. This could decrease AUD symptoms through the alleviation of psychiatric mood-related comorbidities consistent with the negative reinforcement and self-medication paradigms. In addition, preliminary evidence indicates that 5-MeO-DMT modulates neural oscillations that might subserve ego-dissolution (increases in gamma), psychological flexibility and mindfulness (increases in theta), and the reorganization of executive control networks (increases in coherence across frequencies) that could improve emotion regulation and inhibition. Finally, animal studies show that 5-MeO-DMT is characterized by neuroplasticity, anti-inflammation, 5-HT2A receptor agonism, and downregulation of metabotropic glutamate receptor 5 with clinical implications for AUD and psychiatric mood-related comorbidities. The paper concludes with several recommendations for future research to establish the purported therapeutic mechanisms of action.
Collapse
Affiliation(s)
- Stephan C. Tap
- Department of PsychiatryGroningen University Medical CenterGroningenThe Netherlands
| |
Collapse
|
4
|
Cui X, Li J, Wang C, Ishaq HM, Zhang R, Yang F. Relationship between sphingolipids-mediated neuroinflammation and alcohol use disorder. Pharmacol Biochem Behav 2024; 235:173695. [PMID: 38128765 DOI: 10.1016/j.pbb.2023.173695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Alcohol use disorder is a chronic recurrent encephalopathy, and its pathogenesis has not been fully understood. Among possible explanations, neuroinflammation caused by the disorders of brain central immune signaling has been identified as one possible mechanism of alcohol use disorder. As the basic components of cells and important bioactive molecules, sphingolipids are essential in regulating many cellular activities. Recent studies have shown that sphingolipids-mediated neuroinflammation may be involved in the development of alcohol use disorder. METHODS PubMed databases were searched for literature on sphingolipids and alcohol use disorder (alcohol abuse, alcohol addiction, alcohol dependence, and alcohol misuse) including evidence of the relationship between sphingolipids-mediated neuroinflammation and alcohol use disorder (formation, withdrawal, treatment). RESULTS Disorders of sphingolipid metabolism, including the different types of sphingolipids and regulatory enzyme activity, have been found in patients with alcohol use disorder as well as animal models, which in turn cause neuro-inflammation in the central nervous system. Thus, these disorders may also be an important mechanism in the development of alcohol use disorder in patients. In addition, different sphingolipids may have different or even reverse effects on alcohol use disorder. CONCLUSIONS The sphingolipids-mediated neuroinflammation plays an important role in the development of alcohol use disorder. This review proposes a potential approach to prevent and treat alcohol use disorders by manipulating sphingolipid metabolism.
Collapse
Affiliation(s)
- XiaoJian Cui
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - JiaZhen Li
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - ChuanSheng Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - RuiLin Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
| | - Fan Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China; Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
5
|
Angerville B, Jurdana MA, Martinetti MP, Sarba R, Nguyen-Khac É, Naassila M, Dervaux A. Alcohol-related cognitive impairments in patients with and without cirrhosis. Alcohol Alcohol 2024; 59:agae008. [PMID: 38366913 DOI: 10.1093/alcalc/agae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
AIMS up to 80% of patients with alcohol use disorder display cognitive impairments. Some studies have suggested that alcohol-related cognitive impairments could be worsened by hepatic damage. The primary objective of this study was to compare mean scores on the Brief Evaluation of Alcohol-Related Neurocognitive Impairments measure between alcohol use disorder patients with (CIR+) or without cirrhosis (CIR-). METHODS we conducted a prospective case-control study in a hepatology department of a university hospital. All patients were assessed using the Evaluation of Alcohol-Related Neuropsychological Impairments test. RESULTS a total of 82 patients (50 CIR+, 32 CIR-) were included in this study. CIR- patients were significantly younger than CIR+ patients (respectively, 45.5 ± 6.8 vs 60.1 ± 9.0; P < .0001). After adjusting for age and educational level, the mean Evaluation of Alcohol-Related Neuropsychological Impairments total scores in the CIR+ group were significantly lower than in the group of CIR- patients (14.1 ± 0.7 vs 7.8 ± 0.4, respectively, P < .0001). The mean subscores on delayed verbal memory, alphabetical ordination, alternating verbal fluency, visuospatial abilities, and ataxia subtests were also significantly lower in the CIR+ than in the CIR- group (respectively, 1.9 ± 0.2 vs 2.8 ± 0.2; 1.8 ± 0.2 vs 2.7 ± 0.2; 2.2 ± 0.2 vs 3.6 ± 0.2; 0.7 ± 0.2 vs 1.6 ± 0.2; 0.7 ± 0.2 vs 3.1 ± 0.2; P < .0001 for all comparisons). CONCLUSIONS in the present study, alcohol use disorder patients with cirrhosis presented more severe cognitive impairments than those without cirrhosis. Longitudinal studies are needed to investigate how cirrhosis can influence cognitive impairments.
Collapse
Affiliation(s)
- Bernard Angerville
- Filière universitaire d'addictologie, EPS Barthélémy Durand, Étampes, 91150, France
- Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, INSERM UMR 1247, Groupe de Recherche sur l'Alcool & les Pharmacodépendances, Amiens, 80000, France
| | - Marie-Alix Jurdana
- Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, INSERM UMR 1247, Groupe de Recherche sur l'Alcool & les Pharmacodépendances, Amiens, 80000, France
| | | | - Ruxandra Sarba
- Département d'Hépato-Gastroenterologie, CHU d'Amiens, Amiens, 80000, France
| | - Éric Nguyen-Khac
- Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, INSERM UMR 1247, Groupe de Recherche sur l'Alcool & les Pharmacodépendances, Amiens, 80000, France
- Département d'Hépato-Gastroenterologie, CHU d'Amiens, Amiens, 80000, France
| | - Mickael Naassila
- Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, INSERM UMR 1247, Groupe de Recherche sur l'Alcool & les Pharmacodépendances, Amiens, 80000, France
| | - Alain Dervaux
- Filière universitaire d'addictologie, EPS Barthélémy Durand, Étampes, 91150, France
- Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, INSERM UMR 1247, Groupe de Recherche sur l'Alcool & les Pharmacodépendances, Amiens, 80000, France
- Laboratoire de recherche PSYCHOMADD, Université paris Saclay, Villejuif, 94800, France
| |
Collapse
|
6
|
Varodayan FP, Pahng AR, Davis TD, Gandhi P, Bajo M, Steinman MQ, Kiosses WB, Blednov YA, Burkart MD, Edwards S, Roberts AJ, Roberto M. Chronic ethanol induces a pro-inflammatory switch in interleukin-1β regulation of GABAergic signaling in the medial prefrontal cortex of male mice. Brain Behav Immun 2023; 110:125-139. [PMID: 36863493 PMCID: PMC10106421 DOI: 10.1016/j.bbi.2023.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Neuroimmune pathways regulate brain function to influence complex behavior and play a role in several neuropsychiatric diseases, including alcohol use disorder (AUD). In particular, the interleukin-1 (IL-1) system has emerged as a key regulator of the brain's response to ethanol (alcohol). Here we investigated the mechanisms underlying ethanol-induced neuroadaptation of IL-1β signaling at GABAergic synapses in the prelimbic region of the medial prefrontal cortex (mPFC), an area responsible for integrating contextual information to mediate conflicting motivational drives. We exposed C57BL/6J male mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and conducted ex vivo electrophysiology and molecular analyses. We found that the IL-1 system regulates basal mPFC function through its actions at inhibitory synapses on prelimbic layer 2/3 pyramidal neurons. IL-1β can selectively recruit either neuroprotective (PI3K/Akt) or pro-inflammatory (MyD88/p38 MAPK) mechanisms to produce opposing synaptic effects. In ethanol naïve conditions, there was a strong PI3K/Akt bias leading to a disinhibition of pyramidal neurons. Ethanol dependence produced opposite IL-1 effects - enhanced local inhibition via a switch in IL-1β signaling to the canonical pro-inflammatory MyD88 pathway. Ethanol dependence also increased cellular IL-1β in the mPFC, while decreasing expression of downstream effectors (Akt, p38 MAPK). Thus, IL-1β may represent a key neural substrate in ethanol-induced cortical dysfunction. As the IL-1 receptor antagonist (kineret) is already FDA-approved for other diseases, this work underscores the high therapeutic potential of IL-1 signaling/neuroimmune-based treatments for AUD.
Collapse
Affiliation(s)
- F P Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - A R Pahng
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - T D Davis
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY, USA
| | - P Gandhi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - M Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - M Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - W B Kiosses
- Microscopy Core Imaging Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - M D Burkart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - S Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - M Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Moreira-Júnior RE, Guimarães MADF, Etcheverria da Silva M, Maioli TU, Faria AMC, Brunialti-Godard AL. Animal model for high consumption and preference of ethanol and its interplay with high sugar and butter diet, behavior, and neuroimmune system. Front Nutr 2023; 10:1141655. [PMID: 37063320 PMCID: PMC10097969 DOI: 10.3389/fnut.2023.1141655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Mechanisms that dictate the preference for ethanol and its addiction are not only restricted to the central nervous system (CNS). An increasing body of evidence has suggested that abusive ethanol consumption directly affects the immune system, which in turn interacts with the CNS, triggering neuronal responses and changes, resulting in dependence on the drug. It is known that neuroinflammation and greater immune system reactivity are observed in behavioral disorders and that these can regulate gene transcription. However, there is little information about these findings of the transcriptional profile of reward system genes in high consumption and alcohol preference. In this regard, there is a belief that, in the striatum, an integrating region of the brain reward system, the interaction of the immune response and the transcriptional profile of the Lrrk2 gene that is associated with loss of control and addiction to ethanol may influence the alcohol consumption and preference. Given this information, this study aimed to assess whether problematic alcohol consumption affects the transcriptional profile of the Lrrk2 gene, neuroinflammation, and behavior and whether these changes are interconnected. Methods An animal model developed by our research group has been used in which male C57BL/6 mice and knockouts for the Il6 and Nfat genes were subjected to a protocol of high fat and sugar diet intake and free choice of ethanol in the following stages: Stage 1 (T1)-Dietary treatment, for 8 weeks, in which the animals receive high-calorie diet, High Sugar and Butter (HSB group), or standard diet, American Institute of Nutrition 93-Growth (AIN93G group); and Stage 2 (T2)-Ethanol consumption, in which the animals are submitted, for 4 weeks, to alcohol within the free choice paradigm, being each of them divided into 10 groups, four groups continued with the same diet and in the other six the HSB diet is substituted by the AIN93G diet. Five groups had access to only water, while the five others had a free choice between water and a 10% ethanol solution. The weight of the animals was evaluated weekly and the consumption of water and ethanol daily. At the end of the 12-week experiment, anxiety-like behavior was evaluated by the light/dark box test; compulsive-like behavior by Marble burying, transcriptional regulation of genes Lrrk2, Tlr4, Nfat, Drd1, Drd2, Il6, Il1β, Il10, and iNOS by RT-qPCR; and inflammatory markers by flow cytometry. Animals that the diet was replaced had an ethanol high preference and consumption. Results and discussion We observed that high consumption and preference for ethanol resulted in (1) elevation of inflammatory cells in the brain, (2) upregulation of genes associated with cytokines (Il6 and Il1β) and pro-inflammatory signals (iNOS and Nfat), downregulation of anti-inflammatory cytokine (Il10), dopamine receptor (Drd2), and the Lrrk2 gene in the striatum, and (3) behavioral changes such as decreased anxiety-like behavior, and increased compulsive-like behavior. Our findings suggest that interactions between the immune system, behavior, and transcriptional profile of the Lrrk2 gene influence the ethanol preferential and abusive consumption.
Collapse
Affiliation(s)
- Renato Elias Moreira-Júnior
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Andrade de Freitas Guimarães
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Etcheverria da Silva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiani Uceli Maioli
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Laboratório de Imunobiologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lúcia Brunialti-Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
From Low-Grade Inflammation in Osteoarthritis to Neuropsychiatric Sequelae: A Narrative Review. Int J Mol Sci 2022; 23:ijms232416031. [PMID: 36555670 PMCID: PMC9784931 DOI: 10.3390/ijms232416031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nowadays, osteoarthritis (OA), a common, multifactorial musculoskeletal disease, is considered to have a low-grade inflammatory pathogenetic component. Lately, neuropsychiatric sequelae of the disease have gained recognition. However, a link between the peripheral inflammatory process of OA and the development of neuropsychiatric pathology is not completely understood. In this review, we provide a narrative that explores the development of neuropsychiatric disease in the presence of chronic peripheral low-grade inflammation with a focus on its signaling to the brain. We describe the development of a pro-inflammatory environment in the OA-affected joint. We discuss inflammation-signaling pathways that link the affected joint to the central nervous system, mainly using primary sensory afferents and blood circulation via circumventricular organs and cerebral endothelium. The review describes molecular and cellular changes in the brain, recognized in the presence of chronic peripheral inflammation. In addition, changes in the volume of gray matter and alterations of connectivity important for the assessment of the efficacy of treatment in OA are discussed in the given review. Finally, the narrative considers the importance of the use of neuropsychiatric diagnostic tools for a disease with an inflammatory component in the clinical setting.
Collapse
|
9
|
Edwards KA, Leete JJ, Smith EG, Quick A, Modica CM, Wassermann EM, Polejaeva E, Dell KC, LoPresti M, Walker P, O'Brien M, Lai C, Qu BX, Devoto C, Carr W, Stone JR, Ahlers ST, Gill JM. Elevations in Tumor Necrosis Factor Alpha and Interleukin 6 From Neuronal-Derived Extracellular Vesicles in Repeated Low-Level Blast Exposed Personnel. Front Neurol 2022; 13:723923. [PMID: 35528741 PMCID: PMC9070565 DOI: 10.3389/fneur.2022.723923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The purpose of this pilot study was to determine if military service members with histories of hundreds to thousands of low-level blast exposures (i. e., experienced breachers) had different levels of serum and neuronal-derived extracellular vesicle (EV) concentrations of interleukin (IL)-6, IL-10, and tumor necrosis factor alpha (TNFα), compared to matched controls, and if these biomarkers related to neurobehavioral symptoms. Methods Participants were experienced breachers (n = 20) and matched controls without blast exposures (n = 14). Neuronal-derived EVs were isolated from serum and identified with mouse anti-human CD171. Serum and neuronal-derived EVs were analyzed for IL-6, IL-10, and TNFα using an ultra-sensitive assay. Results Serum TNFα concentrations were decreased in breachers when compared to control concentrations (p < 0.01). There were no differences in serum concentrations of IL-6, IL-10, or the IL-6/IL-10 ratio between breachers and controls (p's > 0.01). In neuronal-derived EVs, TNFα and IL-6 levels were increased in breachers compared to controls (p's < 0.01), and IL-10 levels were decreased in the breacher group compared to controls (p < 0.01). In breachers the IL-6/IL-10 ratio in neuronal-derived EVs was higher compared to controls, which correlated with higher total Rivermead Post-concussion Questionnaire (RPQ) scores (p's < 0.05). Conclusions These findings suggest that exposure of personnel to high numbers of low-level blast over a career may result in enduring central inflammation that is associated with chronic neurological symptoms. The data also suggest that peripheral markers of inflammation are not necessarily adequate surrogates for central neuroinflammation.
Collapse
Affiliation(s)
- Katie A Edwards
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jacqueline J Leete
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Ethan G Smith
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Alycia Quick
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Claire M Modica
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Elena Polejaeva
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Kristine C Dell
- Department of Psychology, Pennsylvania State University, University Park, PA, United States
| | - Matthew LoPresti
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Peter Walker
- Joint Artificial Intelligence Center, Arlington, VA, United States
| | - Meghan O'Brien
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Chen Lai
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Bao-Xi Qu
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Christina Devoto
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Stephen T Ahlers
- Naval Medical Research Center, Operational and Undersea Medicine Directorate, Silver Spring, MD, United States
| | - Jessica M Gill
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Uniformed Services of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
10
|
Coppens V, Verkerk R, Morrens M. Tracking TRYCAT: A Critical Appraisal of Kynurenine Pathway Quantifications in Blood. Front Pharmacol 2022; 13:825948. [PMID: 35250576 PMCID: PMC8892384 DOI: 10.3389/fphar.2022.825948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Violette Coppens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Manuel Morrens
- Faculty of Medicine and Health Sciences, Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium.,Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium
| |
Collapse
|
11
|
Neuroprotective effect of fucoidan by regulating gut-microbiota-brain axis in alcohol withdrawal mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Changes in cortical gene expression in the muscarinic M1 receptor knockout mouse: potential relevance to schizophrenia, Alzheimer's disease and cognition. NPJ SCHIZOPHRENIA 2021; 7:44. [PMID: 34521861 PMCID: PMC8440523 DOI: 10.1038/s41537-021-00174-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Postmortem and neuroimaging studies show low levels of cortical muscarinic M1 receptors (CHRM1) in patients with schizophrenia which is significant because CHRM signalling has been shown to change levels of gene expression and cortical gene expression is altered in schizophrenia. We decided to identify CHRM1-mediated changes in cortical gene expression by measuring levels of RNA in the cortex of the Chrm1-/- mouse (n = 10), where there would be no signalling by that receptor, and in wild type mouse (n = 10) using the Affymetrix Mouse Exon 1.0 ST Array. We detected RNA for 15,501 annotated genes and noncoding RNA of which 1,467 RNAs were higher and 229 RNAs lower in the cortex of the Chrm1-/- mouse. Pathways and proteins affected by the changes in cortical gene expression in the Chrm1-/- are linked to the molecular pathology of schizophrenia. Our human cortical gene expression data showed 47 genes had altered expression in Chrm1-/- mouse and the frontal pole from patients with schizophrenia with the change in expression of 44 genes being in opposite directions. In addition, genes with altered levels of expression in the Chrm1-/- mouse have been shown to affect amyloid precursor protein processing which is associated with the pathophysiology of Alzheimer's disease, and 69 genes with altered expression in the Chrm1-/- mouse are risk genes associated with human cognitive ability. Our findings argue CHRM1-mediated changes in gene expression are relevant to the pathophysiologies of schizophrenia and Alzheimer's disease and the maintenance of cognitive ability in humans.
Collapse
|
13
|
Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. Int J Mol Sci 2021; 22:ijms22105279. [PMID: 34067897 PMCID: PMC8157004 DOI: 10.3390/ijms22105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol binge drinking (BD) and poor nutritional habits are two frequent behaviors among many adolescents that alter gut microbiota in a pro-inflammatory direction. Dysbiotic changes in the gut microbiome are observed after alcohol and high-fat diet (HFD) consumption, even before obesity onset. In this study, we investigate the neuroinflammatory response of adolescent BD when combined with a continuous or intermittent HFD and its effects on adult ethanol consumption by using a self-administration (SA) paradigm in mice. The inflammatory biomarkers IL-6 and CX3CL1 were measured in the striatum 24 h after BD, 3 weeks later and after the ethanol (EtOH) SA. Adolescent BD increased alcohol consumption in the oral SA and caused a greater motivation to seek the substance. Likewise, mice with intermittent access to HFD exhibited higher EtOH consumption, while the opposite effect was found in mice with continuous HFD access. Biochemical analyses showed that after BD and three weeks later, striatal levels of IL-6 and CX3CL1 were increased. In addition, in saline-treated mice, CX3CL1 was increased after continuous access to HFD. After oral SA procedure, striatal IL-6 was increased only in animals exposed to BD and HFD. In addition, striatal CX3CL1 levels were increased in all BD- and HFD-exposed groups. Overall, our findings show that adolescent BD and intermittent HFD increase adult alcohol intake and point to neuroinflammation as an important mechanism modulating this interaction.
Collapse
|
14
|
Xu H, Li H, Liu D, Wen W, Xu M, Frank JA, Chen J, Zhu H, Grahame NJ, Luo J. Chronic Voluntary Alcohol Drinking Causes Anxiety-like Behavior, Thiamine Deficiency, and Brain Damage of Female Crossed High Alcohol Preferring Mice. Front Pharmacol 2021; 12:614396. [PMID: 33767622 PMCID: PMC7985542 DOI: 10.3389/fphar.2021.614396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
The central nervous system is vulnerable to chronic alcohol abuse, and alcohol dependence is a chronically relapsing disorder which causes a variety of physical and mental disorders. Appropriate animal models are important for investigating the underlying cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer alcohol to water when given free access. In the present study, we used female cHAP mice as a model of chronic voluntary drinking to evaluate the effects of alcohol on neurobehavioral and neuropathological changes. The female cHAP mice had free-choice access to 10% ethanol and water, while control mice had access to water alone at the age of 60-day-old. The mice were exposed to alcohol for 7 months then subjected to neurobehavioral tests including open field (OF), elevated plus maze (EPM), and Morris water maze (MWM). Results from OF and EPM tests suggested that chronic voluntary drinking caused anxiety-like behaviors. After behavior tests, mice were sacrificed, and brain tissues were processed for biochemical analyses. Alcohol altered the levels of several neurotransmitters and neurotrophic factors in the brain including gamma-Aminobutyric acid (GABA), corticotropin-releasing factor, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor. Alcohol increased the expression of neuroinflammation markers including interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-C chemokine receptor 2 (CCR2). Alcohol also induced cleaved caspase-3 and glial fibrillary acidic protein, indicative of neurodegeneration and gliosis. In addition, alcohol inhibited the expression of thiamine transporters in the brain and reduced thiamine levels in the blood. Alcohol also caused oxidative stress and endoplasmic reticulum (ER) stress, and stimulated neurogenesis.
Collapse
Affiliation(s)
- Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, China
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Nicholas J Grahame
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
15
|
Salavrakos M, Leclercq S, De Timary P, Dom G. Microbiome and substances of abuse. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110113. [PMID: 32971216 DOI: 10.1016/j.pnpbp.2020.110113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022]
Abstract
There is a growing amount of evidence showing a reciprocal relation between the gut microbiota and the brain. Substance use disorders (SUD), which are a major cause of preventable morbidity and mortality worldwide, have an influence on the gut microbiota and on the gut-brain axis. The communication between the microbiota and the brain exists through different pathways: (1) the immune response elicited by bacterial products, coupled with alterations of the intestinal barrier allowing these products to enter the bloodstream, (2) the direct and indirect effects of bacterial metabolites such as short chain fatty acids (SCFAs) or tryptophan on the brain, (3) and the hypothalamic-pituitary-adrenal (HPA) axis, whose peripheral afferents can be influenced by the microbiota, and can in turn activate microglia. Among substances of abuse, alcohol has been the subject of the greatest number of studies in this field. In some but not all patients suffering from alcohol-use-disorder (AUD), alcohol alters the composition of the gut microbiota and the permeability of the intestinal barrier, directly and through dysbiosis. It has also been well demonstrated that alcohol induces a peripheral inflammation; it is still unclear whether it induces a central inflammation, as there are contradictory results in human studies. In animal studies, it has been shown that neuroinflammation increases during alcohol withdrawal. Literature on opioids and stimulants is less numerous. Chronic morphine intake induces dysbiosis, increased intestinal permeability and a probable neuroinflammation, which could explain symptoms such as tolerance, hyperalgesia and deficit in reward behavior. Cocaine induces a dysbiosis and conversely the microbiome can modulate the behavioral response to stimulant drugs. Tobacco cessation is associated with an increase in microbiota diversity. Taken together, the findings of our narrative literature review suggest a bidirectional influence in the pathogenesis of substance use disorders.
Collapse
Affiliation(s)
- M Salavrakos
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium
| | - S Leclercq
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium
| | - P De Timary
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium
| | - G Dom
- Target Journal Progress in Neuropsychopharmacology and Biological Psychiatry, Belgium.
| |
Collapse
|
16
|
Yun JA, Jeong KS, Ahn YS, Han Y, Choi KS. The Interaction of Inflammatory Markers and Alcohol-Use on Cognitive Function in Korean Male Firefighters. Psychiatry Investig 2021; 18:205-213. [PMID: 33685038 PMCID: PMC8016693 DOI: 10.30773/pi.2020.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/20/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Cognitive functions have been shown to become impaired due to alcoholism. Recently, neuroinflammation gained attention for playing a role in the neurotoxic effect of alcohol. However, there is limited data on the relationship between alcohol and cognitive function, based on the mechanism of inflammation. This study examined whether the interaction between alcohol use and pro-inflammatory biomarkers is related to cognitive function in Korean male firefighters. METHODS A total of 474 firefighters were assessed for alcohol-related problems using CAGE, cognitive functions, and pro-inflammatory biomarkers (CRP, IL-6, TNF-α). Sequential multiple regression analyses were conducted to determine if inflammatory markers moderate the relationship between alcohol use and cognitive function. RESULTS Only a decreased attentional function was associated with the interaction of alcohol use and inflammatory markers, after controlling for age, sex, body mass index, lipid profiles, smoking, depression, fatigue, self-reported hypertension, diabetes, and musculoskeletal problems. CONCLUSION This study revealed that the interaction between alcohol use and inflammation is related to attentional function in Korean male firefighters. Additionally, this cross-sectional study suggests that diminishing attention, related to alcohol use, may be based on the mechanism of inflammation.
Collapse
Affiliation(s)
- Ji-Ae Yun
- Department of Neuropsychiatry, Eulji University School of Medicine, Daejeon, Republic of Korea.,Department of Neuropsychiatry, Eulji University Hospital, Daejeon, Republic of Korea
| | - Kyoung Sook Jeong
- Department of Preventive Medicine, Institute Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yeon-Soon Ahn
- Department of Preventive Medicine, Institute Occupational and Environmental Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yuri Han
- Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyeong-Sook Choi
- Department of Neuropsychiatry, Eulji University School of Medicine, Daejeon, Republic of Korea.,Department of Neuropsychiatry, Eulji University Hospital, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Alvarez Cooper I, Beecher K, Chehrehasa F, Belmer A, Bartlett SE. Tumour Necrosis Factor in Neuroplasticity, Neurogenesis and Alcohol Use Disorder. Brain Plast 2020; 6:47-66. [PMID: 33680846 PMCID: PMC7903009 DOI: 10.3233/bpl-190095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder is a pervasive and detrimental condition that involves changes in neuroplasticity and neurogenesis. Alcohol activates the neuroimmune system and alters the inflammatory status of the brain. Tumour necrosis factor (TNF) is a well characterised neuroimmune signal but its involvement in alcohol use disorder is unknown. In this review, we discuss the variable findings of TNF's effect on neuroplasticity and neurogenesis. Acute ethanol exposure reduces TNF release while chronic alcohol intake generally increases TNF levels. Evidence suggests TNF potentiates excitatory transmission, promotes anxiety during alcohol withdrawal and is involved in drug use in rodents. An association between craving for alcohol and TNF is apparent during withdrawal in humans. While anti-inflammatory therapies show efficacy in reversing neurogenic deficit after alcohol exposure, there is no evidence for TNF's essential involvement in alcohol's effect on neurogenesis. Overall, defining TNF's role in alcohol use disorder is complicated by poor understanding of its variable effects on synaptic transmission and neurogenesis. While TNF may be of relevance during withdrawal, the neuroimmune system likely acts through a larger group of inflammatory cytokines to alter neuroplasticity and neurogenesis. Understanding the individual relevance of TNF in alcohol use disorder awaits a more comprehensive understanding of TNF's effects within the brain.
Collapse
Affiliation(s)
- Ignatius Alvarez Cooper
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Kate Beecher
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Selena E. Bartlett
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
18
|
Level of sex hormones and their association with acetylsalicylic acid intolerance and nasal polyposis. PLoS One 2020; 15:e0243732. [PMID: 33332460 PMCID: PMC7746182 DOI: 10.1371/journal.pone.0243732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/26/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Chronic rhinosinusitis may be associated with nasal polyposis. Recurrence of disease is often observed and may be due to an intolerance of acetylsalicylic acid. Sex hormones are known to modulate allergic reactions and inflammation. Whether they may be involved in the development and progression of nasal polyposis has not been investigated yet. AIM Examine the relationship between levels of sex hormones and nasal polyposis. METHODS Hormonal levels (estradiol, testosterone and progesterone) in patients with nasal polyposis (n = 26) with or without acetylsalicylic acid-intolerance were determined and compared to hormonal levels in patients with septal deviation (n = 35). Cone-beam computed tomography scans were analysed by using scores as defined by Lund and Mackay and by Kennedy. RESULTS Our results show a 5 times greater odds (p = 0.01) for developing nasal polyposis in the presence of lowered estradiol plasma levels than in the presence of normal / elevated levels. When analyzing females and males separately, a 6 times greater odds for females to develop nasal polyposis in the presence of lowered estradiol plasma levels was calculated (p = 0.02). Thus, females are more likely to develop nasal polyposis when they have lowered estradiol levels than males. In addition, female patients showed an increased risk for developing ASA intolerance (p = 0.01). CONCLUSION Variation of sex hormones may be involved in nasal polyposis. Further studies including more patients to validate the presented results are required. SIGNIFICANCE Retrospective clinical investigation suggesting a correlation between varying sex hormones and nasal polyposis.
Collapse
|
19
|
Charlton AJ, May C, Luikinga SJ, Burrows EL, Hyun Kim J, Lawrence AJ, Perry CJ. Chronic voluntary alcohol consumption causes persistent cognitive deficits and cortical cell loss in a rodent model. Sci Rep 2019; 9:18651. [PMID: 31819151 PMCID: PMC6901469 DOI: 10.1038/s41598-019-55095-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol use is associated with cognitive decline that impedes behavioral change during rehabilitation. Despite this, addiction therapy does not address cognitive deficits, and there is poor understanding regarding the mechanisms that underlie this decline. We established a rodent model of chronic voluntary alcohol use to measure ensuing cognitive effects and underlying pathology. Rats had intermittent access to alcohol or an isocaloric solution in their home cage under voluntary 2-bottle choice conditions. In Experiments 1 and 2 cognition was assessed using operant touchscreen chambers. We examined performance in a visual discrimination and reversal task (Experiment 1), and a 5-choice serial reaction time task (Experiment 2). For Experiment 3, rats were perfused immediately after cessation of alcohol access period, and volume, cell density and microglial populations were assessed in the prefrontal cortex and striatum. Volume was assessed using the Cavalieri probe, while cell and microglial counts were estimated using unbiased stereology with an optical fractionator. Alcohol-exposed and control rats showed comparable acquisition of pairwise discrimination; however, performance was impaired when contingencies were reversed indicating reduced behavioral flexibility. When tested in a 5-choice serial reaction time task alcohol-exposed rats showed increased compulsivity and increased attentional bias towards a reward associated cue. Consistent with these changes, we observed decreased cell density in the prefrontal cortex. These findings confirm a detrimental effect of chronic alcohol and establish a model of alcohol-induced cognitive decline following long-term voluntary intake that may be used for future intervention studies.
Collapse
Affiliation(s)
- Annai J Charlton
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carlos May
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sophia J Luikinga
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emma L Burrows
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew J Lawrence
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christina J Perry
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|