1
|
Su W, Deng J, Yang L, Wang Y, Gong X, Li J. Melatonin alleviates LPS-induced depression-like behavior in mice by inhibiting ferroptosis by regulating RNA methylation-mediated SIRT6/Nrf2/HO-1 pathway. Eur J Nutr 2024; 63:3133-3148. [PMID: 39294335 DOI: 10.1007/s00394-024-03495-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024]
Abstract
PURPOSE The objective of this study is to investigate the impact of ferroptosis on depression and elucidate the molecular mechanism underlying melatonin's inhibitory effect on ferroptosis in the treatment of depression. METHODS In this study, a depression-like behavior model was induced in mice using LPS, and the effect of melatonin on depression-like behavior was evaluated through behavioral experiments (such as forced swimming test (FST) and sucrose preference test (SPT)). Additionally, molecular biological techniques (including real-time fluorescence quantitative PCR, Western blotting, immunoprecipitation) were employed to detect the expression levels and interactions of METTL3, SIRT6 and ferroptosis-related genes in mouse brain tissue. Furthermore, both in vitro and in vivo experiments were conducted to verify the regulatory effect of melatonin on Nrf2/HO-1 pathway and explore its potential molecular mechanism for regulating ferroptosis. RESULTS Melatonin was found to significantly ameliorate depression-like behavior in mice, as evidenced by reduced immobility time in the forced swimming test and increased sucrose intake in the sucrose preference test. Subsequent investigations revealed that melatonin modulated SIRT6 stability through METTL3-mediated ubiquitination of SIRT6, leading to its degradation. As a deacetylase, SIRT6 plays a pivotal role in cellular metabolism regulation and antioxidative stress response. This study elucidated potential signaling pathways involving Nrf2/HO-1 through which SIRT6 may exert its effects. CONCLUSION The findings suggest that melatonin can improve depressive behavior by suppressing ferroptosis and protecting neurons through its antioxidant properties. Additionally, targeting the Nrf2/HO-1 pathway via METTL3 and NEDD4 regulation may be a potential therapeutic approach for depression.
Collapse
Affiliation(s)
- Wenjie Su
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Jia Deng
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Lina Yang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Yu Wang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China
| | - Xinran Gong
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China.
| | - Jiacen Li
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32 West Second Section, First Ring Road, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
2
|
Miranda-Riestra A, Cercós MG, Trueta C, Oikawa-Sala J, Argueta J, Constantino-Jonapa LA, Cruz-Garduño R, Benítez-King G, Estrada-Reyes R. Participation of Ca 2+-Calmodulin-Dependent Protein Kinase II in the Antidepressant-Like Effects of Melatonin. Mol Pharmacol 2024; 106:107-116. [PMID: 39079719 DOI: 10.1124/molpharm.124.000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 08/18/2024] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an indoleamine secreted by the pineal gland during the dark phase of the photoperiod. Its main function is the synchronization of different body rhythms with the dark-light cycle. Research on melatonin has significantly advanced since its discovery and we now know that it has considerable significance in various physiological processes, including immunity, aging, and reproduction. Moreover, in recent years evidence of the pharmacological possibilities of melatonin has increased. Indoleamine, on the other hand, has antidepressant-like effects in rodents, which may be mediated by the activation of calcium-calmodulin-dependent kinase II (CaMKII) and are also related to the regulation of neuroplasticity processes, including neurogenesis, synaptic maintenance, and long-term potentiation. Remarkably, patients with major depression show decreased levels of circulating melatonin in plasma. This review presents evidence of the antidepressant-like effects of melatonin in preclinical models and the participation of CaMKII in these actions. CaMKII's role in cognition and memory processes, which are altered in depressive states, are part of the review, and the effects of melatonin in these processes are also reviewed. Furthermore, participation of CaMKII on structural and synaptic plasticity and the effects of melatonin are also described. Finally, the advantages of using melatonin in combination with other antidepressants such as ketamine for neuroplasticity are described. Evidence supports that CaMKII is activated by melatonin and downstream melatonin receptors and may be the common effector in the synergistic effects of melatonin with other antidepressants. SIGNIFICANCE STATEMENT: This review compiled evidence supporting that melatonin causes antidepressant-like effects in mice through calmodulin kinase II stimulation of downstream melatonin receptors as well as the participation of this enzyme in neuroplasticity, memory, and cognition. Finally, we describe evidence about the effectiveness of antidepressant-like effects of melatonin in combination with ketamine.
Collapse
Affiliation(s)
- Armida Miranda-Riestra
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Montserrat G Cercós
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Citlali Trueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Julián Oikawa-Sala
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jesús Argueta
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Luis A Constantino-Jonapa
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Ricardo Cruz-Garduño
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Gloria Benítez-King
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Neurofarmacología (A.M.-R., J.O.-S., J.A., L.A.C.-J., G.B.-K.), Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias (M.G.C., C.T., R.C.-G.), and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias (R.E.-R.), Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
3
|
Dias BKM, Mohanty A, Garcia CRS. Melatonin as a Circadian Marker for Plasmodium Rhythms. Int J Mol Sci 2024; 25:7815. [PMID: 39063057 PMCID: PMC11277106 DOI: 10.3390/ijms25147815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodium, a digenetic parasite, requires a host and a vector for its life cycle completion. Most Plasmodium species display circadian rhythmicity during their intraerythrocytic cycle within the host, aiding in immune evasion. This rhythmicity, however, diminishes in in vitro cultures, highlighting the importance of host-derived signals for synchronizing the parasite's asexual cycle. Studies indicate a species-specific internal clock in Plasmodium, dependent on these host signals. Melatonin, a hormone the pineal gland produces under circadian regulation, impacts various physiological functions and is extensively reviewed as the primary circadian marker affecting parasite rhythms. Research suggests that melatonin facilitates synchronization through the PLC-IP3 signaling pathway, activating phospholipase C, which triggers intracellular calcium release and gene expression modulation. This evidence strongly supports the role of melatonin as a key circadian marker for parasite synchronization, presenting new possibilities for targeting the melatonin pathway when developing novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Célia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (B.K.M.D.); (A.M.)
| |
Collapse
|
4
|
Tsuno Y, Mieda M. Circadian rhythm mechanism in the suprachiasmatic nucleus and its relation to the olfactory system. Front Neural Circuits 2024; 18:1385908. [PMID: 38590628 PMCID: PMC11000122 DOI: 10.3389/fncir.2024.1385908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Animals need sleep, and the suprachiasmatic nucleus, the center of the circadian rhythm, plays an important role in determining the timing of sleep. The main input to the suprachiasmatic nucleus is the retinohypothalamic tract, with additional inputs from the intergeniculate leaflet pathway, the serotonergic afferent from the raphe, and other hypothalamic regions. Within the suprachiasmatic nucleus, two of the major subtypes are vasoactive intestinal polypeptide (VIP)-positive neurons and arginine-vasopressin (AVP)-positive neurons. VIP neurons are important for light entrainment and synchronization of suprachiasmatic nucleus neurons, whereas AVP neurons are important for circadian period determination. Output targets of the suprachiasmatic nucleus include the hypothalamus (subparaventricular zone, paraventricular hypothalamic nucleus, preoptic area, and medial hypothalamus), the thalamus (paraventricular thalamic nuclei), and lateral septum. The suprachiasmatic nucleus also sends information through several brain regions to the pineal gland. The olfactory bulb is thought to be able to generate a circadian rhythm without the suprachiasmatic nucleus. Some reports indicate that circadian rhythms of the olfactory bulb and olfactory cortex exist in the absence of the suprachiasmatic nucleus, but another report claims the influence of the suprachiasmatic nucleus. The regulation of circadian rhythms by sensory inputs other than light stimuli, including olfaction, has not been well studied and further progress is expected.
Collapse
Affiliation(s)
- Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | |
Collapse
|
5
|
Lee MR, Jung SM, Choi SH, Hwang H, Chang Y, Hwangbo Y. Relationship between mid-sleep time and depression, health-related quality of life, and sleep deprivation in the 2018 Korea Community Health Survey. Chronobiol Int 2024; 41:1-9. [PMID: 38108132 DOI: 10.1080/07420528.2023.2294049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
This cross-sectional study examined the relationship of mid-sleep time (MST) with depression, quality of life, and sleep deprivation. This study included 173 284 adults aged ≥ 19 years who participated in the 2018 Korea Community Health Survey. The Patient Health Questionnaire-9 for depression, EuroQol-5 dimension for health-related quality of life, and the Pittsburgh Sleep Quality Index for MST, daytime sleepiness, and sleep quality were used. Regression and logistic regression analysis was used for complex sample analysis. The results showed that individuals with later MST had a higher risk of depression, poor quality of life, poor sleep quality, and excessive daytime sleepiness than intermediate-type individuals, whereas earlier MST was associated with good sleep quality in the total population. This association was significant in both men and women. The later type was associated with all items of health-related quality of life in both men and women. These findings suggest that the later type is a significant predictor of mental health, quality of life, sleep quality, and daytime sleepiness. Identifying an individual's mid-sleep time may help tailor interventions and treatment strategies that optimize sleep, mental health outcomes, and quality of life.
Collapse
Affiliation(s)
- Mee-Ri Lee
- Department of Preventive Medicine, Soonchunhyang University College of Medicine, Cheonan-si, Korea
| | - Sung Min Jung
- Department of Surgery, Inje University, Ilsan Paik Hospital, Goyang-si, Korea
| | - Seung Hee Choi
- Research Institute for Healthy Cities and Health Impact Assessment, Soonchunhyang University, Cheonan-si, Korea
| | - Hyeonji Hwang
- Research Institute for Healthy Cities and Health Impact Assessment, Soonchunhyang University, Cheonan-si, Korea
| | - Youngs Chang
- Department of Health Policy and Management, Seoul National University College of Medicine Seoul, Korea
| | - Young Hwangbo
- Department of Preventive Medicine, Soonchunhyang University College of Medicine, Cheonan-si, Korea
- Research Institute for Healthy Cities and Health Impact Assessment, Soonchunhyang University, Cheonan-si, Korea
| |
Collapse
|
6
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Hao M, Qin Y, Li Y, Tang Y, Ma Z, Tan J, Jin L, Wang F, Gong X. Metabolome subtyping reveals multi-omics characteristics and biological heterogeneity in major psychiatric disorders. Psychiatry Res 2023; 330:115605. [PMID: 38006718 DOI: 10.1016/j.psychres.2023.115605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Growing evidence suggests that major psychiatric disorders (MPDs) share common etiologies and pathological processes. However, the diagnosis is currently based on descriptive symptoms, which ignores the underlying pathogenesis and hinders the development of clinical treatments. This highlights the urgency of characterizing molecular biomarkers and establishing objective diagnoses of MPDs. Here, we collected untargeted metabolomics, proteomics and DNA methylation data of 327 patients with MPDs, 131 individuals with genetic high risk and 146 healthy controls to explore the multi-omics characteristics of MPDs. First, differential metabolites (DMs) were identified and we classified MPD patients into 3 subtypes based on DMs. The subtypes showed distinct metabolomics, proteomics and DNA methylation signatures. Specifically, one subtype showed dysregulation of complement and coagulation proteins, while the DNA methylation showed abnormalities in chemical synapses and autophagy. Integrative analysis in metabolic pathways identified the important roles of the citrate cycle, sphingolipid metabolism and amino acid metabolism. Finally, we constructed prediction models based on the metabolites and proteomics that successfully captured the risks of MPD patients. Our study established molecular subtypes of MPDs and elucidated their biological heterogeneity through a multi-omics investigation. These results facilitate the understanding of pathological mechanisms and promote the diagnosis and prevention of MPDs.
Collapse
Affiliation(s)
- Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yue Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zehan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Zhang J, Jiang B. Influence of Melatonin Treatment on Emotion, Sleep, and Life Quality in Perimenopausal Women: A Clinical Study. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:2198804. [PMID: 37854169 PMCID: PMC10581846 DOI: 10.1155/2023/2198804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 10/20/2023]
Abstract
Method 100 healthy perimenopausal women were recruited and randomly assigned to two groups, with 50 subjects in each group. In the control group, placebo was administrated daily for 3 cycles (4 weeks of treatment for 1 cycle and drug withdrawals for 1 week). The study group received 3 mg oral melatonin treatment daily in the same period of time. All subjects completed the study. We compared the uterine volume, endometrial thickness, LH (luteinizing hormone), FSH (follicle generating hormone), E2 (estradiol), and melatonin levels during daytime between the two groups before and after the study. Moreover, perimenopause syndrome, sleep, mood, and QoL were analyzed at the baseline and 3 cycles by the questionnaires of the Kupperman index, the Pittsburgh sleep quality index (PSQI), the Hamilton anxiety scale (HAMA), and the Hamilton depression scale (HAMD), as well as menopausal QoL (MENQOL), respectively. Any adverse reactions experienced by the subjects were also compared in the study. Finally, 91 participants (92%) completed the whole study, 47 and 44 in the study and control groups, respectively, and their data were considered in subsequent analyses. Results After therapy, the two groups were similar in the uterine volume and endometrial thickness. In contrast to the control group, the study group showed notably decreased LH and FSH levels. No notable difference was discovered in E2 and melatonin levels between the two groups in the study. Moreover, the study group exhibited a significantly lower score in the Kupperman index, PSQI, HAMA, HAMD, and MENQOL scale than the control group. Moreover, the two groups had no notable difference in adverse reactions. Conclusion Melatonin was a useful treatment to relieve climacteric symptoms and improve sleep, mood, and life quality in perimenopausal women without obvious adverse reactions.
Collapse
Affiliation(s)
- Jianfu Zhang
- Department of Pharmacy, Ningbo Women and Children's Hospital, Ningbo 315012, China
| | - Bengui Jiang
- Department of Gynecology, Ningbo Women and Children's Hospital, Ningbo 315012, China
| |
Collapse
|
9
|
Mafi A, Rismanchi H, Gholinezhad Y, Mohammadi MM, Mousavi V, Hosseini SA, Milasi YE, Reiter RJ, Ghezelbash B, Rezaee M, Sheida A, Zarepour F, Asemi Z, Mansournia MA, Mirzaei H. Melatonin as a regulator of apoptosis in leukaemia: molecular mechanism and therapeutic perspectives. Front Pharmacol 2023; 14:1224151. [PMID: 37645444 PMCID: PMC10461318 DOI: 10.3389/fphar.2023.1224151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Leukaemia is a dangerous malignancy that causes thousands of deaths every year throughout the world. The rate of morbidity and mortality is significant despite many advancements in therapy strategies for affected individuals. Most antitumour medications used now in clinical oncology use apoptotic signalling pathways to induce cancer cell death. Accumulated data have shown a direct correlation between inducing apoptosis in cancer cells with higher tumour regression and survival. Until now, the efficacy of melatonin as a powerful antitumour agent has been firmly established. A change in melatonin concentrations has been reported in multiple tumours such as endometrial, hematopoietic, and breast cancers. Findings show that melatonin's anticancer properties, such as its prooxidation function and ability to promote apoptosis, indicate the possibility of utilizing this natural substance as a promising agent in innovative cancer therapy approaches. Melatonin stimulates cell apoptosis via the regulation of many apoptosis facilitators, including mitochondria, cytochrome c, Bcl-2, production of reactive oxygen species, and apoptosis receptors. This paper aimed to further assess the anticancer effects of melatonin through the apoptotic pathway, considering the role that cellular apoptosis plays in the pathogenesis of cancer. The effect of melatonin may mean that it is appropriate for use as an adjuvant, along with other therapeutic approaches such as radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ali Hosseini
- School of Medicine, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine, San Antonio, TX, United States
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Dobrek L, Głowacka K. Depression and Its Phytopharmacotherapy-A Narrative Review. Int J Mol Sci 2023; 24:4772. [PMID: 36902200 PMCID: PMC10003400 DOI: 10.3390/ijms24054772] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Depression is a mental health disorder that develops as a result of complex psycho-neuro-immuno-endocrinological disturbances. This disease presents with mood disturbances, persistent sadness, loss of interest and impaired cognition, which causes distress to the patient and significantly affects the ability to function and have a satisfying family, social and professional life. Depression requires comprehensive management, including pharmacological treatment. Because pharmacotherapy of depression is a long-term process associated with the risk of numerous adverse drug effects, much attention is paid to alternative therapy methods, including phytopharmacotherapy, especially in treating mild or moderate depression. Preclinical studies and previous clinical studies confirm the antidepressant activity of active compounds in plants, such as St. John's wort, saffron crocus, lemon balm and lavender, or less known in European ethnopharmacology, roseroot, ginkgo, Korean ginseng, borage, brahmi, mimosa tree and magnolia bark. The active compounds in these plants exert antidepressive effects in similar mechanisms to those found in synthetic antidepressants. The description of phytopharmacodynamics includes inhibiting monoamine reuptake and monoamine oxidase activity and complex, agonistic or antagonistic effects on multiple central nervous system (CNS) receptors. Moreover, it is noteworthy that the anti-inflammatory effect is also important to the antidepressant activity of the plants mentioned above in light of the hypothesis that immunological disorders of the CNS are a significant pathogenetic factor of depression. This narrative review results from a traditional, non-systematic literature review. It briefly discusses the pathophysiology, symptomatology and treatment of depression, with a particular focus on the role of phytopharmacology in its treatment. It provides the mechanisms of action revealed in experimental studies of active ingredients isolated from herbal antidepressants and presents the results of selected clinical studies confirming their antidepressant effectiveness.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | |
Collapse
|
11
|
Exogenous melatonin alleviates neuropathic pain-induced affective disorders by suppressing NF-κB/ NLRP3 pathway and apoptosis. Sci Rep 2023; 13:2111. [PMID: 36747075 PMCID: PMC9902529 DOI: 10.1038/s41598-023-28418-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, we aimed to evaluate the anti-inflammatory and anti-apoptotic effects of melatonin (MLT) on neuropathic pain (NP)-induced anxiety and depression in a rat model. Adult male rats were separated into four groups, i.e., Sham-VEH: healthy animals received a vehicle, Sham-MLT (10 mg/kg), and chronic constrictive injury (CCI)-VEH: nerve ligation received the vehicle, and CCI-MLT. Next, we used behavioral tests to evaluate pain severity, anxiety, and depression. Finally, rats were sacrificed for molecular and histopathological studies. Behavioral tests showed that NP could induce depressive- and anxiety-like behaviors. NP activated NF-κB/NLRP3 inflammasome pathways by upregulating NF-κB, NLRP3, ASC, active Caspase-1, also enhancing the concentrations of cytokines (IL-1β and IL-18) in the prefrontal cortex (PFC) and hippocampus (HC). NP upregulated Bax, downregulated Bcl2, and increased cell apoptosis in the HC and PFC. The rats treated with MLT eliminated the effects of NP, as the reduced pain severity, improved anxiety- and depressive-like behaviors, ameliorated NF-κB/NLRP3 inflammasome pathways, and modulated levels of cytokines in the HC and PFC. MLT could promote cell survival from apoptosis by modulating Bax and Bcl2. Therefore, it might be inferred that its anti-inflammatory and anti-apoptotic properties mediate the beneficial effects of MLT in NP-induced affective disorders.
Collapse
|
12
|
Lesicka M, Dmitrzak-Weglarz M, Jablonska E, Wieczorek E, Kapelski P, Szczepankiewicz A, Pawlak J, Reszka E. Methylation of melatonin receptors in patients with unipolar and bipolar depression. Mech Ageing Dev 2023; 211:111776. [PMID: 36706965 DOI: 10.1016/j.mad.2023.111776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Disturbances of melatonin secretion alter the circadian rhythm and sleep-wake cycle, which is observed among patients with depression. Melatonin acts via melatonin receptors MT1 and MT2, which are present in many tissues, including peripheral blood mononuclear cells (PBMC). We assume that disturbances of the melatonin pathway in the brain may be reflected by molecular changes in peripheral organs. The study objective was to evaluate the methylation profile of CpG island in the promoter region of melatonin receptor genes MTNR1A and MTNR1B in PBMC of patients with depression and compare it with healthy volunteers. The study group comprised 85 patients with unipolar (UP) and bipolar disorders (BP) and 83 controls. The methylation pattern of CpG island in the promoter region was analyzed using the quantitative methylation-specific real-time PCR (qMSP-PCR) method. We found that the methylation profile of the patients with depression varied in comparison to the control group. The methylation level of MTNR1A was significantly lower among depressed patients compared to controls. Additionally, melatonin concentration was negatively correlated with MTNR1B methylation level among the UP patients. The study may suggest that the methylation profile of melatonin receptors in PBMC may be used as a complementary molecular marker in depression diagnosis.
Collapse
Affiliation(s)
- Monika Lesicka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Monika Dmitrzak-Weglarz
- Department of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, Poznan, Poland
| | - Ewa Jablonska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Wieczorek
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Pawel Kapelski
- Department of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Department of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Department of Psychiatry, University of Medical Sciences, Poznan, Poland
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
13
|
Campos LA, Baltatu OC, Senar S, Ghimouz R, Alefishat E, Cipolla-Neto J. Multiplatform-Integrated Identification of Melatonin Targets for a Triad of Psychosocial-Sleep/Circadian-Cardiometabolic Disorders. Int J Mol Sci 2023; 24:ijms24010860. [PMID: 36614302 PMCID: PMC9821171 DOI: 10.3390/ijms24010860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Several psychosocial, sleep/circadian, and cardiometabolic disorders have intricately interconnected pathologies involving melatonin disruption. Therefore, we hypothesize that melatonin could be a therapeutic target for treating potential comorbid diseases associated with this triad of psychosocial-sleep/circadian-cardiometabolic disorders. We investigated melatonin's target prediction and tractability for this triad of disorders. The melatonin's target prediction for the proposed psychosocial-sleep/circadian-cardiometabolic disorder triad was investigated using databases from Europe PMC, ChEMBL, Open Targets Genetics, Phenodigm, and PheWAS. The association scores for melatonin receptors MT1 and MT2 with this disorder triad were explored for evidence of target-disease predictions. The potential of melatonin as a tractable target in managing the disorder triad was investigated using supervised machine learning to identify melatonin activities in cardiovascular, neuronal, and metabolic assays at the cell, tissue, and organism levels in a curated ChEMBL database. Target-disease visualization was done by graphs created using "igraph" library-based scripts and displayed using the Gephi ForceAtlas algorithm. The combined Europe PMC (data type: text mining), ChEMBL (data type: drugs), Open Targets Genetics Portal (data type: genetic associations), PhenoDigm (data type: animal models), and PheWAS (data type: genetic associations) databases yielded types and varying levels of evidence for melatonin-disease triad correlations. Of the investigated databases, 235 association scores of melatonin receptors with the targeted diseases were greater than 0.2; to classify the evidence per disease class: 37% listed psychosocial disorders, 9% sleep/circadian disorders, and 54% cardiometabolic disorders. Using supervised machine learning, 546 cardiovascular, neuronal, or metabolic experimental assays with predicted or measured melatonin activity scores were identified in the ChEMBL curated database. Of 248 registered trials, 144 phase I to IV trials for melatonin or agonists have been completed, of which 33.3% were for psychosocial disorders, 59.7% were for sleep/circadian disorders, and 6.9% were for cardiometabolic disorders. Melatonin's druggability was evidenced by evaluating target prediction and tractability for the triad of psychosocial-sleep/circadian-cardiometabolic disorders. While melatonin research and development in sleep/circadian and psychosocial disorders is more advanced, as evidenced by melatonin association scores, substantial evidence on melatonin discovery in cardiovascular and metabolic disorders supports continued R&D in cardiometabolic disorders, as evidenced by melatonin activity scores. A multiplatform analysis provided an integrative assessment of the target-disease investigations that may justify further translational research.
Collapse
Affiliation(s)
- Luciana Aparecida Campos
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University—Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos 12247-016, Brazil
- Department of Public Health and Epidemiology, College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: (L.A.C.); (O.C.B.)
| | - Ovidiu Constantin Baltatu
- Center of Innovation, Technology, and Education (CITE) at Anhembi Morumbi University—Anima Institute, Sao Jose dos Campos Technology Park, Sao Jose dos Campos 12247-016, Brazil
- Department of Public Health and Epidemiology, College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence: (L.A.C.); (O.C.B.)
| | | | - Rym Ghimouz
- Fatima College of Health Sciences, Abu Dhabi P.O. Box 3798, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Science, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
- Center for Biotechnology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
14
|
Zubkov E, Abramova O, Zorkina Y, Ochneva A, Ushakova V, Morozova A, Gurina O, Majouga A, Chekhonin V. Intranasal neuropeptide Y is most effective in some aspects of acute stress compared to melatonin, oxytocin and orexin. Front Pharmacol 2022; 13:1033186. [DOI: 10.3389/fphar.2022.1033186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives: In the current study, we compared the effects of a single intranasal administration of clomipramine with effects of four neuropeptides, melatonin, oxytocin, orexin, and neuropeptide Y, to compare them in an acute stress model.Methods: The anti-stress effect was evaluated in the sucrose preference and forced swimming tests. Serum corticosterone level in rats was measured to evaluate the stress response.Results: Neuropeptide Y reduced immobilization time in the Porsolt test and decreased corticosterone levels, but increased the anhedonia. Orexin had no positive effect on animal behavior, but decreased corticosterone levels. Oxytocin decreased immobilization time, maintained anhedonia at the level of control, but did not affect corticosterone levels. Melatonin demonstrated no positive effects in any of the tests.Conclusion: The intranasal administered neuropeptide Y could be a promising compound for the treatment of stress disorders.
Collapse
|
15
|
Iorio C, Pacitti F, Rossi A, Iorio P, Pompili A. Declarative Memory Impairment and Emotional Bias in Recurrent Depression with a Seasonal Pattern: The Interplay between Emotion and Cognition in Seasonal Affective Disorder. Brain Sci 2022; 12:brainsci12101352. [PMID: 36291286 PMCID: PMC9599318 DOI: 10.3390/brainsci12101352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Seasonal Affective Disorder (SAD) is a subtype of Major Depressive Disorder (MDD) with a seasonal pattern. Although it is a pathological condition limited to specific seasons of the year, during the symptomatic period, patients may experience a significant impairment of well-being and daily quality of life as a result of the depressed mood, associated with other symptoms defined as atypical of MDD. While extensive evidence of memory deficits has been found in MDD, explicit memory impairments in SAD are insufficiently studied. This study aims to investigate the cognitive processing of emotional stimuli in women with SAD, in particular the interplay between emotions and declarative memory. One hundred and twenty young women, screened from an initial number of 1125 university students, were divided into two groups, an experimental one that included 60 medically untreated women affected by “winter type SAD” and a control group of 60 non-SAD women. Different subjects were randomly submitted to two types of audio−visual stories, neutral or arousal, and then their memory performances were analyzed by means of a free-recall test and a recognition memory test. In both the free-recall test (p < 0.008) and in the recognition memory test (p < 0.002), the SAD group showed impaired memory performances. Taken together, our novel key findings suggest that SAD is characterized by impairment in declarative memory and attentional bias for emotional negative stimuli.
Collapse
|
16
|
Fraile-Martinez O, Alvarez-Mon MA, Garcia-Montero C, Pekarek L, Guijarro LG, Lahera G, Saez MA, Monserrat J, Motogo D, Quintero J, Alvarez-Mon M, Ortega MA. Understanding the basis of major depressive disorder in oncological patients: Biological links, clinical management, challenges, and lifestyle medicine. Front Oncol 2022; 12:956923. [PMID: 36185233 PMCID: PMC9524231 DOI: 10.3389/fonc.2022.956923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, the incidence of different types of cancer and patient survival have been rising, as well as their prevalence. The increase in survival in recent years exposes the patients to a set of stressful factors such as more rigorous follow-up and more aggressive therapeutic regimens that, added to the diagnosis of the disease itself, cause an increase in the incidence of depressive disorders. These alterations have important consequences for the patients, reducing their average survival and quality of life, and for these reasons, special emphasis has been placed on developing numerous screening tests and early recognition of depressive symptoms. Despite that cancer and major depressive disorder are complex and heterogeneous entities, they also share many critical pathophysiological mechanisms, aiding to explain this complex relationship from a biological perspective. Moreover, a growing body of evidence is supporting the relevant role of lifestyle habits in the prevention and management of both depression and cancer. Therefore, the present study aims to perform a thorough review of the intricate relationship between depression and cancer, with a special focus on its biological links, clinical management, challenges, and the central role of lifestyle medicine as adjunctive and preventive approaches to improve the quality of life of these patients.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel A. Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- *Correspondence: Miguel A. Alvarez-Mon, ;
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Oncology Service, Guadalajara University Hospital, Guadalajara, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEREHD), University of Alcalá, Alcala de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias Centro de Investigación Biomédica en Red en el Área temática de Salud Mental (CIBERSAM), Alcalá de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Domitila Motogo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEREHD), University Hospital Príncipe de Asturias, Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, Alcala de Henares, Spain
| |
Collapse
|
17
|
Preparation of melatonin novel-mucoadhesive nanoemulsion used in the treatment of depression. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Tancredi S, Urbano T, Vinceti M, Filippini T. Artificial light at night and risk of mental disorders: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155185. [PMID: 35417728 DOI: 10.1016/j.scitotenv.2022.155185] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Emerging evidence suggests a possible association between artificial light at night (LAN) exposure and physiological and behavioral changes, with implications on mood and mental health. Due to the increased amount of individuals' LAN exposure, concerns have been raised regarding harmful impact of light pollution on mental health at the population level. AIM To perform a systematic review of observational studies to investigate if light at night, assessed both indoor and outdoor, may be associated with an increased risk of mental diseases in humans. METHODS We reviewed the epidemiological evidence on the association between LAN exposure, assessed either via satellite photometry or via measurements of bedroom brightness, and mental disorders. We systematically searched the PubMed, Embase and Web of Science databases up to April 1, 2022. Studies were included if they assessed the link between indoor or outdoor artificial light at night and one or more mental disorders in human populations. RESULTS Nine eligible studies were included in this review: six studies had a cross-sectional design, two had a longitudinal design with a median follow-up of 24 months, and one was a case-cohort study. Overall, we found moderate evidence of a positive association between LAN exposure and depressive symptoms and to a lesser extent other mental disorders, though the number of studies was limited and potential residual confounding such as socioeconomic factors, noise, or air pollution may have influenced the results. CONCLUSIONS Although more robust evidence is needed, the epidemiological evidence produced so far seems to support an association between LAN and risk of depressive disorders.
Collapse
Affiliation(s)
- Stefano Tancredi
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Population Health Laboratory (#PopHealthLab), University of Fribourg, Fribourg, Switzerland
| | - Teresa Urbano
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Kholghi G, Eskandari M, Shokouhi Qare Saadlou MS, Zarrindast MR, Vaseghi S. Night shift hormone: How does melatonin affect depression? Physiol Behav 2022; 252:113835. [PMID: 35504318 DOI: 10.1016/j.physbeh.2022.113835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022]
Abstract
Melatonin is the main hormone secreted by the pineal gland that modulates the circadian rhythm and mood. Previous studies have shown the therapeutic effects of melatonin, or its important analogue, agomelatine, on depression. In this review study, we aimed to discuss the potential mechanisms of melatonin involved in the treatment of depression. It was noted that disrupted circadian rhythm can lead to depressive state, and melatonin via regulating circadian rhythm shows a therapeutic effect. It was also noted that melatonin induces antidepressant effects via promoting antioxidant system and neurogenesis, and suppressing oxidative stress, neuroinflammation, and apoptosis. The interaction effect between melatonin or agomelatine and serotonergic signaling has a significant effect on depression. It was noted that the psychotropic effects of agomelatine are induced by the synergistic interaction between melatonin and 5-HT2C receptors. Agomelatine also interacts with glutamatergic signaling in brain regions involved in regulating mood and circadian rhythm. Interestingly, it was concluded that melatonin exerts both pro- and anti-inflammatory effects, depending on the grade of inflammation. It was suggested that synergistic interaction between melatonin and 5-HT2C receptors may be able to induce therapeutic effects on other psychiatric disorders. Furthermore, dualistic role of melatonin in regulating inflammation is an important point that can be examined at different levels of inflammation in animal models of depression.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
20
|
Correia AS, Vale N. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. Int J Mol Sci 2022; 23:ijms23158493. [PMID: 35955633 PMCID: PMC9369076 DOI: 10.3390/ijms23158493] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023] Open
Abstract
Depression is a common and serious disorder, characterized by symptoms like anhedonia, lack of energy, sad mood, low appetite, and sleep disturbances. This disease is very complex and not totally elucidated, in which diverse molecular and biological mechanisms are involved, such as neuroinflammation. There is a high need for the development of new therapies and gaining new insights into this disease is urgent. One important player in depression is the amino acid tryptophan. This amino acid can be metabolized in two important pathways in the context of depression: the serotonin and kynurenine pathways. These metabolic pathways of tryptophan are crucial in several processes that are linked with depression. Indeed, the maintenance of the balance of serotonin and kynurenine pathways is critical for the human physiological homeostasis. Thus, this narrative review aims to explore tryptophan metabolism (particularly in the serotonin and kynurenine pathways) in depression, starting with a global overview about these topics and ending with the focus on these pathways in neuroinflammation, stress, microbiota, and brain-derived neurotrophic factor regulation in this disease. Taken together, this information aims to clarify the metabolism of tryptophan in depression, particularly the serotonin and kynurenine pathways.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
21
|
Zhong BL, Xu YM, Li Y. Prevalence and Unmet Need for Mental Healthcare of Major Depressive Disorder in Community-Dwelling Chinese People Living With Vision Disability. Front Public Health 2022; 10:900425. [PMID: 35812506 PMCID: PMC9257003 DOI: 10.3389/fpubh.2022.900425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/31/2022] [Indexed: 12/29/2022] Open
Abstract
Objective Mental health services have been recognized as an essential part of the comprehensive eye care services, but data regarding the mental health of people living with vision disability (PLwVD) remain very limited. This study examined the epidemiology of major depressive disorder (MDD) among Chinese PLwVD, as well as their perceived needs for and utilization of mental health services. Methods By using stratified cluster sampling method, a total of 1,753 PLwVD were successfully recruited from 73 urban communities and 169 rural villages in Wuhan, China, and interviewed with the Mini-international Neuropsychiatric Interview 5.0. Standardized questions were used to measure perceived mental healthcare needs and use of mental health services of PLwVD with MDD. Results The one-month prevalence of MDD was 24.4%. Among the PLwVD with MDD, 26.0% perceived needs for mental healthcare and only 1.2% sought treatment from mental health specialists for their emotional problems. Factors associated with MDD were middle age [vs. young adulthood, odds ratio (OR) = 1.96, P < 0.001], older adulthood (vs. young adulthood, OR = 1.79, P = 0.004), being never-married (vs. married, remarried, and cohabiting, OR = 1.96, P < 0.001), being separated, divorced, and widowed (vs. married, remarried, and cohabiting, OR = 12.30, P < 0.001), a low level of objective social support (vs. high, OR = 1.83, P < 0.001), currently drinking (OR = 1.81, P < 0.001), having childhood-onset eye conditions (OR = 1.89, P = 0.005), and having difficulties in performing daily activities (OR = 2.78, P < 0.001). Conclusions Chinese PLwVD are at high risk for MDD and have a high level of unmet need for mental healthcare. Public strategies are warranted to improve the mental health literacy of PLwVD and make the mental health services available, accessible, and affordable for PLwVD.
Collapse
Affiliation(s)
- Bao-Liang Zhong
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
- Department of Clinical Psychology, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Yan-Min Xu
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
- Department of Clinical Psychology, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Yi Li
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
- Department of Clinical Psychology, Wuhan Hospital for Psychotherapy, Wuhan, China
- *Correspondence: Yi Li
| |
Collapse
|
22
|
Thurfah JN, Christine , Bagaskhara PP, Alfian SD, Puspitasari IM. Dietary Supplementations and Depression. J Multidiscip Healthc 2022; 15:1121-1141. [PMID: 35607362 PMCID: PMC9123934 DOI: 10.2147/jmdh.s360029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Depression is a mood disturbance condition that occurs for more than two weeks in a row, leading to suicide. Due to adverse effects of depression, antidepressants and adjunctive therapies, such as dietary supplementation, are used for treatment. Therefore, this review explored and summarized dietary supplements’ types, dosages, and effectiveness in preventing and treating depression. A literature search of the PubMed database was conducted in August 2021 to identify studies assessing depression, after which scale measurements based on dietary supplements were identified. From the obtained 221 studies, we selected 63 papers. Results showed PUFA (EPA and DHA combination), vitamin D, and probiotics as the most common supplementation used in clinical studies to reduce depressive symptoms. We also observed that although the total daily PUFA dosage that exhibited beneficial effects was in the range of 0.7–2 g EPA and 0.4–0.8 g DHA daily, with an administration period of three weeks to four months, positive vitamin D-based supplementation effects were observed after administering doses of 2000 IU/day or 50,000 IU/week between 8 weeks and 24 months. Alternatively, microbes from the genus Lactobacillus and Bifidobacterium in the probiotic group with a minimum dose of 108 CFU in various dose forms effectively treated depression. Besides, a depression scale was helpful to assess the effect of an intervention on depression. Hence, PUFA, vitamin D, and probiotics were proposed as adjunctive therapies for depression treatment based on the results from this study.
Collapse
|
23
|
Hoseini SG, Heshmat‐Ghahdarijani K, Khosrawi S, Garakyaraghi M, Shafie D, Mansourian M, Roohafza H, Azizi E, Sadeghi M. Melatonin supplementation improves N-terminal pro-B-type natriuretic peptide levels and quality of life in patients with heart failure with reduced ejection fraction: Results from MeHR trial, a randomized clinical trial. Clin Cardiol 2022; 45:417-426. [PMID: 35170783 PMCID: PMC9019884 DOI: 10.1002/clc.23796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melatonin, the major secretion of the pineal gland, has beneficial effects on the cardiovascular system and might advantage heart failure with reduced ejection fraction (HFrEF) by attenuating the effects of the renin-angiotensin-aldosterone and sympathetic system on the heart besides its antioxidant and anti-inflammatory effects. HYPOTHESIS We hypothesized that oral melatonin might improve echocardiographic parameters, serum biomarkers, and a composite clinical outcome (including quality of life, hospitalization, and mortality) in patients with HFrEF. METHODS A placebo-controlled double-blinded randomized clinical trial was conducted on patients with stable HFrEF. The intervention was 10 mg melatonin or placebo tablets administered every night for 24 weeks. Echocardiography and measurements of N-terminal pro-B-type natriuretic peptide (NT-Pro BNP), high-sensitivity C-reactive protein, lipid profile, and psychological parameters were done at baseline and after 24 weeks. RESULTS Overall, 92 patients were recruited, and 85 completed the study (melatonin: 42, placebo: 43). Serum NT-Pro BNP decreased significantly in the melatonin compared with the placebo group (estimated marginal means for difference [95% confidence interval]: 111.0 [6.2-215.7], p = .044). Moreover, the melatonin group had a significantly better clinical outcome (0.93 [0.18-1.69], p = .017), quality of life (5.8 [0.9-12.5], p = .037), and New York Heart Association class (odds ratio: 12.9 [1.6-102.4]; p = .015) at the end of the trial. Other studied outcomes were not significantly different between groups. CONCLUSIONS Oral melatonin decreased NT-Pro BNP and improved the quality of life in patients with HFrEF. Thus it might be a beneficial supplement in HFrEF.
Collapse
Affiliation(s)
- Shervin G. Hoseini
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
- Department of Physical Medicine and Rehabilitation, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Kiyan Heshmat‐Ghahdarijani
- Heart Failure Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Saeid Khosrawi
- Department of Physical Medicine and Rehabilitation, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mohammad Garakyaraghi
- Heart Failure Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Marjan Mansourian
- Isfahan Cardiovascular Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Hamidreza Roohafza
- Cardiac Rehabilitation Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Elham Azizi
- Cardiac Rehabilitation Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Cardiovascular Research InstituteIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
24
|
Rapid-acting antidepressants and the circadian clock. Neuropsychopharmacology 2022; 47:805-816. [PMID: 34837078 PMCID: PMC8626287 DOI: 10.1038/s41386-021-01241-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
A growing number of epidemiological and experimental studies has established that circadian disruption is strongly associated with psychiatric disorders, including major depressive disorder (MDD). This association is becoming increasingly relevant considering that modern lifestyles, social zeitgebers (time cues) and genetic variants contribute to disrupting circadian rhythms that may lead to psychiatric disorders. Circadian abnormalities associated with MDD include dysregulated rhythms of sleep, temperature, hormonal secretions, and mood which are modulated by the molecular clock. Rapid-acting antidepressants such as subanesthetic ketamine and sleep deprivation therapy can improve symptoms within 24 h in a subset of depressed patients, in striking contrast to conventional treatments, which generally require weeks for a full clinical response. Importantly, animal data show that sleep deprivation and ketamine have overlapping effects on clock gene expression. Furthermore, emerging data implicate the circadian system as a critical component involved in rapid antidepressant responses via several intracellular signaling pathways such as GSK3β, mTOR, MAPK, and NOTCH to initiate synaptic plasticity. Future research on the relationship between depression and the circadian clock may contribute to the development of novel therapeutic strategies for depression-like symptoms. In this review we summarize recent evidence describing: (1) how the circadian clock is implicated in depression, (2) how clock genes may contribute to fast-acting antidepressants, and (3) the mechanistic links between the clock genes driving circadian rhythms and neuroplasticity.
Collapse
|
25
|
Chen S, Zhong H, Mei G. Stable abnormalities of contrast discrimination sensitivity in subthreshold depression: A longitudinal study. Psych J 2022; 11:194-204. [PMID: 35168295 DOI: 10.1002/pchj.525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Subthreshold depression (StD), as a subclinical state, is highly prevalent and increases the risk for developing major depressive disorder (MDD). Although several studies have reported deficits of contrast sensitivity in MDD patients, it is unclear whether individuals with StD could demonstrate deficits of contrast sensitivity and whether the deficits could remain stable over time. Here we used a contrast discrimination task (a suprathreshold task) and a contrast detection task (a near-threshold task) to compare contrast sensitivity of the StD group with that of matched non-depressed controls. For each task, a spatial four-alternative forced-choice method and a psychophysical QUEST procedure were used to measure contrast discrimination threshold or contrast detection threshold. Participants performed an initial assessment and a follow-up assessment 4 months later. Compared to the non-depressed controls, individuals with StD demonstrated reduced contrast discrimination sensitivity, not only at the initial assessment but also at the follow-up assessment, indicating a stable abnormality. Contrast discrimination thresholds at the initial assessment did not predict changes of depression symptom severity over time. For contrast detection sensitivity, there was no significant difference between the StD group and non-depressed controls. We concluded that contrast discrimination testing might provide a trait-dependent biomarker for depression.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Psychology, Guizhou Normal University, Guiyang, China.,Department of Education, Guiyang Ninth High School, Guiyang, China
| | - Han Zhong
- School of Psychology, Guizhou Normal University, Guiyang, China
| | - Gaoxing Mei
- School of Psychology, Guizhou Normal University, Guiyang, China
| |
Collapse
|
26
|
Fernando J, Stochl J, Ersche KD. Drug Use in Night Owls May Increase the Risk for Mental Health Problems. Front Neurosci 2022; 15:819566. [PMID: 35087376 PMCID: PMC8787192 DOI: 10.3389/fnins.2021.819566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Drugs of abuse are widely known to worsen mental health problems, but this relationship may not be a simple causational one. Whether or not a person is susceptible to the negative effects of drugs of abuse may not only be determined by their addictive properties, but also the users’ chronotype, which determines their daily activity patterns. The present study investigates the relationship between chronotype, drug use and mental health problems in a cross-sectional community sample. Participants (n = 209) completed a selection of questionnaires online, including the Munich Chronotype Questionnaire, the Depression Anxiety Stress Scale, the Alcohol Use Disorder Identification Test, the Cannabis Use Disorder Identification Test and the Fagerström Test for Nicotine Dependence. We conducted multiple regression models to determine relationships between participants’ chronotype and their reported mental health symptoms and then estimated mediation models to investigate the extent to which their drug consumption accounted for the identified associations. Chronotype was significantly associated with participants’ overall mental health (β = 0.16, p = 0.022) and their anxiety levels (β = 0.18, p = 0.009) but not with levels of depression or stress. However, both relationships were fully mediated by participants’ overall drug consumption. Thus, late chronotypes, so-called “night owls”, not only use more drugs but consequently have an increased risk for developing anxiety and deteriorating mental health status. This group may be particularly vulnerable to the negative psychological effects of drugs. Our results point toward the importance of considering chronotype in designing preventative and therapeutic innovations, specifically for anxiety, which at present has been largely neglected.
Collapse
Affiliation(s)
- Jeevan Fernando
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Jan Stochl
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Kinanthropology and Humanities, Charles University, Prague, Czechia
| | - Karen D. Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- *Correspondence: Karen D. Ersche,
| |
Collapse
|
27
|
Won E, Na KS, Kim YK. Associations between Melatonin, Neuroinflammation, and Brain Alterations in Depression. Int J Mol Sci 2021; 23:ijms23010305. [PMID: 35008730 PMCID: PMC8745430 DOI: 10.3390/ijms23010305] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pro-inflammatory systemic conditions that can cause neuroinflammation and subsequent alterations in brain regions involved in emotional regulation have been suggested as an underlying mechanism for the pathophysiology of major depressive disorder (MDD). A prominent feature of MDD is disruption of circadian rhythms, of which melatonin is considered a key moderator, and alterations in the melatonin system have been implicated in MDD. Melatonin is involved in immune system regulation and has been shown to possess anti-inflammatory properties in inflammatory conditions, through both immunological and non-immunological actions. Melatonin has been suggested as a highly cytoprotective and neuroprotective substance and shown to stimulate all stages of neuroplasticity in animal models. The ability of melatonin to suppress inflammatory responses through immunological and non-immunological actions, thus influencing neuroinflammation and neurotoxicity, along with subsequent alterations in brain regions that are implicated in depression, can be demonstrated by the antidepressant-like effects of melatonin. Further studies that investigate the associations between melatonin, immune markers, and alterations in the brain structure and function in patients with depression could identify potential MDD biomarkers.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Chaum, Seoul 06062, Korea;
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon 21565, Korea;
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
- Correspondence:
| |
Collapse
|
28
|
Wang YQ, Jiang YJ, Zou MS, Liu J, Zhao HQ, Wang YH. Antidepressant actions of melatonin and melatonin receptor agonist: Focus on pathophysiology and treatment. Behav Brain Res 2021; 420:113724. [PMID: 34929236 DOI: 10.1016/j.bbr.2021.113724] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/15/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022]
Abstract
Depression has become one of the most commonly prevalent neuropsychiatric disorders, and the main characteristics of depression are sleep disorders and melatonin secretion disorders caused by circadian rhythm disorders. Abnormal endogenous melatonin alterations can contribute to the occurrence and development of depression. However, molecular mechanisms underlying this abnormality remain ambiguous. The present review summarizes the mechanisms underlying the antidepressant effects of melatonin, which is related to its functions in the regulation of the hypothalamic-pituitary-adrenal axis, inhibition of neuroinflammation, inhibition of oxidative stress, alleviation of autophagy, and upregulation of neurotrophic, promotion of neuroplasticity and upregulation of the levels of neurotransmitters, etc. Also, melatonin receptor agonists, such as agomelatine, ramelteon, piromelatine, tasimelteon, and GW117, have received considerable critical attention and are highly implicated in treating depression and comorbid disorders. This review focuses on melatonin and various melatonin receptor agonists in the pathophysiology and treatment of depression, aiming to provide further insight into the pathogenesis of depression and explore potential targets for novel agent development.
Collapse
Affiliation(s)
- Ye-Qing Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Ya-Jie Jiang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Man-Shu Zou
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hong-Qing Zhao
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Yu-Hong Wang
- Institute of Innovation and Applied Research, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
29
|
Wang HQ, Liu HT, Wang L, Min L, Chen B, Li H. Uncovering the active components, prospective targets, and molecular mechanism of Baihe Zhimu decoction for treating depression using network pharmacology-based analysis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114586. [PMID: 34464700 DOI: 10.1016/j.jep.2021.114586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baihe Zhimu decoction (BZD) is a classical traditional Chinese medicinal herbal formula. It consists of two herbal medicines, Rhizoma Anemarrhenae (Zhimu), the rhizomes of Anemarrhena asphodeloides Bge. (Liliaceae), and Bulbus Lilii (Baihe), the bulbs of Lilium brownii var. Viridulum Baker (Liliaceae). BZD has been widely used in China to treat depression and verified to be effective without evident side effects. AIM OF THE STUDY The aim of this study was to elucidate the active components, potential targets, and molecular mechanism of Baihe Zhimu decoction for treating depression. MATERIALS AND METHODS In this research, a chronic unpredictable mild stress (CUMS) mice was first established to evaluate the pharmacological effects of BZD for treating depression. A component database was then constructed for BZD. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) technique was used to identify the components in BZD and blood-absorbed components. Further screening and validation of protein targets were performed by molecule docking. The component-target binding affinity was validated by surface plasmon resonance analysis (SPR) assay. The related pathways were predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Relative proteins in the predicted pathways were finally assessed by Western blot. RESULTS The pharmacology evaluation experiment demonstrated that BZD could improve depressive-like behavior, inhibit the hippocampal secretion of pro-inflammatory cytokines and reduce neuronal apoptosis in CUMS mice model. A component database containing 163 components and a target database covering 1286 proteins were constructed. HPLC-QTOF-MS assay identified twenty-six components from BZD and ten components absorbed into rat plasma after an intragastric treatment with BZD. Next, 56 underlying targets were screened out by a virtual high-throughput screening approach. Twenty-seven of them were further screened out and confirmed by molecular docking. Afterward, a component-target network was established, and the component-protein binding affinities were validated by SPR assays. By KEGG pathway enrichment analysis, two signaling pathways PI3K/Akt and MAPK were predicted as the potential signaling cascades. Finally, Western blot showed that BZD dramatically reversed the suppression of PI3K/Akt/GSK-3β pathway and the activation of MAPK pathway in CUMS mice model. CONCLUSIONS BZD demonstrated a substantial pharmacological effect on CUMS mice model. Network pharmacology-based analysis predicted that ten blood-absorbed components can act on 27 target proteins. KEGG and Western blotting analysis suggested that BZD could exert antidepressant effects by regulating the PI3K/Akt and MAPK signaling pathways.
Collapse
Affiliation(s)
- Hai-Qiao Wang
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| | - Hong-Tao Liu
- Huantai County Psychiatric Hospital, Zibo, 256400, China.
| | - Liang Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Liang Min
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| | - Bin Chen
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| |
Collapse
|
30
|
Yardimci A, Ozdede MR, Kelestimur H. Agomelatine, A Potential Multi-Target Treatment Alternative for Insomnia, Depression, and Osteoporosis in Postmenopausal Women: A Hypothetical Model. Front Psychiatry 2021; 12:654616. [PMID: 34267684 PMCID: PMC8275877 DOI: 10.3389/fpsyt.2021.654616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Insomnia, which is associated with menopausal depression, is a common symptom of menopause. Both symptoms have a common etiology, and can affect each other significantly. Pharmacological interventions, including hypnotics and antidepressants, and non-pharmacological therapies are generally administered in clinical practice for insomnia treatment. As another menopausal disorder, osteoporosis is described as a disease of low bone mineral density (BMD), affecting nearly 200 million women worldwide. Postmenopausal osteoporosis is common among middle-aged women. Since postmenopausal osteoporosis mainly results from low estrogen levels, menopausal hormone therapy (HT) is considered the first-line option for the prevention of osteoporosis during the menopausal period. However, almost no study has evaluated novel treatments for the combined prevention of insomnia, depression, and osteoporosis. Hence, it is necessary to develop new multi-target strategies for the treatment of these disorders to improve the quality of life during this vulnerable period. Melatonin is the major regulator of sleep, and it has been suggested to be safe and effective for bone loss therapy by MT-2 receptor activity. As a result, we hypothesize that agomelatine, an MT-1 and MT-2 receptor agonist and 5-HT2C receptor antagonist, holds promise in the combined treatment of insomnia, depression, and osteoporosis in middle-aged women during menopause.
Collapse
Affiliation(s)
- Ahmet Yardimci
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | | | - Haluk Kelestimur
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|