1
|
Li J, Lam LCW, Lu H. Decoding MRI-informed brain age using mutual information. Insights Imaging 2024; 15:216. [PMID: 39186199 PMCID: PMC11347523 DOI: 10.1186/s13244-024-01791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE We aimed to develop a standardized method to investigate the relationship between estimated brain age and regional morphometric features, meeting the criteria for simplicity, generalization, and intuitive interpretability. METHODS We utilized T1-weighted magnetic resonance imaging (MRI) data from the Cambridge Centre for Ageing and Neuroscience project (N = 609) and employed a support vector regression method to train a brain age model. The pre-trained brain age model was applied to the dataset of the brain development project (N = 547). Kraskov (KSG) estimator was used to compute the mutual information (MI) value between brain age and regional morphometric features, including gray matter volume (GMV), white matter volume (WMV), cerebrospinal fluid (CSF) volume, and cortical thickness (CT). RESULTS Among four types of brain features, GMV had the highest MI value (8.71), peaking in the pre-central gyrus (0.69). CSF volume was ranked second (7.76), with the highest MI value in the cingulate (0.87). CT was ranked third (6.22), with the highest MI value in superior temporal gyrus (0.53). WMV had the lowest MI value (4.59), with the insula showing the highest MI value (0.53). For brain parenchyma, the volume of the superior frontal gyrus exhibited the highest MI value (0.80). CONCLUSION This is the first demonstration that MI value between estimated brain age and morphometric features may serve as a benchmark for assessing the regional contributions to estimated brain age. Our findings highlighted that both GMV and CSF are the key features that determined the estimated brain age, which may add value to existing computational models of brain age. CRITICAL RELEVANCE STATEMENT Mutual information (MI) analysis reveals gray matter volume (GMV) and cerebrospinal fluid (CSF) volume as pivotal in computing individuals' brain age. KEY POINTS Mutual information (MI) interprets estimated brain age with morphometric features. Gray matter volume in the pre-central gyrus has the highest MI value for estimated brain age. Cerebrospinal fluid volume in the cingulate has the highest MI value. Regarding brain parenchymal volume, the superior frontal gyrus has the highest MI value. The value of mutual information underscores the key brain regions related to brain age.
Collapse
Affiliation(s)
- Jing Li
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Linda Chiu Wa Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Feng Y, Villalón-Reina JE, Nir TM, Chandio BQ, Jahanshad N, Thompson PM. BundleAGE: Predicting White Matter Age using Along-Tract Microstructural Profiles from Diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608347. [PMID: 39229061 PMCID: PMC11370403 DOI: 10.1101/2024.08.16.608347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Brain Age Gap Estimation (BrainAGE) is an estimate of the gap between a person's chronological age (CA) and a measure of their brain's 'biological age' (BA). This metric is often used as a marker of accelerated aging, albeit with some caveats. Age prediction models trained on brain structural and functional MRI have been employed to derive BrainAGE biomarkers, for predicting the risk of neurodegeneration. While voxel-based and along-tract microstructural maps from diffusion MRI have been used to study brain aging, no studies have evaluated along-tract microstructure for computing BrainAGE. In this study, we train machine learning models to predict a person's age using along-tract microstructural profiles from diffusion tensor imaging. We were able to demonstrate differential aging patterns across different white matter bundles and microstructural measures. The novel Bundle Age Gap Estimation (BundleAGE) biomarker shows potential in quantifying risk factors for neurodegenerative diseases and aging, while incorporating finer scale information throughout white matter bundles.
Collapse
Affiliation(s)
- Yixue Feng
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Julio E Villalón-Reina
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Bramsh Q Chandio
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, United States
| |
Collapse
|
3
|
Treder MS, Lee S, Tsvetanov KA. Introduction to Large Language Models (LLMs) for dementia care and research. FRONTIERS IN DEMENTIA 2024; 3:1385303. [PMID: 39081594 PMCID: PMC11285660 DOI: 10.3389/frdem.2024.1385303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 08/02/2024]
Abstract
Introduction Dementia is a progressive neurodegenerative disorder that affects cognitive abilities including memory, reasoning, and communication skills, leading to gradual decline in daily activities and social engagement. In light of the recent advent of Large Language Models (LLMs) such as ChatGPT, this paper aims to thoroughly analyse their potential applications and usefulness in dementia care and research. Method To this end, we offer an introduction into LLMs, outlining the key features, capabilities, limitations, potential risks, and practical considerations for deployment as easy-to-use software (e.g., smartphone apps). We then explore various domains related to dementia, identifying opportunities for LLMs to enhance understanding, diagnostics, and treatment, with a broader emphasis on improving patient care. For each domain, the specific contributions of LLMs are examined, such as their ability to engage users in meaningful conversations, deliver personalized support, and offer cognitive enrichment. Potential benefits encompass improved social interaction, enhanced cognitive functioning, increased emotional well-being, and reduced caregiver burden. The deployment of LLMs in caregiving frameworks also raises a number of concerns and considerations. These include privacy and safety concerns, the need for empirical validation, user-centered design, adaptation to the user's unique needs, and the integration of multimodal inputs to create more immersive and personalized experiences. Additionally, ethical guidelines and privacy protocols must be established to ensure responsible and ethical deployment of LLMs. Results We report the results on a questionnaire filled in by people with dementia (PwD) and their supporters wherein we surveyed the usefulness of different application scenarios of LLMs as well as the features that LLM-powered apps should have. Both PwD and supporters were largely positive regarding the prospect of LLMs in care, although concerns were raised regarding bias, data privacy and transparency. Discussion Overall, this review corroborates the promising utilization of LLMs to positively impact dementia care by boosting cognitive abilities, enriching social interaction, and supporting caregivers. The findings underscore the importance of further research and development in this field to fully harness the benefits of LLMs and maximize their potential for improving the lives of individuals living with dementia.
Collapse
Affiliation(s)
- Matthias S. Treder
- School of Computer Science & Informatics, Cardiff University, Cardiff, United Kingdom
| | - Sojin Lee
- Olive AI Limited, London, United Kingdom
| | - Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Du J, Pan Y, Jiang J, Liu Y, Lam BCP, Schutte AE, Tsang IW, Sachdev PS, Wen W. Association of Blood Pressure With Brain Ages: A Cohort Study of Gray and White Matter Aging Discrepancy in Mid-to-Older Adults From UK Biobank. Hypertension 2024; 81:906-916. [PMID: 38465593 DOI: 10.1161/hypertensionaha.123.22176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024]
Abstract
BACKGROUND Gray matter (GM) and white matter (WM) impairments are both associated with raised blood pressure (BP), although whether elevated BP is differentially associated with the GM and WM aging process remains inadequately examined. METHODS We included 37 327 participants with diffusion-weighted imaging (DWI) and 39 630 participants with T1-weighted scans from UK Biobank. BP was classified into 4 categories: normal BP, high-normal BP, grade 1, and grade 2 hypertension. Brain age gaps (BAGs) for GM (BAGGM) and WM (BAGWM) were derived from diffusion-weighted imaging and T1 scans separately using 3-dimensional-convolutional neural network deep learning techniques. RESULTS There was an increase in both BAGGM and BAGWM with raised BP (P<0.05). BAGWM was significantly larger than BAGGM at high-normal BP (0.195 years older; P=0.006), grade 1 hypertension (0.174 years older; P=0.004), and grade 2 hypertension (0.510 years older; P<0.001), but not for normal BP. Mediation analysis revealed that the association between hypertension and cognitive decline was primarily mediated by WM impairment. Mendelian randomization analysis suggested a causal relationship between hypertension and WM aging acceleration (unstandardized B, 1.780; P=0.016) but not for GM (P>0.05). Sliding-window analysis indicated the association between hypertension and brain aging acceleration was moderated by chronological age, showing stronger correlations in midlife but weaker associations in the older age. CONCLUSIONS Compared with GM, WM was more vulnerable to raised BP. Our study provided compelling evidence that concerted efforts should be directed towards WM damage in individuals with hypertension in clinical practice.
Collapse
Affiliation(s)
- Jing Du
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales (UNSW), Sydney, Australia (J.D., J.J., B.C.P.L., P.S.S., W.W.)
| | - Yuangang Pan
- Centre for Frontier AI Research, A*STAR, Singapore (Y.P., I.W.T.)
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales (UNSW), Sydney, Australia (J.D., J.J., B.C.P.L., P.S.S., W.W.)
| | - Yue Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (Y.L.)
| | - Ben C P Lam
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales (UNSW), Sydney, Australia (J.D., J.J., B.C.P.L., P.S.S., W.W.)
| | - Aletta E Schutte
- School of Population Health, UNSW Medicine & Health, UNSW Sydney, NSW, Australia (A.E.S.)
- The George Institute for Global Health, Sydney, NSW, Australia (A.E.S.)
| | - Ivor W Tsang
- Centre for Frontier AI Research, A*STAR, Singapore (Y.P., I.W.T.)
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales (UNSW), Sydney, Australia (J.D., J.J., B.C.P.L., P.S.S., W.W.)
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Randwick, NSW, Australia (P.S.S., W.W.)
| | - Wei Wen
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales (UNSW), Sydney, Australia (J.D., J.J., B.C.P.L., P.S.S., W.W.)
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Randwick, NSW, Australia (P.S.S., W.W.)
| |
Collapse
|
5
|
Guan S, Jiang R, Meng C, Biswal B. Brain age prediction across the human lifespan using multimodal MRI data. GeroScience 2024; 46:1-20. [PMID: 37733220 PMCID: PMC10828281 DOI: 10.1007/s11357-023-00924-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Measuring differences between an individual's age and biological age with biological information from the brain have the potential to provide biomarkers of clinically relevant neurological syndromes that arise later in human life. To explore the effect of multimodal brain magnetic resonance imaging (MRI) features on the prediction of brain age, we investigated how multimodal brain imaging data improved age prediction from more imaging features of structural or functional MRI data by using partial least squares regression (PLSR) and longevity data sets (age 6-85 years). First, we found that the age-predicted values for each of these ten features ranged from high to low: cortical thickness (R = 0.866, MAE = 7.904), all seven MRI features (R = 0.8594, MAE = 8.24), four features in structural MRI (R = 0.8591, MAE = 8.24), fALFF (R = 0.853, MAE = 8.1918), gray matter volume (R = 0.8324, MAE = 8.931), three rs-fMRI feature (R = 0.7959, MAE = 9.744), mean curvature (R = 0.7784, MAE = 10.232), ReHo (R = 0.7833, MAE = 10.122), ALFF (R = 0.7517, MAE = 10.844), and surface area (R = 0.719, MAE = 11.33). In addition, the significance of the volume and size of brain MRI data in predicting age was also studied. Second, our results suggest that all multimodal imaging features, except cortical thickness, improve brain-based age prediction. Third, we found that the left hemisphere contributed more to the age prediction, that is, the left hemisphere showed a greater weight in the age prediction than the right hemisphere. Finally, we found a nonlinear relationship between the predicted age and the amount of MRI data. Combined with multimodal and lifespan brain data, our approach provides a new perspective for chronological age prediction and contributes to a better understanding of the relationship between brain disorders and aging.
Collapse
Affiliation(s)
- Sihai Guan
- College of Electronic and Information, Southwest Minzu University, Chengdu, 610041, China.
- Key Laboratory of Electronic and Information Engineering, State Ethnic Affairs Commission, Chengdu, 610041, China.
| | - Runzhou Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Medical Equipment Department, Xiangyang No. 1 People's Hospital, Xiangyang, 441000, China
| | - Chun Meng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bharat Biswal
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
6
|
Shah J, Siddiquee MMR, Su Y, Wu T, Li B. Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION. IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION 2024; 2024:7867-7876. [PMID: 38606366 PMCID: PMC11008505 DOI: 10.1109/wacv57701.2024.00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Age is one of the major known risk factors for Alzheimer's Disease (AD). Detecting AD early is crucial for effective treatment and preventing irreversible brain damage. Brain age, a measure derived from brain imaging reflecting structural changes due to aging, may have the potential to identify AD onset, assess disease risk, and plan targeted interventions. Deep learning-based regression techniques to predict brain age from magnetic resonance imaging (MRI) scans have shown great accuracy recently. However, these methods are subject to an inherent regression to the mean effect, which causes a systematic bias resulting in an overestimation of brain age in young subjects and underestimation in old subjects. This weakens the reliability of predicted brain age as a valid biomarker for downstream clinical applications. Here, we reformulate the brain age prediction task from regression to classification to address the issue of systematic bias. Recognizing the importance of preserving ordinal information from ages to understand aging trajectory and monitor aging longitudinally, we propose a novel ORdinal Distance Encoded Regularization (ORDER) loss that incorporates the order of age labels, enhancing the model's ability to capture age-related patterns. Extensive experiments and ablation studies demonstrate that this framework reduces systematic bias, outperforms state-of-art methods by statistically significant margins, and can better capture subtle differences between clinical groups in an independent AD dataset. Our implementation is publicly available at https://github.com/jaygshah/Robust-Brain-Age-Prediction.
Collapse
Affiliation(s)
- Jay Shah
- Arizona State University
- ASU-Mayo Center for Innovative Imaging
| | | | - Yi Su
- ASU-Mayo Center for Innovative Imaging
- Banner Alzheimer's Institute
| | - Teresa Wu
- Arizona State University
- ASU-Mayo Center for Innovative Imaging
| | - Baoxin Li
- Arizona State University
- ASU-Mayo Center for Innovative Imaging
| |
Collapse
|
7
|
Joo Y, Namgung E, Jeong H, Kang I, Kim J, Oh S, Lyoo IK, Yoon S, Hwang J. Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms. Sci Rep 2023; 13:22388. [PMID: 38104173 PMCID: PMC10725434 DOI: 10.1038/s41598-023-49514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eun Namgung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jinsol Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Sohyun Oh
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
8
|
Dempsey DA, Deardorff R, Wu YC, Yu M, Apostolova LG, Brosch J, Clark DG, Farlow MR, Gao S, Wang S, Saykin AJ, Risacher SL. BrainAGE Estimation: Influence of Field Strength, Voxel Size, Race, and Ethnicity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299222. [PMID: 38106123 PMCID: PMC10723496 DOI: 10.1101/2023.12.05.23299222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The BrainAGE method is used to estimate biological brain age using structural neuroimaging. However, the stability of the model across different scan parameters and races/ethnicities has not been thoroughly investigated. Estimated brain age was compared within- and across- MRI field strength and across voxel sizes. Estimated brain age gap (BAG) was compared across demographically matched groups of different self-reported races and ethnicities in ADNI and IMAS cohorts. Longitudinal ComBat was used to correct for potential scanner effects. The brain age method was stable within field strength, but less stable across different field strengths. The method was stable across voxel sizes. There was a significant difference in BAG between races, but not ethnicities. Correction procedures are suggested to eliminate variation across scanner field strength while maintaining accurate brain age estimation. Further studies are warranted to determine the factors contributing to racial differences in BAG.
Collapse
Affiliation(s)
- Desarae A. Dempsey
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rachael Deardorff
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Meichen Yu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Liana G. Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jared Brosch
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David G. Clark
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Martin R. Farlow
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sujuan Gao
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sophia Wang
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | |
Collapse
|
9
|
Shida AF, Massett RJ, Imms P, Vegesna RV, Amgalan A, Irimia A. Significant Acceleration of Regional Brain Aging and Atrophy After Mild Traumatic Brain Injury. J Gerontol A Biol Sci Med Sci 2023; 78:1328-1338. [PMID: 36879433 PMCID: PMC10395568 DOI: 10.1093/gerona/glad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 03/08/2023] Open
Abstract
Brain regions' rates of age-related volumetric change after traumatic brain injury (TBI) are unknown. Here, we quantify these rates cross-sectionally in 113 persons with recent mild TBI (mTBI), whom we compare against 3 418 healthy controls (HCs). Regional gray matter (GM) volumes were extracted from magnetic resonance images. Linear regression yielded regional brain ages and the annualized average rates of regional GM volume loss. These results were compared across groups after accounting for sex and intracranial volume. In HCs, the steepest rates of volume loss were recorded in the nucleus accumbens, amygdala, and lateral orbital sulcus. In mTBI, approximately 80% of GM structures had significantly steeper rates of annual volume loss than in HCs. The largest group differences involved the short gyri of the insula and both the long gyrus and central sulcus of the insula. No significant sex differences were found in the mTBI group, regional brain ages being the oldest in prefrontal and temporal structures. Thus, mTBI involves significantly steeper regional GM loss rates than in HCs, reflecting older-than-expected regional brain ages.
Collapse
Affiliation(s)
- Alexander F Shida
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Roy J Massett
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Ramanand V Vegesna
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Anar Amgalan
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Department of Quantitative & Computational Biology, Dana and David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Massett R, Maher A, Imms P, Amgalan A, Chaudhari N, Chowdhury N, Irimia A. Regional Neuroanatomic Effects on Brain Age Inferred Using Magnetic Resonance Imaging and Ridge Regression. J Gerontol A Biol Sci Med Sci 2023; 78:872-881. [PMID: 36183259 PMCID: PMC10235198 DOI: 10.1093/gerona/glac209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
The biological age of the brain differs from its chronological age (CA) and can be used as biomarker of neural/cognitive disease processes and as predictor of mortality. Brain age (BA) is often estimated from magnetic resonance images (MRIs) using machine learning (ML) that rarely indicates how regional brain features contribute to BA. Leveraging an aggregate training sample of 3 418 healthy controls (HCs), we describe a ridge regression model that quantifies each region's contribution to BA. After model testing on an independent sample of 651 HCs, we compute the coefficient of partial determination R¯p2 for each regional brain volume to quantify its contribution to BA. Model performance is also evaluated using the correlation r between chronological and biological ages, the mean absolute error (MAE ) and mean squared error (MSE) of BA estimates. On training data, r=0.92, MSE=70.94 years, MAE=6.57 years, and R¯2=0.81; on test data, r=0.90, MSE=81.96 years, MAE=7.00 years, and R¯2=0.79. The regions whose volumes contribute most to BA are the nucleus accumbens (R¯p2=7.27%), inferior temporal gyrus (R¯p2=4.03%), thalamus (R¯p2=3.61%), brainstem (R¯p2=3.29%), posterior lateral sulcus (R¯p2=3.22%), caudate nucleus (R¯p2=3.05%), orbital gyrus (R¯p2=2.96%), and precentral gyrus (R¯p2=2.80%). Our ridge regression, although outperformed by the most sophisticated ML approaches, identifies the importance and relative contribution of each brain structure to overall BA. Aside from its interpretability and quasi-mechanistic insights, our model can be used to validate future ML approaches for BA estimation.
Collapse
Affiliation(s)
- Roy J Massett
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Alexander S Maher
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Phoebe E Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Anar Amgalan
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Nikhil N Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Nahian F Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
11
|
Wang H, Treder MS, Marshall D, Jones DK, Li Y. A Skewed Loss Function for Correcting Predictive Bias in Brain Age Prediction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1577-1589. [PMID: 37015392 PMCID: PMC7615262 DOI: 10.1109/tmi.2022.3231730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/18/2022] [Indexed: 06/02/2023]
Abstract
In neuroimaging, the difference between predicted brain age and chronological age, known as brain age delta, has shown its potential as a biomarker related to various pathological phenotypes. There is a frequently observed bias when estimating brain age delta using regression models. This bias manifests as an overestimation of brain age for young participants and an underestimation of brain age for older participants. Therefore, the brain age delta is negatively correlated with chronological age, which can be problematic when evaluating relationships between brain age delta and other age-associated variables. This paper proposes a novel bias correction method for regression models by introducing a skewed loss function to replace the normal symmetric loss function. The regression model then behaves differently depending on whether it makes overestimations or underestimations. Our approach works with any type of MR image and no specific preprocessing is required, as long as the image is sensitive to age-related changes. The proposed approach has been validated using three classic deep learning models, namely ResNet, VGG, and GoogleNet on publicly available neuroimaging aging datasets. It shows flexibility across different model architectures and different choices of hyperparameters. The corrected brain age delta from our approach then has no linear relationship with chronological age and achieves higher predictive accuracy than a commonly-used two-stage approach.
Collapse
Affiliation(s)
- Hanzhi Wang
- School of Computer Science and InformaticsCardiff UniversityCF10 3ATCardiffU.K
| | - Matthias S. Treder
- School of Computer Science and InformaticsCardiff UniversityCF10 3ATCardiffU.K
| | - David Marshall
- School of Computer Science and InformaticsCardiff UniversityCF10 3ATCardiffU.K
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff UniversityCF24 4HQCardiffU.K
| | - Yuhua Li
- School of Computer Science and InformaticsCardiff UniversityCF10 3ATCardiffU.K
| |
Collapse
|
12
|
More S, Antonopoulos G, Hoffstaedter F, Caspers J, Eickhoff SB, Patil KR. Brain-age prediction: A systematic comparison of machine learning workflows. Neuroimage 2023; 270:119947. [PMID: 36801372 DOI: 10.1016/j.neuroimage.2023.119947] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The difference between age predicted using anatomical brain scans and chronological age, i.e., the brain-age delta, provides a proxy for atypical aging. Various data representations and machine learning (ML) algorithms have been used for brain-age estimation. However, how these choices compare on performance criteria important for real-world applications, such as; (1) within-dataset accuracy, (2) cross-dataset generalization, (3) test-retest reliability, and (4) longitudinal consistency, remains uncharacterized. We evaluated 128 workflows consisting of 16 feature representations derived from gray matter (GM) images and eight ML algorithms with diverse inductive biases. Using four large neuroimaging databases covering the adult lifespan (total N = 2953, 18-88 years), we followed a systematic model selection procedure by sequentially applying stringent criteria. The 128 workflows showed a within-dataset mean absolute error (MAE) between 4.73-8.38 years, from which 32 broadly sampled workflows showed a cross-dataset MAE between 5.23-8.98 years. The test-retest reliability and longitudinal consistency of the top 10 workflows were comparable. The choice of feature representation and the ML algorithm both affected the performance. Specifically, voxel-wise feature spaces (smoothed and resampled), with and without principal components analysis, with non-linear and kernel-based ML algorithms performed well. Strikingly, the correlation of brain-age delta with behavioral measures disagreed between within-dataset and cross-dataset predictions. Application of the best-performing workflow on the ADNI sample showed a significantly higher brain-age delta in Alzheimer's and mild cognitive impairment patients compared to healthy controls. However, in the presence of age bias, the delta estimates in the patients varied depending on the sample used for bias correction. Taken together, brain-age shows promise, but further evaluation and improvements are needed for its real-world application.
Collapse
Affiliation(s)
- Shammi More
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Georgios Antonopoulos
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | | |
Collapse
|
13
|
Cordero-Grande L, Ortuno-Fisac JE, Del Hoyo AA, Uus A, Deprez M, Santos A, Hajnal JV, Ledesma-Carbayo MJ. Fetal MRI by Robust Deep Generative Prior Reconstruction and Diffeomorphic Registration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:810-822. [PMID: 36288233 DOI: 10.1109/tmi.2022.3217725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Magnetic resonance imaging of whole fetal body and placenta is limited by different sources of motion affecting the womb. Usual scanning techniques employ single-shot multi-slice sequences where anatomical information in different slices may be subject to different deformations, contrast variations or artifacts. Volumetric reconstruction formulations have been proposed to correct for these factors, but they must accommodate a non-homogeneous and non-isotropic sampling, so regularization becomes necessary. Thus, in this paper we propose a deep generative prior for robust volumetric reconstructions integrated with a diffeomorphic volume to slice registration method. Experiments are performed to validate our contributions and compare with ifdefined tmiformat R2.5a state of the art method methods in the literature in a cohort of 72 fetal datasets in the range of 20-36 weeks gestational age. Results suggest improved image resolution Quantitative as well as radiological assessment suggest improved image quality and more accurate prediction of gestational age at scan is obtained when comparing to a state of the art reconstruction method methods. In addition, gestational age prediction results from our volumetric reconstructions compare favourably are competitive with existing brain-based approaches, with boosted accuracy when integrating information of organs other than the brain. Namely, a mean absolute error of 0.618 weeks ( R2=0.958 ) is achieved when combining fetal brain and trunk information.
Collapse
|
14
|
Yin C, Imms P, Cheng M, Amgalan A, Chowdhury NF, Massett RJ, Chaudhari NN, Chen X, Thompson PM, Bogdan P, Irimia A. Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment. Proc Natl Acad Sci U S A 2023; 120:e2214634120. [PMID: 36595679 PMCID: PMC9926270 DOI: 10.1073/pnas.2214634120] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/10/2022] [Indexed: 01/05/2023] Open
Abstract
The gap between chronological age (CA) and biological brain age, as estimated from magnetic resonance images (MRIs), reflects how individual patterns of neuroanatomic aging deviate from their typical trajectories. MRI-derived brain age (BA) estimates are often obtained using deep learning models that may perform relatively poorly on new data or that lack neuroanatomic interpretability. This study introduces a convolutional neural network (CNN) to estimate BA after training on the MRIs of 4,681 cognitively normal (CN) participants and testing on 1,170 CN participants from an independent sample. BA estimation errors are notably lower than those of previous studies. At both individual and cohort levels, the CNN provides detailed anatomic maps of brain aging patterns that reveal sex dimorphisms and neurocognitive trajectories in adults with mild cognitive impairment (MCI, N = 351) and Alzheimer's disease (AD, N = 359). In individuals with MCI (54% of whom were diagnosed with dementia within 10.9 y from MRI acquisition), BA is significantly better than CA in capturing dementia symptom severity, functional disability, and executive function. Profiles of sex dimorphism and lateralization in brain aging also map onto patterns of neuroanatomic change that reflect cognitive decline. Significant associations between BA and neurocognitive measures suggest that the proposed framework can map, systematically, the relationship between aging-related neuroanatomy changes in CN individuals and in participants with MCI or AD. Early identification of such neuroanatomy changes can help to screen individuals according to their AD risk.
Collapse
Affiliation(s)
- Chenzhong Yin
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
| | - Mingxi Cheng
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Anar Amgalan
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
| | - Nahian F. Chowdhury
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
| | - Roy J. Massett
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
| | - Nikhil N. Chaudhari
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Xinghe Chen
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Paul M. Thompson
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA90033
- Department of Quantitative & Computational Biology, Dana & David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, CA90089
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Department of Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA90089
- Department of Quantitative & Computational Biology, Dana & David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, CA90089
| | | |
Collapse
|
15
|
Zhang B, Zhang S, Feng J, Zhang S. Age-level bias correction in brain age prediction. Neuroimage Clin 2023; 37:103319. [PMID: 36634514 PMCID: PMC9860514 DOI: 10.1016/j.nicl.2023.103319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The predicted age difference (PAD) between an individual's predicted brain age and chronological age has been commonly viewed as a meaningful phenotype relating to aging and brain diseases. However, the systematic bias appears in the PAD achieved using machine learning methods. Recent studies have designed diverse bias correction methods to eliminate it for further downstream studies. Strikingly, here we demonstrate that bias still exists in the PAD of samples with the same age even after kind of correction. Therefore, current PAD may not be taken as a reliable phenotype and more investigations are needed to solve this fundamental defect. To this end, we propose an age-level bias correction method and demonstrate its efficacy in numerical experiments.
Collapse
Affiliation(s)
- Biao Zhang
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China.
| | - Shuqin Zhang
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
16
|
Bron EE, Klein S, Reinke A, Papma JM, Maier-Hein L, Alexander DC, Oxtoby NP. Ten years of image analysis and machine learning competitions in dementia. Neuroimage 2022; 253:119083. [PMID: 35278709 DOI: 10.1016/j.neuroimage.2022.119083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Machine learning methods exploiting multi-parametric biomarkers, especially based on neuroimaging, have huge potential to improve early diagnosis of dementia and to predict which individuals are at-risk of developing dementia. To benchmark algorithms in the field of machine learning and neuroimaging in dementia and assess their potential for use in clinical practice and clinical trials, seven grand challenges have been organized in the last decade: MIRIAD (2012), Alzheimer's Disease Big Data DREAM (2014), CADDementia (2014), Machine Learning Challenge (2014), MCI Neuroimaging (2017), TADPOLE (2017), and the Predictive Analytics Competition (2019). Based on two challenge evaluation frameworks, we analyzed how these grand challenges are complementing each other regarding research questions, datasets, validation approaches, results and impact. The seven grand challenges addressed questions related to screening, clinical status estimation, prediction and monitoring in (pre-clinical) dementia. There was little overlap in clinical questions, tasks and performance metrics. Whereas this aids providing insight on a broad range of questions, it also limits the validation of results across challenges. The validation process itself was mostly comparable between challenges, using similar methods for ensuring objective comparison, uncertainty estimation and statistical testing. In general, winning algorithms performed rigorous data pre-processing and combined a wide range of input features. Despite high state-of-the-art performances, most of the methods evaluated by the challenges are not clinically used. To increase impact, future challenges could pay more attention to statistical analysis of which factors (i.e., features, models) relate to higher performance, to clinical questions beyond Alzheimer's disease, and to using testing data beyond the Alzheimer's Disease Neuroimaging Initiative. Grand challenges would be an ideal venue for assessing the generalizability of algorithm performance to unseen data of other cohorts. Key for increasing impact in this way are larger testing data sizes, which could be reached by sharing algorithms rather than data to exploit data that cannot be shared. Given the potential and lessons learned in the past ten years, we are excited by the prospects of grand challenges in machine learning and neuroimaging for the next ten years and beyond.
Collapse
Affiliation(s)
- Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.
| | - Stefan Klein
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands.
| | - Annika Reinke
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Janne M Papma
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands.
| | - Lena Maier-Hein
- Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1E 6BT, UK.
| | - Neil P Oxtoby
- Centre for Medical Image Computing, Department of Computer Science, University College London, London WC1E 6BT, UK.
| |
Collapse
|
17
|
Linli Z, Feng J, Zhao W, Guo S. Associations between smoking and accelerated brain ageing. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110471. [PMID: 34740709 DOI: 10.1016/j.pnpbp.2021.110471] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/31/2022]
Abstract
Smoking accelerates the ageing of multiple organs. However, few studies have quantified the association between smoking, especially smoking cessation, and brain ageing. Using structural magnetic resonance imaging data from the UK Biobank (n = 33,293), a brain age predictor was trained using a machine learning technique in the non-smoker group (n = 14,667) and then tested in the smoker group (n = 18,626) to determine the relationships between BrainAge Gap (predicted age - true age) and smoking parameters. Further, we examined whether smoking was associated with poorer cognition and whether this relationship was mediated by brain age. The predictor achieved an appreciable performance in training data (r = 0.712, mean-absolute-error [MAE] = 4.220) and test data (r = 0.725, MAE = 4.160). On average, smokers showed a larger BrainAge Gap (+0.304 years, Cohens'd = 0.083) than controls, more explicitly, the extents vary depending on their smoking characteristic that active regular smokers had the largest BrainAge Gap (+1.190 years, Cohens'd = 0.321), and light smokers had a moderate BrainAge Gap (+0.478, Cohens'd = 0.129). The increased smoking amount was associated with a larger BrainAge Gap (β = 0.035, p = 1.72 × 10-20) while a longer duration of quitting smoking in ex-smokers was associated with a smaller BrainAge Gap (β = -0.015, p = 2.14 × 10-05). Furthermore, smoking was associated with poorer cognition, and this relationship was partially mediated by BrainAge Gap. The study provides insight into the association between smoking, brain ageing, and cognition, which provide more publicly acceptable propaganda against smoking.
Collapse
Affiliation(s)
- Zeqiang Linli
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, PR China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Centre for Computational Systems Biology, Fudan University, Shanghai 200433, PR China
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, PR China.
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, PR China.
| |
Collapse
|
18
|
Mouches P, Wilms M, Rajashekar D, Langner S, Forkert ND. Multimodal biological brain age prediction using magnetic resonance imaging and angiography with the identification of predictive regions. Hum Brain Mapp 2022; 43:2554-2566. [PMID: 35138012 PMCID: PMC9057090 DOI: 10.1002/hbm.25805] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Biological brain age predicted using machine learning models based on high-resolution imaging data has been suggested as a potential biomarker for neurological and cerebrovascular diseases. In this work, we aimed to develop deep learning models to predict the biological brain age using structural magnetic resonance imaging and angiography datasets from a large database of 2074 adults (21-81 years). Since different imaging modalities can provide complementary information, combining them might allow to identify more complex aging patterns, with angiography data, for instance, showing vascular aging effects complementary to the atrophic brain tissue changes seen in T1-weighted MRI sequences. We used saliency maps to investigate the contribution of cortical, subcortical, and arterial structures to the prediction. Our results show that combining T1-weighted and angiography MR data led to a significantly improved brain age prediction accuracy, with a mean absolute error of 3.85 years comparing the predicted and chronological age. The most predictive brain regions included the lateral sulcus, the fourth ventricle, and the amygdala, while the brain arteries contributing the most to the prediction included the basilar artery, the middle cerebral artery M2 segments, and the left posterior cerebral artery. Our study proposes a framework for brain age prediction using multimodal imaging, which gives accurate predictions and allows identifying the most predictive regions for this task, which can serve as a surrogate for the brain regions that are most affected by aging.
Collapse
Affiliation(s)
- Pauline Mouches
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deepthi Rajashekar
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Program, University of Calgary, Calgary, Alberta, Canada
| | - Sönke Langner
- Institute for Diagnostic Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Beck D, de Lange AG, Pedersen ML, Alnæs D, Maximov II, Voldsbekk I, Richard G, Sanders A, Ulrichsen KM, Dørum ES, Kolskår KK, Høgestøl EA, Steen NE, Djurovic S, Andreassen OA, Nordvik JE, Kaufmann T, Westlye LT. Cardiometabolic risk factors associated with brain age and accelerate brain ageing. Hum Brain Mapp 2022; 43:700-720. [PMID: 34626047 PMCID: PMC8720200 DOI: 10.1002/hbm.25680] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/02/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The structure and integrity of the ageing brain is interchangeably linked to physical health, and cardiometabolic risk factors (CMRs) are associated with dementia and other brain disorders. In this mixed cross-sectional and longitudinal study (interval mean = 19.7 months), including 790 healthy individuals (mean age = 46.7 years, 53% women), we investigated CMRs and health indicators including anthropometric measures, lifestyle factors, and blood biomarkers in relation to brain structure using MRI-based morphometry and diffusion tensor imaging (DTI). We performed tissue specific brain age prediction using machine learning and performed Bayesian multilevel modeling to assess changes in each CMR over time, their respective association with brain age gap (BAG), and their interaction effects with time and age on the tissue-specific BAGs. The results showed credible associations between DTI-based BAG and blood levels of phosphate and mean cell volume (MCV), and between T1-based BAG and systolic blood pressure, smoking, pulse, and C-reactive protein (CRP), indicating older-appearing brains in people with higher cardiometabolic risk (smoking, higher blood pressure and pulse, low-grade inflammation). Longitudinal evidence supported interactions between both BAGs and waist-to-hip ratio (WHR), and between DTI-based BAG and systolic blood pressure and smoking, indicating accelerated ageing in people with higher cardiometabolic risk (smoking, higher blood pressure, and WHR). The results demonstrate that cardiometabolic risk factors are associated with brain ageing. While randomized controlled trials are needed to establish causality, our results indicate that public health initiatives and treatment strategies targeting modifiable cardiometabolic risk factors may also improve risk trajectories and delay brain ageing.
Collapse
Affiliation(s)
- Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Ann‐Marie G. de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- LREN, Centre for Research in Neurosciences‐Department of Clinical NeurosciencesCHUV and University of LausanneLausanneSwitzerland
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Mads L. Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Bjørknes CollegeOsloNorway
| | - Ivan I. Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Irene Voldsbekk
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Anne‐Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Kristine M. Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Erlend S. Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Knut K. Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Einar A. Høgestøl
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Srdjan Djurovic
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | | | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of Psychiatry and PsychotherapyUniversity of TübingenTubingenGermany
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| |
Collapse
|