1
|
Xiao X, Sun J, Tian J, Sun X, Yang C, Hao Y, Zhao Y, Yu X, Li M, Li S, Fang J, Hou X. Altered resting-state and dynamic functional connectivity of hypothalamic in first-episode depression: A functional magnetic resonance imaging study. Psychiatry Res Neuroimaging 2024; 345:111906. [PMID: 39342873 DOI: 10.1016/j.pscychresns.2024.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
The hypothalamus is an important component of the hypothalamic-pituitary-adrenal axis and an important brain region of the limbic system. Twenty-four first depressive episode(FDE) patients and 25 healthy controls were recruited for this study. The hypothalamus was used as a seed to observe the characteristics of resting state and dynamic functional connectivity (FC) changes in FDE patients, and further observed the correlation between the different brain regions and clinical symptoms. The results found that compared with the HC group, the FDE group showed sFC was increased of the left hypothalamus with right superior parietal gyrus and right middle temporal gyrus, and dFC was increased of the left hypothalamus with left inferior occipital gyrus. And sFC was increased of the right hypothalamus with right orbital part of inferior frontal gyrus, right supplementary motor area, and right middle temporal gyrus, and the dFC was also increased of right hypothalamus with right superior parietal gyrus and left middle temporal gyrus. In addition,there was a negative correlation between dFC values of the right hypothalamus with the right superior parietal gyrus and clinical symptoms in the FDE group. This study provides new insights into understanding the altered neuropathological mechanisms of the hypothalamic circuit in FDE.
Collapse
Affiliation(s)
- Xue Xiao
- Beijing Tsinghua Changgung Hospital, Tsinghua Universitye, Beijing, 102218, China; Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China
| | - Jifei Sun
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, 101300, China
| | - Jing Tian
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China
| | - Xu Sun
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China
| | - Chunhong Yang
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China
| | - Ying Hao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China
| | - Yanan Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China
| | - Mingshan Li
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, 100053, Beijing, China.
| | - Xiaobing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China.
| |
Collapse
|
2
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos‐Petropulu A, Al‐Sharif N, Leaver AM, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Modulation of habenular and nucleus accumbens functional connectivity by ketamine in major depression. Brain Behav 2024; 14:e3511. [PMID: 38894648 PMCID: PMC11187958 DOI: 10.1002/brb3.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/09/2024] [Accepted: 04/13/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is associated with dysfunctional reward processing, which involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Since ketamine elicits rapid antidepressant and antianhedonic effects in MDD, this study sought to investigate how serial ketamine infusion (SKI) treatment modulates static and dynamic functional connectivity (FC) in Hb and NAc functional networks. METHODS MDD participants (n = 58, mean age = 40.7 years, female = 28) received four ketamine infusions (0.5 mg/kg) 2-3 times weekly. Resting-state functional magnetic resonance imaging (fMRI) scans and clinical assessments were collected at baseline and 24 h post-SKI. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Changes in FC pre-to-post SKI, and correlations with changes with mood and anhedonia were examined. Comparisons of FC between patients and healthy controls (HC) at baseline (n = 55, mean age = 32.6, female = 31), and between HC assessed twice (n = 16) were conducted as follow-up analyses. RESULTS Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in mood ratings. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. No differences were observed between HC at baseline or over time. CONCLUSION Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions in MDD. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Joana R. Loureiro
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ashish K. Sahib
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Noor Al‐Sharif
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Amber M. Leaver
- Department of RadiologyNorthwestern UniversityChicagoIllinoisUSA
| | - Benjamin Wade
- Division of Neuropsychiatry and NeuromodulationMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Shantanu Joshi
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Roger P. Woods
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Katherine L. Narr
- Ahmanson‐Lovelace Brain Mapping Center, Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Guo J, Wang L, Zhao X, Wang D, Zhang X. Sex difference in association between suicide attempts and lipid profile in first-episode and drug naive patients with major depressive disorder. J Psychiatr Res 2024; 172:24-33. [PMID: 38354544 DOI: 10.1016/j.jpsychires.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The relationship between suicide attempts and lipid profiles in patients with major depressive disorder (MDD) remains uncertain. The purpose of this study was to investigate sex differences in the relationship between suicide attempts and plasma lipid profiles in a large sample of first-episode and drug naive (FEDN) MDD patients. METHODS We recruited 1718 FEDN MDD patients and gathered demographic, clinical, and blood lipid data. The Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale and the Positive and Negative Syndrome Scale were used to assess the symptoms of patients. RESULTS There was no significant difference in the prevalence of suicide attempts between male and female MDD patients. The suicide attempt group had higher levels of depression, anxiety, psychotic symptoms, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C), but lower levels of high-density lipoprotein cholesterol (HDL-C) levels than the non-suicide attempt group. Binary logistic regression showed that TC levels were significantly correlated with suicidal attempts in both male and female patients. Correlation analysis revealed that the levels of TC, HDL-C and LDL-C were significantly associated with the number of suicide attempts in both male and female patients. Further multiple linear regression revealed that TC levels were significantly associated with the number of suicide attempts in male patients only. CONCLUSIONS Lipid biomarkers, particularly high TC levels, are associated with suicide attempts in both male and female MDD patients. However, there is gender difference in association between lipid biomarkers, especially TC levels, and the number of suicide attempts in MDD patients.
Collapse
Affiliation(s)
- Junru Guo
- School of Psychology, Guizhou Normal University, Guiyang, 550025, China; Department of Psychology, Guizhou Minzu University, Guiyang, 550025, China
| | - Li Wang
- School of Psychology, Guizhou Normal University, Guiyang, 550025, China; CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqing Zhao
- Student Affairs Office, Guizhou University, Guiyang, 550025, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Su T, Chen B, Yang M, Wang Q, Zhou H, Zhang M, Wu Z, Lin G, Wang D, Li Y, Zhong X, Ning Y. Disrupted functional connectivity of the habenula links psychomotor retardation and deficit of verbal fluency and working memory in late-life depression. CNS Neurosci Ther 2024; 30:e14490. [PMID: 37804094 PMCID: PMC11017447 DOI: 10.1111/cns.14490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Functional abnormalities of the habenula in patients with depression have been demonstrated in an increasing number of studies, and the habenula is involved in cognitive processing. However, whether patients with late-life depression (LLD) exhibit disrupted habenular functional connectivity (FC) and whether habenular FC mediates the relationship between depressive symptoms and cognitive impairment remain unclear. METHODS Overall, 127 patients with LLD and 75 healthy controls were recruited. The static and dynamic FC between the habenula and the whole brain was compared between LLD patients and healthy controls, and the relationships of habenular FC with depressive symptoms and cognitive impairment were explored by correlation and mediation analyses. RESULTS Compared with the controls, patients with LLD exhibited decreased static FC between the right habenula and bilateral inferior frontal gyrus (IFG); there was no significant difference in dynamic FC of the habenula between the two groups. Additionally, the decreased static FC between the right habenula and IFG was associated with more severe depressive symptoms (especially psychomotor retardation) and cognitive impairment (language, memory, and visuospatial skills). Last, static FC between the right habenula and left IFG partially mediated the relationship between depressive symptoms (especially psychomotor retardation) and cognitive impairment (verbal fluency and working memory). CONCLUSIONS Patients with LLD exhibited decreased static FC between the habenula and IFG but intact dynamic FC of the habenula. This decreased static FC mediated the relationship between depressive symptoms and cognitive impairment.
Collapse
Affiliation(s)
- Ting Su
- Department of RadiologyThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Ben Chen
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Mingfeng Yang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Qiang Wang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Huarong Zhou
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Min Zhang
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhangying Wu
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gaohong Lin
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | | | - Yue Li
- Guangzhou Medical UniversityGuangzhouChina
| | - Xiaomei Zhong
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yuping Ning
- Geriatric Neuroscience CenterThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical UniversityGuangzhouChina
- The First School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
| |
Collapse
|
5
|
Cheng X, Chen J, Zhang X, Wang T, Sun J, Zhou Y, Yang R, Xiao Y, Chen A, Song Z, Chen P, Yang C, QiuxiaWu, Lin T, Chen Y, Cao L, Wei X. Characterizing the temporal dynamics of intrinsic brain activities in depressed adolescents with prior suicide attempts. Eur Child Adolesc Psychiatry 2024; 33:1179-1191. [PMID: 37284850 PMCID: PMC11032277 DOI: 10.1007/s00787-023-02242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Converging evidence has revealed disturbances in the corticostriatolimic system are associated with suicidal behaviors in adults with major depressive disorder. However, the neurobiological mechanism that confers suicidal vulnerability in depressed adolescents is largely unknown. A total of 86 depressed adolescents with and without prior suicide attempts (SA) and 47 healthy controls underwent resting-state functional imaging (R-fMRI) scans. The dynamic amplitude of low-frequency fluctuations (dALFF) was measured using sliding window approach. We identified SA-related alterations in dALFF variability primarily in the left middle temporal gyrus, inferior frontal gyrus, middle frontal gyrus (MFG), superior frontal gyrus (SFG), right SFG, supplementary motor area (SMA) and insula in depressed adolescents. Notably, dALFF variability in the left MFG and SMA was higher in depressed adolescents with recurrent suicide attempts than in those with a single suicide attempt. Moreover, dALFF variability was capable of generating better diagnostic and prediction models for suicidality than static ALFF. Our findings suggest that alterations in brain dynamics in regions involved in emotional processing, decision-making and response inhibition are associated with an increased risk of suicidal behaviors in depressed adolescents. Furthermore, dALFF variability could serve as a sensitive biomarker for revealing the neurobiological mechanisms underlying suicidal vulnerability.
Collapse
Affiliation(s)
- Xiaofang Cheng
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Jianshan Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Ting Wang
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jiaqi Sun
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yanling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Ruilan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yeyu Xiao
- Guangzhou Integrated Traditional Chinese and Western Medicine, Guangzhou, 510800, Guangdong, People's Republic of China
| | - Amei Chen
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Ziyi Song
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Pinrui Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Chanjuan Yang
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - QiuxiaWu
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Taifeng Lin
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Yingmei Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, liwan district, Guangzhou, 510370, Guangdong, People's Republic of China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510370, Guangdong, People's Republic of China.
| | - Xinhua Wei
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Yuexiu district, Guangzhou, 510180, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Taraku B, Loureiro JR, Sahib AK, Zavaliangos-Petropulu A, Al-Sharif N, Leaver A, Wade B, Joshi S, Woods RP, Espinoza R, Narr KL. Ketamine treatment modulates habenular and nucleus accumbens static and dynamic functional connectivity in major depression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.01.23299282. [PMID: 38106178 PMCID: PMC10723506 DOI: 10.1101/2023.12.01.23299282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dysfunctional reward processing in major depressive disorder (MDD) involves functional circuitry of the habenula (Hb) and nucleus accumbens (NAc). Ketamine elicits rapid antidepressant and alleviates anhedonia in MDD. To clarify how ketamine perturbs reward circuitry in MDD, we examined how serial ketamine infusions (SKI) modulate static and dynamic functional connectivity (FC) in Hb and NAc networks. MDD participants (n=58, mean age=40.7 years, female=28) received four ketamine infusions (0.5mg/kg) 2-3 times weekly. Resting-state fMRI scans and clinical assessments were collected at baseline and 24 hours post-SKI completion. Static FC (sFC) and dynamic FC variability (dFCv) were calculated from left and right Hb and NAc seeds to all other brain regions. Paired t-tests examined changes in FC pre-to-post SKI, and correlations were used to determine relationships between FC changes with mood and anhedonia. Following SKI, significant increases in left Hb-bilateral visual cortex FC, decreases in left Hb-left inferior parietal cortex FC, and decreases in left NAc-right cerebellum FC occurred. Decreased dFCv between left Hb and right precuneus and visual cortex, and decreased dFCv between right NAc and right visual cortex both significantly correlated with improvements in Hamilton Depression Rating Scale. Decreased FC between left Hb and bilateral visual/parietal cortices as well as increased FC between left NAc and right visual/parietal cortices both significantly correlated with improvements in anhedonia. Subanesthetic ketamine modulates functional pathways linking the Hb and NAc with visual, parietal, and cerebellar regions. Overlapping effects between Hb and NAc functional systems were associated with ketamine's therapeutic response.
Collapse
Affiliation(s)
- Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Joana R Loureiro
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashish K Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Noor Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Benjamin Wade
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shantanu Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger P Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Yuan L, Chu Z, Chen X, Zhu Y, Xu X, Shen Z. Changes of cortical thickness in the first episode, drug-naive depression patients with and without melancholic features. Psychiatry Res Neuroimaging 2023; 334:111683. [PMID: 37480707 DOI: 10.1016/j.pscychresns.2023.111683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Melancholic depression (MD) is a more severe type of major depressive disorder (MDD) with a core feature of anhedonia. However, its pathophysiology remains unclear. The current study aims to investigate whether there is a significant difference in cortical thickness (CT) that can be used to differentiate MD patients from non-melancholic depression (NMD) patients. We recruited 137 first-episode drug-naive MDD patients and 75 healthy controls (HCs) for structural magnetic resonance imaging, analyzed using the Surface-based morphometry approach. Meanwhile, the MDD patients were divided into the MD and NMD subgroups according to their scores on the Montgomery-Asberg Depression Rating Scale and Hamilton Depression Rating Scale. No significant CT differences among the three groups were found. We also did not find significant CT changes between the NMD and the HCs groups or between the MD and NMD groups. However, the CT of the left postcentral gyrus and right precuneus among MD patients were larger than HCs. Moreover, the CT of the left postcentral gyrus and right precuneus were not correlated with the severity of the disease and illness duration. The findings suggest that the CT alterations of the left postcentral gyrus and the right precuneus are distinct pathological mechanisms for MD.
Collapse
Affiliation(s)
- Lijin Yuan
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhaosong Chu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xianyu Chen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yun Zhu
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China; Yunnan Clinical Research Center for Mental Disorders, Kunming, 650032, China
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China; Yunnan Clinical Research Center for Mental Disorders, Kunming, 650032, China.
| |
Collapse
|
8
|
Vieira R, Faria AR, Ribeiro D, Picó-Pérez M, Bessa JM. Structural and functional brain correlates of suicidal ideation and behaviors in depression: A scoping review of MRI studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110799. [PMID: 37207727 DOI: 10.1016/j.pnpbp.2023.110799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Identifying and integrating the neural correlates of suicidal ideation and behaviors is crucial to expand the knowledge and develop targeted strategies to prevent suicide. This review aimed to describe the neural correlates of suicidal ideation, behavior and the transition between them, using different magnetic resonance imaging (MRI) modalities, providing an up-to-date overview of the literature. To be included, the observational, experimental, or quasi-experimental studies must include adult patients currently diagnosed with major depressive disorder and investigate the neural correlates of suicidal ideation, behavior and/or the transition using MRI. The searches were conducted on PubMed, ISI Web of Knowledge and Scopus. Fifty articles were included in this review: 22 on suicidal ideation, 26 on suicide behaviors and two on the transition between them. The qualitative analysis of the included studies suggested alterations in the frontal, limbic and temporal lobes in suicidal ideation associated with deficits in emotional processing and regulation, and in the frontal, limbic, parietal lobes, and basal ganglia in suicide behaviors associated with impairments in decision-making. Gaps in the literature and methodological concerns were identified and might be addressed in future studies.
Collapse
Affiliation(s)
- Rita Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal
| | | | - Diogo Ribeiro
- Department of Psychiatry, Hospital de Braga, Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal; Clinical Academic Center - Braga, Braga, Portugal.
| |
Collapse
|
9
|
Mao CP, Wu Y, Yang HJ, Qin J, Song QC, Zhang B, Zhou XQ, Zhang L, Sun HH. Altered habenular connectivity in chronic low back pain: An fMRI and machine learning study. Hum Brain Mapp 2023; 44:4407-4421. [PMID: 37306031 PMCID: PMC10318213 DOI: 10.1002/hbm.26389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
The habenula has been implicated in the pathogenesis of pain and analgesia, while evidence concerning its function in chronic low back pain (cLBP) is sparse. This study aims to investigate the resting-state functional connectivity (rsFC) and effective connectivity of the habenula in 52 patients with cLBP and 52 healthy controls (HCs) and assess the feasibility of distinguishing cLBP from HCs based on connectivity by machine learning methods. Our results indicated significantly enhanced rsFC of the habenula-left superior frontal cortex (SFC), habenula-right thalamus, and habenula-bilateral insular pathways as well as decreased rsFC of the habenula-pons pathway in cLBP patients compared to HCs. Dynamic causal modelling revealed significantly enhanced effective connectivity from the right thalamus to right habenula in cLBP patients compared with HCs. RsFC of the habenula-SFC was positively correlated with pain intensities and Hamilton Depression scores in the cLBP group. RsFC of the habenula-right insula was negatively correlated with pain duration in the cLBP group. Additionally, the combination of the rsFC of the habenula-SFC, habenula-thalamus, and habenula-pons pathways could reliably distinguish cLBP patients from HCs with an accuracy of 75.9% by support vector machine, which was validated in an independent cohort (N = 68, accuracy = 68.8%, p = .001). Linear regression and random forest could also distinguish cLBP and HCs in the independent cohort (accuracy = 73.9 and 55.9%, respectively). Overall, these findings provide evidence that cLBP may be associated with abnormal rsFC and effective connectivity of the habenula, and highlight the promise of machine learning in chronic pain discrimination.
Collapse
Affiliation(s)
- Cui Ping Mao
- Department of Medical ImagingSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yue Wu
- School of Computer Science and EngineeringXidian UniversityXi'anShaanxiChina
| | - Hua Juan Yang
- Department of Medical ImagingSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Jie Qin
- Department of Medical ImagingSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Qi Chun Song
- Department of Medical ImagingSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Bo Zhang
- Department of Medical ImagingSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xiao Qian Zhou
- Department of Medical ImagingSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Liang Zhang
- School of Computer Science and EngineeringXidian UniversityXi'anShaanxiChina
| | - Hong Hong Sun
- Department of Medical ImagingSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
10
|
Shunkai L, Chen P, Zhong S, Chen G, Zhang Y, Zhao H, He J, Su T, Yan S, Luo Y, Ran H, Jia Y, Wang Y. Alterations of insular dynamic functional connectivity and psychological characteristics in unmedicated bipolar depression patients with a recent suicide attempt. Psychol Med 2023; 53:3837-3848. [PMID: 35257645 DOI: 10.1017/s0033291722000484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mounting evidence showed that insula contributed to the neurobiological mechanism of suicidal behaviors in bipolar disorder (BD). However, no studies have analyzed the dynamic functional connectivity (dFC) of insular Mubregions and its association with personality traits in BD with suicidal behaviors. Therefore, we investigated the alterations of dFC variability in insular subregions and personality characteristics in BD patients with a recent suicide attempt (SA). METHODS Thirty unmedicated BD patients with SA, 38 patients without SA (NSA) and 35 demographically matched healthy controls (HCs) were included. The sliding-window analysis was used to evaluate whole-brain dFC for each insular subregion seed. We assessed between-group differences of psychological characteristics on the Minnesota Multiphasic Personality Inventory-2. Finally, a multivariate regression model was adopted to predict the severity of suicidality. RESULTS Compared to NSA and HCs, the SA group exhibited decreased dFC variability values between the left dorsal anterior insula and the left anterior cerebellum. These dFC variability values could also be utilized to predict the severity of suicidality (r = 0.456, p = 0.031), while static functional connectivity values were not appropriate for this prediction. Besides, the SA group scored significantly higher on the schizophrenia clinical scales (p < 0.001) compared with the NSA group. CONCLUSIONS Our findings indicated that the dysfunction of insula-cerebellum connectivity may underlie the neural basis of SA in BD patients, and highlighted the dFC variability values could be considered a neuromarker for predictive models of the severity of suicidality. Moreover, the psychiatric features may increase the vulnerability of suicidal behavior.
Collapse
Affiliation(s)
- Lai Shunkai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shuya Yan
- School of Management, Jinan University, Guangzhou, China
| | - Yange Luo
- School of Management, Jinan University, Guangzhou, China
| | - Hanglin Ran
- School of Management, Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Zhu Z, Wang S, Lee T, Zhang R. Habenula functional connectivity variability increases with disease severity in individuals with major depression. J Affect Disord 2023; 333:216-224. [PMID: 37088249 DOI: 10.1016/j.jad.2023.04.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Increasing evidence has suggested the significant relationships between major depressive disorder (MDD) and the neural abnormalities of the Habenula (Hb). Yet, previous research on the relationships between Hb and MDD mainly focuses on the static descriptions of their functional connectivity. However, recent work suggests that the connectivity patterns are indeed dynamic, though related analysis and interpretation remain scarce. METHODS Using seed-based resting-state fMRI, the static (sFC) and dynamic functional connectivity (dFC) between the Hb and whole-brain were calculated, including 51 clinical participants (MDDs) and 45 healthy controls (HCs). Association between the aberrant connectivity patterns and depressive symptomatology was also analyzed. RESULTS Compared with the HCs, MDDs exhibited increased sFC from the left Hb to the right inferior temporal gyrus and left superior frontal gyrus (SFG), while sFC to the right calcarine gyrus decreased. Notably, we observed that dFC between the left Hb and the right supplementary motor area, right postcentral gyrus (PoCG), left inferior frontal gyrus as well as left occipital gyrus was weak in MDDs. Furthermore, sFC between the Hb and SFG correlated positively with the measured attention-related cognitive deficits. Importantly, there was a positive correlation between dFC between the Hb and PoCG and depressive severity. CONCLUSIONS The findings indicate that the anomalous neural circuitry of Hb may underpin impaired attention disengagement, emotional modulation and motor inhibition associated with depressive symptoms such as rumination disposition and psychomotor retardation. This may open new avenues for studying the neuropathology mechanisms and guiding new treatment strategies for MDD.
Collapse
Affiliation(s)
- Ziqing Zhu
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sibin Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Tatia Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China.
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Differential gut microbiota and microbial metabolites in adolescents with depression. Asian J Psychiatr 2023; 83:103496. [PMID: 36764124 DOI: 10.1016/j.ajp.2023.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 01/29/2023] [Indexed: 02/01/2023]
|
13
|
Yang J, Liu Z, Tao H, Cheng Y, Fan Z, Sun F, Ouyang X, Yang J. Aberrant brain dynamics in major depressive disorder with suicidal ideation. J Affect Disord 2022; 314:263-270. [PMID: 35878840 DOI: 10.1016/j.jad.2022.07.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Suicidal ideation (SI) is a common symptom of major depressive disorder (MDD). Accumulating studies demonstrated that MDD with SI was associated with static alterations in brain activity and functional connectivity. However, given that brain is a highly dynamic system, the changes of brain dynamic patterns in MDD with SI remain unknown. METHODS We included 60 MDD patients with SI (MDD-SI), 58 MDD patients without SI (MDD-NSI), and 58 healthy controls (HCs) who underwent resting-state functional magnetic resonance imaging. The sliding-window approach was used to calculate the dynamic fractional amplitude of low-frequency fluctuation (dfALFF) and dynamic degree centrality (dDC) to characterize the temporal dynamic regional activity and distant functional connectivity. We compared dfALFF and dDC across groups and further conducted correlations between abnormal dynamic metrics and the severity of suicidality. RESULTS In terms of the dynamic regional activity, MDD-SI showed decreased dfALFF in the left lingual gyrus and right middle occipital gyrus compared with MDD-NSI; in terms of the dynamic distant connectivity, MDD-SI showed decreased dDC in the right middle frontal gyrus compared with MDD-NSI. The decreased dDC in the right middle frontal gyrus was correlated with increased severity of suicidality. LIMITATIONS The relatively small sample size. CONCLUSIONS We demonstrate the specific brain dynamic patterns of MDD-SI in regional activity and distant functional connectivity compared to MDD-NSI. Especially the decreased temporal variability of the distant connectivity in the middle frontal gyrus was associated with SI. These altered dynamic patterns may represent a potential neurobiological diathesis of SI in MDD.
Collapse
Affiliation(s)
- Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haojuan Tao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yixin Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zebin Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Fuping Sun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jie Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
14
|
Ouyang X, Long Y, Wu Z, Liu D, Liu Z, Huang X. Temporal Stability of Dynamic Default Mode Network Connectivity Negatively Correlates with Suicidality in Major Depressive Disorder. Brain Sci 2022; 12:1263. [PMID: 36138998 PMCID: PMC9496878 DOI: 10.3390/brainsci12091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Previous studies have demonstrated that the suicidality in patients with major depressive disorder (MDD) is related to abnormal brain functional connectivity (FC) patterns. However, little is known about its relationship with dynamic functional connectivity (dFC) based on the assumption that brain FCs fluctuate over time. Temporal stabilities of dFCs within the whole brain and nine key networks were compared between 52 MDD patients and 21 age, sex-matched healthy controls (HCs) using resting-state functional magnetic resonance imaging and temporal correlation coefficients. The alterations in MDD were further correlated with the scores of suicidality item in the Hamilton Rating Scale for Depression (HAMD). Compared with HCs, the MDD patients showed a decreased temporal stability of dFC as indicated by a significantly decreased temporal correlation coefficient at the global level, as well as within the default mode network (DMN) and subcortical network. In addition, temporal correlation coefficients of the DMN were found to be significantly negatively correlated with the HAMD suicidality item scores in MDD patients. These results suggest that MDD may be characterized by excessive temporal fluctuations of dFCs within the DMN and subcortical network, and that decreased stability of DMN connectivity may be particularly associated with the suicidality in MDD.
Collapse
Affiliation(s)
- Xuan Ouyang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yicheng Long
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhipeng Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dayi Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiaojun Huang
- Department of Psychiatry, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| |
Collapse
|
15
|
He Z, Lu F. Commentary: Aberrant dynamic functional connectivity of posterior cingulate cortex subregions in major depressive disorder with suicidal ideation. Front Neurosci 2022; 16:1012050. [PMID: 36188483 PMCID: PMC9523315 DOI: 10.3389/fnins.2022.1012050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zongling He
- The Fourth People's Hospital of Chengdu, Chengdu, China
- Chengdu Mental Health Center, Chengdu, China
| | - Fengmei Lu
- The Fourth People's Hospital of Chengdu, Chengdu, China
- Chengdu Mental Health Center, Chengdu, China
- *Correspondence: Fengmei Lu
| |
Collapse
|
16
|
Kim HJ, Yoo H, Kim JY, Yang SH, Lee HW, Lee HJ, Son GH, Kim H. Postmortem gene expression profiles in the habenulae of suicides: implication of endothelial dysfunction in the neurovascular system. Mol Brain 2022; 15:48. [PMID: 35614468 PMCID: PMC9134578 DOI: 10.1186/s13041-022-00934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
The habenula (Hb) is an epithalamic structure that links multiple forebrain areas with the mid/hindbrain monoaminergic systems. As an anti-reward center, it has been implicated in the etiology of various neuropsychiatric disorders, particularly those associated with dysregulated reward circuitry. In this regard, Hb has been proposed as a therapeutic target for treatment-resistant depression associated with a higher risk of suicide. Therefore, we aimed to gain insight into the molecular signatures of the Hb in association with suicide in individuals with major depression. Postmortem gene expression analysis identified 251 differentially expressed genes (DEGs) in the Hb tissue of suicides in comparison with Hb tissues from neurotypical individuals. Subsequent bioinformatic analyses using single-cell transcriptome data from the mouse Hb showed that the levels of a subset of endothelial cell-enriched genes encoding cell–cell junctional complex and plasma membrane-associated proteins, as well as the levels of their putative upstream transcriptional regulators, were significantly affected in suicides. Although our findings are based on a limited number of samples, the present study suggests a potential association of endothelial dysfunction in the Hb with depression and suicidal behavior.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeijung Yoo
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Yeon Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Legal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Soo Hyun Yang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Woo Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Heon-Jeong Lee
- Department of Psychiatry, Korea University College of Medicine and Anam Hospital, Seoul, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Legal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| | - Hyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea. .,Department of Anatomy and Neuroscience, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Xie J, Wang Y, Zhong Q, Bai SJ, Zhou CJ, Tian T, Chen JJ. Associations Between Disordered Microbial Metabolites and Changes of Neurotransmitters in Depressed Mice. Front Cell Infect Microbiol 2022; 12:906303. [PMID: 35669116 PMCID: PMC9163491 DOI: 10.3389/fcimb.2022.906303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 12/26/2022] Open
Abstract
Backgrounds Many pieces of evidence demonstrated that there were close relationships between gut microbiota and depression. However, the specific molecular mechanisms were still unknown. Here, using targeted metabolomics, this study was conducted to explore the relationships between microbial metabolites in feces and neurotransmitters in prefrontal cortex of depressed mice. Methods Chronic unpredictable mild stress (CUMS) model of depression was built in this study. Targeted liquid chromatography-mass spectrometry analysis was used to detect the microbial metabolites in feces and neurotransmitters in prefrontal cortex of mice. Both univariate and multivariate statistical analyses were applied to identify the differential microbial metabolites and neurotransmitters and explore relationships between them. Results Ninety-eight differential microbial metabolites (mainly belonged to amino acids, fatty acids, and bile acids) and 11 differential neurotransmitters (belonged to tryptophan pathway, GABAergic pathway, and catecholaminergic pathway) were identified. Five affected amino acid-related metabolic pathways were found in depressed mice. The 19 differential microbial metabolites and 10 differential neurotransmitters were found to be significantly correlated with depressive-like behaviors. The two differential neurotransmitters (tyrosine and glutamate) and differential microbial metabolites belonged to amino acids had greater contributions to the overall correlations between microbial metabolites and neurotransmitters. In addition, the significantly decreased L-tyrosine as microbial metabolites and tyrosine as neurotransmitter had the significantly positive correlation (r = 0.681, p = 0.0009). Conclusions These results indicated that CUMS-induced disturbances of microbial metabolites (especially amino acids) might affect the levels of neurotransmitters in prefrontal cortex and then caused the onset of depression. Our findings could broaden the understanding of how gut microbiota was involved in the onset of depression.
Collapse
Affiliation(s)
- Jing Xie
- Department of Endocrinology, The Fourth People’s Hospital of Chongqing, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Ying Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Shun-jie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chan-juan Zhou
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Tian
- Department of Neurology, Guizhou Medical University Affiliated Hospital, Guizhou, China
| | - Jian-jun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Luo Q, Yu H, Chen J, Lin X, Wu Z, Yao J, Li Y, Wu H, Peng H. Altered Variability and Concordance of Dynamic Resting-State Functional Magnetic Resonance Imaging Indices in Patients With Major Depressive Disorder and Childhood Trauma. Front Neurosci 2022; 16:852799. [PMID: 35615286 PMCID: PMC9124829 DOI: 10.3389/fnins.2022.852799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Childhood trauma is a non-specific risk factor for major depressive disorder (MDD). resting-state functional magnetic resonance imaging (R-fMRI) studies have demonstrated changes in regional brain activity in patients with MDD who experienced childhood trauma. However, previous studies have mainly focused on static characteristics of regional brain activity. This study aimed to determine the specific brain regions associated with MDD with childhood trauma by performing temporal dynamic analysis of R-fMRI data in three groups of patients: patients with childhood trauma-associated MDD (n = 48), patients without childhood trauma-associated MDD (n = 30), and healthy controls (n = 103). Dynamics and concordance of R-fMRI indices were calculated and analyzed. In patients with childhood trauma-associated MDD, a lower dynamic amplitude of low-frequency fluctuations was found in the left lingual gyrus, whereas a lower dynamic degree of centrality was observed in the right lingual gyrus and right calcarine cortex. Patients with childhood trauma-associated MDD showed a lower voxel-wise concordance in the left middle temporal and bilateral calcarine cortices. Moreover, group differences (depressed or not) significantly moderated the relationship between voxel-wise concordance in the right calcarine cortex and childhood trauma history. Overall, patients with childhood trauma-associated MDD demonstrated aberrant variability and concordance in intrinsic brain activity. These aberrances may be an underlying neurobiological mechanism that explains MDD from the perspective of temporal dynamics.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiazheng Yao
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Wang M, Chen X, Hu Y, Zhou Y, Wang C, Zheng W, Liu W, Lan X, Ning Y, Zhang B. Functional connectivity between the habenula and default mode network and its association with the antidepressant effect of ketamine. Depress Anxiety 2022; 39:352-362. [PMID: 34964207 DOI: 10.1002/da.23238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recently, an animal model for depression has shown that ketamine, an N-methyl- d-aspartate receptor (NMDAR) antagonist, elicits a rapid-acting antidepressant effect by blocking NMDAR-dependent bursting in the lateral habenula (Hb). However, evidence from human studies remains scarce. METHODS This study explored the changes of resting-state functional connectivity (FC) of the Hb in responders and nonresponders who was diagnosed with unipolar or bipolar depression before and after ketamine treatment. The response was defined as a ≥50% reduction in the total MADRS score at Day 13 (24 h following the sixth infusion) in comparison with the baseline score. Correlation analyses were performed to identify an association between symptom improvement and the signals of the significantly different brain regions detected in the above imaging analysis. RESULTS In the post-hoc region-of-interest analysis, an enhanced baseline FC between Hb and several hubs of the default mode network (including angulate cortex, precuneus, medial prefrontal cortex, and middle temporal cortex) was observed in responders (≥50% decrease in the Montgomery-Asberg Scale at 2 weeks) compared with nonresponders. CONCLUSIONS These pilot findings may suggest a potential neural mechanism by which ketamine exerts its robust antidepressant efficacy via downregulation of aberrant habenular FC with parts of the default mode network.
Collapse
Affiliation(s)
- Mingqia Wang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Chen
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiru Hu
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yangling Zhou
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Chengyu Wang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Zheng
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weijian Liu
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofeng Lan
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuping Ning
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Wang H, Zhu R, Tian S, Zhang S, Dai Z, Shao J, Xue L, Yao Z, Lu Q. Dynamic connectivity alterations in anterior cingulate cortex associated with suicide attempts in bipolar disorders with a current major depressive episode. J Psychiatr Res 2022; 149:307-314. [PMID: 35325759 DOI: 10.1016/j.jpsychires.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Considering that the physiological mechanism of the anterior cingulate cortex (ACC) in suicide brain remains elusive for bipolar disorder (BD) patients. The study aims to investigate the intrinsic relevance between ACC and suicide attempts (SA) through transient functional connectivity (FC). METHODS We enrolled 50 un-medicated BD patients with at least one SA, 67 none-suicide attempt patients (NSA) and 75 healthy controls (HCs). The sliding window approach was utilized to study the dynamic FC of ACC via resting-state functional MRI data. Subsequently, we probed into the temporal properties of dynamic FC and then estimated the relationship between dynamic characteristics and clinical variables using the Pearson correlation. RESULTS We found six distinct FC states in all populations, with one of them being more associated with SA. Compared with NSA and HCs, the suicide-related functional state showed significantly reduced dwell time in SA patients, accompanied by a significantly increased FC strength between the right ACC and the regions within the subcortical (SubC) network. In addition, the number of transitions was significantly increased in SA patients relative to other groups. All these altered indicators were significantly correlated with the suicide risk. CONCLUSIONS The results suggested that the dysfunction of ACC was relevant to SA from a dynamic FC perspective in BD patients. It highlights the temporal properties in dynamic FC of ACC that could be used as a putative target of suicide risk assessment for BD patients.
Collapse
Affiliation(s)
- Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Siqi Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhijian Yao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
21
|
Jiang Y, Chen Y, Zheng R, Zhou B, Wei Y, Gao A, Wei Y, Li S, Guo J, Han S, Zhang Y, Cheng J. More Than Just Statics: Temporal Dynamic Changes in Inter- and Intrahemispheric Functional Connectivity in First-Episode, Drug-Naive Patients With Major Depressive Disorder. Front Hum Neurosci 2022; 16:868135. [PMID: 35463932 PMCID: PMC9024080 DOI: 10.3389/fnhum.2022.868135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Several functional magnetic resonance imaging (fMRI) studies have demonstrated abnormalities in static intra- and interhemispheric functional connectivity among diverse brain regions in patients with major depressive disorder (MDD). However, the dynamic changes in intra- and interhemispheric functional connectivity patterns in patients with MDD remain unclear. Fifty-eight first-episode, drug-naive patients with MDD and 48 age-, sex-, and education level-matched healthy controls (HCs) underwent resting-state fMRI. Whole-brain functional connectivity, analyzed using the functional connectivity density (FCD) approach, was decomposed into ipsilateral and contralateral functional connectivity. We computed the intra- and interhemispheric dynamic FCD (dFCD) using a sliding window analysis to capture the dynamic patterns of functional connectivity. The temporal variability in functional connectivity was quantified as the variance of the dFCD over time. In addition, intra- and interhemispheric static FCD (sFCD) patterns were calculated. Associations between the dFCD variance and sFCD in abnormal brain regions and the severity of depressive symptoms were analyzed. Compared to HCs, patients with MDD showed lower interhemispheric dFCD variability in the inferior/middle frontal gyrus and decreased sFCD in the medial prefrontal cortex/anterior cingulate cortex and posterior cingulate cortex/precuneus in both intra- and interhemispheric comparisons. No significant correlations were found between any abnormal dFCD variance or sFCD at the intra- and interhemispheric levels and the severity of depressive symptoms. Our results suggest intra- and interhemispheric functional connectivity alterations in the dorsolateral prefrontal cortex (DLPFC) and default mode network regions involved in cognition, execution and emotion. Furthermore, our study emphasizes the essential role of altered interhemispheric communication dynamics in the DLPFC in patients with MDD. These findings contribute to our understanding of the pathophysiology of MDD.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Ying Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Ankang Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- *Correspondence: Shaoqiang Han,
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Yong Zhang,
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Jingliang Cheng,
| |
Collapse
|
22
|
Marks RB, Wee JY, Jacobson SV, Hashimoto K, O’Connell KL, Golden SA, Baker PM, Law KC. The Role of the Lateral Habenula in Suicide: A Call for Further Exploration. Front Behav Neurosci 2022; 16:812952. [PMID: 35359586 PMCID: PMC8964288 DOI: 10.3389/fnbeh.2022.812952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Despite decades of significant effort in research, policy, and prevention, suicide rates have continued to rise to the current peak of 14.6 per 100,000 deaths. This has resulted in a concerted effort to identify biomarkers associated with suicidal behavior in the brain, to provide predictions that are better than the chance of discerning who will die by suicide. We propose that the lateral habenula (LHb), and its dysfunction during a suicidal crisis, is a critical component of the transition from suicidal ideations to self-harm. Moreover, the LHb—a key functional node in brain reward circuitry—has not been ascribed a contributory role in suicidal behavior. We argue that the LHb anchors a “suicide circuit” and call for suicide researchers to directly examine the role of the LHb, and its long-term modulation, in response to the negative affect in suicidal behavior. Discerning the neural mechanisms of this contribution will require the collaboration of neuroscientists and psychologists. Consequently, we highlight and discuss research on LHb as it relates to suicidal ideation, suicidal behavior, or death by suicide. In so doing we hope to address the bench-to-bedside translational issues currently involved in suicide research and suggest a developmental framework that focuses on specific structures motivated by theoretical anchors as a way to incorporate neurobiological findings within the context of clinical theory.
Collapse
Affiliation(s)
- Rocky B. Marks
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
- Correspondence: Rocky B. Marks Keyne Catherine Law
| | - Janelle Y. Wee
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Samantha V. Jacobson
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Kimi Hashimoto
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Katherine L. O’Connell
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
| | - Sam Adler Golden
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | | | - Keyne Catherine Law
- Department of Clinical Psychology, Seattle Pacific University, Seattle, WA, United States
- Correspondence: Rocky B. Marks Keyne Catherine Law
| |
Collapse
|
23
|
Zhou B, Chen Y, Zheng R, Jiang Y, Li S, Wei Y, Zhang M, Gao X, Wen B, Han S, Cheng J. Alterations of Static and Dynamic Functional Connectivity of the Nucleus Accumbens in Patients With Major Depressive Disorder. Front Psychiatry 2022; 13:877417. [PMID: 35615457 PMCID: PMC9124865 DOI: 10.3389/fpsyt.2022.877417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with dysfunction of the reward system. As an important node in the reward system, the resting-state functional connectivity of the nucleus accumbens (NAc) is related to the etiology of MDD. However, an increasing number of recent studies propose that brain activity is dynamic over time, no study to date has examined whether the NAc dynamic functional connectivity (DFC) is changed in patients with MDD. Moreover, few studies have examined the impact of the clinical characteristics of patients with MDD. METHODS A total of 220 MDD patients and 159 healthy controls (HCs), group-matched for age, sex, and education level, underwent resting-state functional magnetic resonance imagining (rs-fMRI) scans. Seed-based resting-state functional connectivity (RSFC) and DFC of the NAc were conducted. Two sample t-tests were performed to alter RSFC/DFC of NAc. In addition, we examined the association between altered RSFC/DFC and depressive severity using Pearson correlation. Finally, we divided patients with MDD into different subgroups according to clinical characteristics and tested whether there were differences between the subgroups. RESULTS Compared with the HCs, MDD patients show reduced the NAc-based RSFC with the dorsolateral prefrontal cortex (DLPFC), hippocampus, middle temporal gyrus (MTG), inferior temporal gyrus (ITG), precuneus, and insula, and patients with MDD show reduced the NAc-based DFC with the DLPFC, ventromedial prefrontal cortex (VMPFC), ventrolateral prefrontal cortex (VLPFC), MTG, ITG, and insula. MDD severity was associated with RSFC between the NAc and precentral gyrus (r = 0.288, p = 0.002, uncorrected) and insula (r = 0.272, p = 0.003, uncorrected). CONCLUSION This study demonstrates abnormal RSFC and DFC between the NAc and distributed cerebral regions in MDD patients, characterized by decreased RSFC and DFC of the NAc connecting with the reward, executive, default-mode, and salience network. Our results expand previous descriptions of the NAc RSFC abnormalities in MDD, and the altered RSFC/DFC may reflect the disrupted function of the NAc.
Collapse
Affiliation(s)
- Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - MengZhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - XinYu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Reis JV, Vieira R, Portugal-Nunes C, Coelho A, Magalhães R, Moreira P, Ferreira S, Picó-Pérez M, Sousa N, Dias N, Bessa JM. Suicidal Ideation Is Associated With Reduced Functional Connectivity and White Matter Integrity in Drug-Naïve Patients With Major Depression. Front Psychiatry 2022; 13:838111. [PMID: 35386522 PMCID: PMC8978893 DOI: 10.3389/fpsyt.2022.838111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is a highly prevalent psychiatric disorder affecting millions of people worldwide. Depression is characterized by decreased mood or loss of interest in daily activities, changes in feeding and circadian rhythms and significant impairments in cognitive and executive function. In addition, the occurrence of recurrent thoughts of death and suicidal ideation confers depressed patients a higher risk of suicide than the general population. With this study, we aimed to explore the neural correlates of suicidal ideation in drug-naïve patients diagnosed with depression. Twenty-five patients were scanned using two-different magnetic resonance imaging (MRI) modalities, resting state functional MRI (fMRI) and diffusion tensor imaging (DTI). Resting state allowed the exploration of connectivity patterns in the absence of a specific stimulus and DTI allowed a detailed analysis of structural white matter integrity with measures like fractional anisotropy (FA). Probabilistic independent component analysis (PICA), network-based statistics and tract-based spatial statistics (TBSS) were applied to analyze resting-state fMRI and DTI data, respectively. Our results showed that, in our sample of drug-naïve patients, suicidal ideation was negatively associated with resting-state functional connectivity in the visual networks and with FA in the genu of corpus callosum and in the right anterior corona radiata. In addition, a significant association was identified between suicidal ideation and a functional connectivity network that included connections between regions in the superior and orbitofrontal cortex, the cerebellum, the cingulate gyrus as well as temporal and occipital regions. In conclusion, this work has expanded our knowledge about the possible functional and structural neuronal correlates of suicidal ideation in drug-naïve patients with depression, paving the way for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Joana Vanessa Reis
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2CA-Braga, Clinical Academic Center, Hospital de Braga, Braga, Portugal
| | - Rita Vieira
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2CA-Braga, Clinical Academic Center, Hospital de Braga, Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2CA-Braga, Clinical Academic Center, Hospital de Braga, Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2CA-Braga, Clinical Academic Center, Hospital de Braga, Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2CA-Braga, Clinical Academic Center, Hospital de Braga, Braga, Portugal
| | - Pedro Moreira
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2CA-Braga, Clinical Academic Center, Hospital de Braga, Braga, Portugal.,Psychological Neuroscience Lab, Centro de Investigação em Psicologia (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Sónia Ferreira
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2CA-Braga, Clinical Academic Center, Hospital de Braga, Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2CA-Braga, Clinical Academic Center, Hospital de Braga, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,2CA-Braga, Clinical Academic Center, Hospital de Braga, Braga, Portugal
| | - Nuno Dias
- 2Ai-School of Technology, Instituto Politécnico do Cávado e do Ave (IPCA), Barcelos, Portugal
| | - João M Bessa
- Life and Health Sciences Research Institute, School of Medicine, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
25
|
Zhang S, Litvak V, Tian S, Dai Z, Tang H, Wang X, Yao Z, Lu Q. Spontaneous transient states of fronto-temporal and default-mode networks altered by suicide attempt in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 2022; 272:1547-1557. [PMID: 35088122 PMCID: PMC8794625 DOI: 10.1007/s00406-021-01371-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) is associated with increased suicidality, and it's still challenging to identify suicide in clinical practice. Although suicide attempt (SA) is the most relevant precursor with multiple functional abnormalities reported from neuroimaging studies, little is known about how the spontaneous transient activated patterns organize and coordinate brain networks underlying SA. Thus, we obtained resting-state magnetoencephalography data for two MDD subgroups of 44 non-suicide patients and 34 suicide-attempted patients, together with 49 matched health-controls. For the source-space signals, Hidden Markov Model (HMM) helped to capture the sub-second dynamic activity via a hidden sequence of finite number of states. Temporal parameters and spectral activation were acquired for each state and then compared between groups. Here, HMM states characterized the spatiotemporal signatures of eight networks. The activity of suicide attempters switches more frequently into the fronto-temporal network, as the time spent occupancy of fronto-temporal state is increased and interval time is decreased compared with the non-suicide patients. Moreover, these changes are significantly correlated with Nurses' Global Assessment of Suicide Risk scores. Suicide attempters also exhibit increased state-wise activations in the theta band (4-8 Hz) in the posterior default mode network centered on posterior cingulate cortex, which can't be detected in the static spectral analysis. These alternations may disturb the time allocations of cognitive control regulations and cause inflexible decision making to SA. As the better sensitivity of dynamic study in reflecting SA diathesis than the static is validated, dynamic stability could serve as a potential neuronal marker for SA.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096 Jiangsu China
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Shui Tian
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096 Jiangsu China
| | - Zhongpeng Dai
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096 Jiangsu China
| | - Hao Tang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096 Jiangsu China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China ,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qing Lu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
26
|
Jung JY, Cho SE, Kim N, Kang CK, Kang SG. Decreased resting-state functional connectivity of the habenula-cerebellar in a major depressive disorder. Front Psychiatry 2022; 13:925823. [PMID: 36147982 PMCID: PMC9485485 DOI: 10.3389/fpsyt.2022.925823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In animal experiments, the habenula and septal nuclei are known as the key brain areas of depression. However, there are few magnetic resonance imaging (MRI) studies on the functional connectivity between these areas and the subcortical areas in humans with major depression. We aimed to investigate the difference in resting-state functional connectivity (RSFC) among the major regions of interest (ROI) in the subcortical areas, including both the habenula and septal nuclei. METHODS We performed the seed-to-voxel analysis to investigate the RSFC between both the habenula and septal nucleus, as well as other subcortical regions. Furthermore, ROI-to-ROI analysis was performed among the combinations of ROI pairs in the subcortical areas. RESULTS The seed-to-voxel analysis showed a lower RSFC between the left habenula and the cerebellum in major depressive disorder (MDD) than in healthy controls (HCs). As a result of ROI-to-ROI analysis in subcortical areas, a total of 31 pairs of FCs in the MDD group showed a lower RSFC than in the HCs group. CONCLUSION This study revealed a lower RSFC between the left habenula and cerebellum in patients with MDD and reduced RSFC among numerous subcortical areas. These new findings on the neural circuitry of MDD might contribute to an in-depth understanding of depression.
Collapse
Affiliation(s)
- Ju-Yeon Jung
- Department of Health Science, Gachon University Graduate School, Incheon, South Korea
| | - Seo-Eun Cho
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Nambeom Kim
- Department of Biomedical Engineering Research Center, Gachon University, Incheon, South Korea
| | - Chang-Ki Kang
- Department of Radiological Science, College of Health Science, Gachon University, Incheon, South Korea
| | - Seung-Gul Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| |
Collapse
|
27
|
Bai S, Fang L, Xie J, Bai H, Wang W, Chen JJ. Potential Biomarkers for Diagnosing Major Depressive Disorder Patients with Suicidal Ideation. J Inflamm Res 2021; 14:495-503. [PMID: 33654420 PMCID: PMC7910095 DOI: 10.2147/jir.s297930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background Major depressive disorder (MDD) and suicide are two major health problems, but there are still no objective methods to diagnose MDD or suicidal ideation (SI). This study was conducted to identify potential biomarkers for diagnosing MDD patients with SI. Methods First-episode drug-naïve MDD patients with SI and demographics-matched healthy controls (HCs) were recruited. First-episode drug-naïve MDD patients without SI were also included. The serum lipids, C-reactive protein (CRP), transferring (TRSF), homocysteine (HCY) and alpha 1-antitrypsin (AAT) in serum were detected. The univariate and multivariate statistical analyses were used to identify and validate the potential biomarkers. Results The 86 HCs, 53 MDD patients with SI and 20 MDD patients without SI were included in this study. Four potential biomarkers were identified: AAT, TRSF, high-density lipoprotein cholesterol (HDLC), and apolipoprotein A1 (APOA1). After one month treatment, the levels of AAT and APOA1 were significantly improved. The panel consisting of these potential biomarkers had an excellent diagnostic performance, yielding an area under the ROC curve (AUC) of 0.994 and 0.990 in the training and testing set, respectively. Moreover, this panel could effectively distinguish MDD patients with SI from MDD patients without SI (AUC=0.928). Conclusion These results showed that these potential biomarkers could facilitate the development of an objective method for diagnosing MDD patients with SI, and the decreased AAT levels in MDD patients might lead to the appearance of SI by resulting in the elevated inflammation.
Collapse
Affiliation(s)
- Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Cerebral Vascular Disease Research, Yongchuan Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jing Xie
- Department of Endocrinology and Nephrology, The Fourth People's Hospital of Chongqing, Chongqing, People's Republic of China
| | - Huili Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Wang
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Jian-Jun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|