1
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Rodriguez M, Themann A, Calvo DE, Garcia JA, Lira O, Garcia-Carachure I, Iñiguez SD. Social defeat stress induces an anxiety-like outcome in male prairie voles ( Microtus ochrogaster). OXFORD OPEN NEUROSCIENCE 2024; 3:kvae012. [PMID: 39660167 PMCID: PMC11629977 DOI: 10.1093/oons/kvae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Anxiety-related illnesses constitute one of the leading causes of disability across the globe. Consequently, the need for validated preclinical models to uncover the etiology of anxiety phenotypes remains essential. Given the link between social stress experience and the manifestation of anxiogenic-like outcomes, we evaluated whether social defeat stress (SDS) reduces open-space exploratory behavior in prairie voles (Microtus ochrogaster). Thus, we exposed adult sexually-naïve male voles to 10 consecutive days of SDS episodes and evaluated responses to the anxiogenic environment of the light/dark box test or the elevated plus-maze, 24 hours later. We found that, when compared to non-stressed controls, SDS-exposed voles displayed longer latency to enter the light compartment of the light/dark box. Similarly, on the elevated plus-maze, SDS-exposed voles displayed decreases in the number of entries into the open arms, while spending more time in the closed arms of the maze. No differences in locomotor activity were noted between the experimental groups. Collectively, these data indicate that chronic SDS exposure induces anxiety-like responses in adult male prairie voles, thus, providing a preclinical model for the study of social stress-induced anxiogenic phenotypes.
Collapse
Affiliation(s)
- Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968
| | - Daniel E Calvo
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968
| | - Jessica A Garcia
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968
| | | | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
3
|
Zheng YB, Jin X. Evidence for the Contribution of the miR-206/BDNF Pathway in the Pathophysiology of Depression. Int J Neuropsychopharmacol 2024; 27:pyae039. [PMID: 39219169 PMCID: PMC11461769 DOI: 10.1093/ijnp/pyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Depression is a complex disorder with substantial impacts on individual health and has major public health implications. Depression results from complex interactions between genetic and environmental factors. Epigenetic mechanisms, including DNA methylation, microRNAs (miRNAs), and histone modifications, can produce heritable phenotypic changes without a change in DNA sequence and recently were proven to mediate lasting increases in the risk of depression following exposure to adverse life events. Of these, miRNAs are gaining attention for their role in the pathogenesis of many stress-associated mental disorders, including depression. One such miRNA is microRNA-206 (miR-206), which is a critical candidate for increasing the susceptibility to stress. Although miR-206 is thought to be a typical muscle-specific miRNA, it is expressed throughout the brain, particularly in the hippocampus and prefrontal cortex. Until now, only a few studies have been conducted on rodents to understand the role of miR-206 in stress-related abnormalities in neurogenesis. However, the precise underlying molecular mechanism of miR-206-mediated depression-like behaviors remains largely unknown. Here, we reviewed recent advances in the field of biomedical and clinical research on the role of miR-206 in the pathogenesis of depression from studies using different tissues and various experimental designs and described how abnormalities in miR-206 expression in these tissues can affect neuronal functions. Moreover, we focused on studies investigating the brain-derived neurotrophic factor (BDNF) as a functional target of miR-206, where miR-206 has been implicated in the pathogenesis of depression by suppressing the expression of the BDNF. In summary, these studies confirm the existence of a tight correlation between the pathogenesis of depression and the miR-206/BDNF pathway.
Collapse
Affiliation(s)
- Ya-Bin Zheng
- Department of Neurology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Jin
- Department of Pharmacy, The Second People’s Hospital of Nantong, Nantong, China
| |
Collapse
|
4
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
5
|
Torres-Rubio L, Reguilón MD, Mellado S, Pascual M, Rodríguez-Arias M. Effects of Ketogenic Diet on Increased Ethanol Consumption Induced by Social Stress in Female Mice. Nutrients 2024; 16:2814. [PMID: 39275131 PMCID: PMC11397041 DOI: 10.3390/nu16172814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Stress is a critical factor in the development of mental disorders such as addiction, underscoring the importance of stress resilience strategies. While the ketogenic diet (KD) has shown efficacy in reducing alcohol consumption in male mice without cognitive impairment, its impact on the stress response and addiction development, especially in females, remains unclear. This study examined the KD's effect on increasing ethanol intake due to vicarious social defeat (VSD) in female mice. Sixty-four female OF1 mice were divided into two dietary groups: standard diet (n = 32) and KD (n = 32). These were further split based on exposure to four VSD or exploration sessions, creating four groups: EXP-STD (n = 16), VSD-STD (n = 16), EXP-KD (n = 16), and VSD-KD (n = 16). KD-fed mice maintained ketosis from adolescence until the fourth VSD/EXP session, after which they switched to a standard diet. The Social Interaction Test was performed 24 h after the last VSD session. Three weeks post-VSD, the Drinking in the Dark test and Oral Ethanol Self-Administration assessed ethanol consumption. The results showed that the KD blocked the increase in ethanol consumption induced by VSD in females. Moreover, among other changes, the KD increased the expression of the ADORA1 and CNR1 genes, which are associated with mechanisms modulating neurotransmission. Our results point to the KD as a useful tool to increase resilience to social stress in female mice.
Collapse
Affiliation(s)
- Laura Torres-Rubio
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marina D Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - María Pascual
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| |
Collapse
|
6
|
Navarrete J, Schneider KN, Smith BM, Goodwin NL, Zhang YY, Salazar AS, Gonzalez YE, Anumolu P, Gross E, Tsai VS, Heshmati M, Golden SA. Individual Differences in Volitional Social Self-Administration and Motivation in Male and Female Mice Following Social Stress. Biol Psychiatry 2024; 96:309-321. [PMID: 38244753 PMCID: PMC11255129 DOI: 10.1016/j.biopsych.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/18/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND A key challenge in developing treatments for neuropsychiatric illness is the disconnect between preclinical models and the complexity of human social behavior. We integrate voluntary social self-administration into a rodent model of social stress as a platform for the identification of fundamental brain and behavior mechanisms underlying stress-induced individual differences in social motivation. METHODS Here, we introduced an operant social stress procedure in male and female mice composed of 3 phases: 1) social self-administration training, 2) social stress exposure concurrent with reinforced self-administration testing, and 3) poststress operant testing under nonreinforced and reinforced conditions. We used social-defeat and witness-defeat stress in male and female mice. RESULTS Social defeat attenuated social reward seeking in males but not females, whereas witness defeat had no effect in males but promoted seeking behavior in females. We resolved social stress-induced changes to social motivation by aggregating z-scored operant metrics into a cumulative social index score to describe the spectrum of individual differences exhibited during operant social stress. Clustering does not adequately describe the relative distributions of social motivation following stress and is better described as a nonbinary behavioral distribution defined by the social index score, capturing a dynamic range of stress-related alterations in social motivation inclusive of sex as a biological variable. CONCLUSIONS We demonstrated that operant social stress can detect stable individual differences in stress-induced changes to social motivation. The inclusion of volitional behavior in social procedures may enhance the understanding of behavioral adaptations that promote stress resiliency and their mechanisms under more naturalistic conditions.
Collapse
Affiliation(s)
- Jovana Navarrete
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Kevin N Schneider
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Briana M Smith
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Nastacia L Goodwin
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Yizhe Y Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington
| | - Axelle S Salazar
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Yahir E Gonzalez
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Pranav Anumolu
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Ethan Gross
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Valerie S Tsai
- Department of Biological Structure, University of Washington, Seattle, Washington; Undergraduate Neuroscience Program, University of Washington, Seattle, Washington
| | - Mitra Heshmati
- Department of Biological Structure, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle, Washington; Graduate Program in Neuroscience, University of Washington, Seattle, Washington; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, Washington.
| |
Collapse
|
7
|
Pagliusi M, Amorim-Marques AP, Lobo MK, Guimarães FS, Lisboa SF, Gomes FV. The rostral ventromedial medulla modulates pain and depression-related behaviors caused by social stress. Pain 2024; 165:1814-1823. [PMID: 38661577 DOI: 10.1097/j.pain.0000000000003257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2023] [Indexed: 04/26/2024]
Abstract
ABSTRACT The rostral ventromedial medulla (RVM) is a crucial structure in the descending pain modulatory system, playing a key role as a relay for both the facilitation and inhibition of pain. The chronic social defeat stress (CSDS) model has been widely used to study stress-induced behavioral impairments associated with depression in rodents. Several studies suggest that CSDS also causes changes related to chronic pain. In this study, we aimed to investigate the involvement of the RVM in CSDS-induced behavioral impairments, including those associated with chronic pain. We used chemogenetics to activate or inhibit the RVM during stress. The results indicated that the RVM is a vital hub influencing stress outcomes. Rostral ventromedial medulla activation during CSDS ameliorates all the stress outcomes, including social avoidance, allodynia, hyperalgesia, anhedonia, and behavioral despair. In addition, RVM inhibition in animals exposed to a subthreshold social defeat stress protocol induces a susceptible phenotype, facilitating all stress outcomes. Finally, chronic RVM inhibition-without any social stress stimulus-induces chronic pain but not depressive-like behaviors. Our findings provide insights into the comorbidity between chronic pain and depression by indicating the involvement of the RVM in establishing social stress-induced behavioral responses associated with both chronic pain and depression.
Collapse
Affiliation(s)
- Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Anna P Amorim-Marques
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sabrina F Lisboa
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Numakawa T, Kajihara R. An Interaction between Brain-Derived Neurotrophic Factor and Stress-Related Glucocorticoids in the Pathophysiology of Alzheimer's Disease. Int J Mol Sci 2024; 25:1596. [PMID: 38338875 PMCID: PMC10855648 DOI: 10.3390/ijms25031596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Both the brain-derived neurotrophic factor (BDNF) and glucocorticoids (GCs) play multiple roles in various aspects of neurons, including cell survival and synaptic function. BDNF and its receptor TrkB are extensively expressed in neurons of the central nervous system (CNS), and the contribution of the BDNF/TrkB system to neuronal function is evident; thus, its downregulation has been considered to be involved in the pathogenesis of Alzheimer's disease (AD). GCs, stress-related molecules, and glucocorticoid receptors (GRs) are also considered to be associated with AD in addition to mental disorders such as depression. Importantly, a growing body of evidence suggests a close relationship between BDNF/TrkB-mediated signaling and the GCs/GR system in the CNS. Here, we introduce the current studies on the interaction between the neurotrophic system and stress in CNS neurons and discuss their involvement in the pathophysiology of AD.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
9
|
Garcia-Carachure I, Lira O, Themann A, Rodriguez M, Flores-Ramirez FJ, Lobo MK, Iñiguez SD. Sex-Specific Alterations in Spatial Memory and Hippocampal AKT-mTOR Signaling in Adult Mice Pre-exposed to Ketamine and/or Psychological Stress During Adolescence. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:240-251. [PMID: 38298791 PMCID: PMC10829642 DOI: 10.1016/j.bpsgos.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 02/02/2024] Open
Abstract
Background Ketamine (KET) is administered to manage major depression in adolescent patients. However, the long-term effects of juvenile KET exposure on memory-related tasks have not been thoroughly assessed. We examined whether exposure to KET, psychological stress, or both results in long-lasting alterations in spatial memory in C57BL/6 mice. Furthermore, we evaluated how KET and/or psychological stress history influenced hippocampal protein kinase B-mechanistic target of rapamycin (AKT-mTOR)-related signaling. Methods On postnatal day 35, male and female mice underwent vicarious defeat stress (VDS), a form of psychological stress that reduces sociability in both sexes, with or without KET exposure (20 mg/kg/day, postnatal days 35-44). In adulthood (postnatal day 70), mice were assessed for spatial memory performance on a water maze task or euthanized for hippocampal tissue collection. Results Juvenile pre-exposure to KET or VDS individually increased the latency (seconds) to locate the escape platform in adult male, but not female, mice. However, juvenile history of concomitant KET and VDS prevented memory impairment. Furthermore, individual KET or VDS pre-exposure, unlike their combined history, decreased hippocampal AKT-mTOR signaling in adult male mice. Conversely, KET pre-exposure alone increased AKT-mTOR in the hippocampus of adult female mice. Lastly, rapamycin-induced decreases of mTOR in naïve adult female mice induced spatial memory retrieval deficits, mimicking adult male mice with a history of exposure to VDS or KET. Conclusions Our preclinical model shows how KET treatment for the management of adolescent psychological stress-induced sequelae does not impair spatial memory later in life. However, juvenile recreational KET misuse, like psychological stress history, results in long-term spatial memory deficits and hippocampal AKT-mTOR signaling changes in a sex-specific manner.
Collapse
Affiliation(s)
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | | | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| |
Collapse
|
10
|
Barbetti M, Vilella R, Naponelli V, Bilotti I, Magistrati M, Dallabona C, Ielpo D, Andolina D, Sgoifo A, Savi M, Carnevali L. Repeated witness social stress causes cardiomyocyte contractile impairment and intracellular Ca 2+ derangement in female rats. Physiol Behav 2023; 271:114339. [PMID: 37625474 DOI: 10.1016/j.physbeh.2023.114339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The impact of psychosocial stressors on cardiovascular health in women is of growing interest in both the popular and scientific literature. Rodent models are useful for providing direct experimental evidence of the adverse cardiovascular consequences of psychosocial stressors, yet studies in females are scarce. Here, we investigated the effects of repeated exposure to witness social defeat stress (WS) on cardiomyocyte contractile function and intracellular Ca2+ homeostasis in young adult wild-type Groningen female rats. Female rats bore witness to an aggressive social defeat episode between two males for nine consecutive days or were exposed to a control procedure. Stress-related behaviors were assessed during the first and last WS/control exposure. Twenty-four hours after the last exposure, plasma corticosterone levels were measured, and cardiomyocytes were isolated for analyses of contractile properties and Ca2+ transients, and expression levels of proteins involved in intracellular Ca2+dynamics. The results show an impairment of the intrinsic cardiac mechanical properties and prolonged intracellular Ca2+decay in WS female rats showing social stress-related behavioral (larger amounts of burying behavior) and neuroendocrine (elevated plasma corticosterone levels) phenotypes. Further, the results implicate alterations in the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex in the contractile defects described in cardiomyocytes of WS female rats. In conclusion, this study highlights the utility of the WS model as an ethologically relevant social stressor for investigating pathophysiological processes that occur in the heart of female subjects and may increase vulnerability to social stress-related cardiovascular risk.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Iolanda Bilotti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| |
Collapse
|
11
|
Anderson G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:962-993. [PMID: 37970210 PMCID: PMC10645470 DOI: 10.37349/etat.2023.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 11/17/2023] Open
Abstract
A dysregulated circadian rhythm is significantly associated with cancer risk, as is aging. Both aging and circadian dysregulation show suppressed pineal melatonin, which is indicated in many studies to be linked to cancer risk and progression. Another independently investigated aspect of the circadian rhythm is the cortisol awakening response (CAR), which is linked to stress-associated hypothalamus-pituitary-adrenal (HPA) axis activation. CAR and HPA axis activity are primarily mediated via activation of the glucocorticoid receptor (GR), which drives patterned gene expression via binding to the promotors of glucocorticoid response element (GRE)-expressing genes. Recent data shows that the GR can be prevented from nuclear translocation by the B cell lymphoma-2 (Bcl-2)-associated athanogene 1 (BAG-1), which translocates the GR to mitochondria, where it can have diverse effects. Melatonin also suppresses GR nuclear translocation by maintaining the GR in a complex with heat shock protein 90 (Hsp90). Melatonin, directly and/or epigenetically, can upregulate BAG-1, suggesting that the dramatic 10-fold decrease in pineal melatonin from adolescence to the ninth decade of life will attenuate the capacity of night-time melatonin to modulate the effects of the early morning CAR. The interactions of pineal melatonin/BAG-1/Hsp90 with the CAR are proposed to underpin how aging and circadian dysregulation are associated with cancer risk. This may be mediated via differential effects of melatonin/BAG-1/Hsp90/GR in different cells of microenvironments across the body, from which tumors emerge. This provides a model of cancer pathogenesis that better integrates previously disparate bodies of data, including how immune cells are regulated by cancer cells in the tumor microenvironment, at least partly via the cancer cell regulation of the tryptophan-melatonin pathway. This has a number of future research and treatment implications.
Collapse
|
12
|
Favoretto CA, Pagliusi M, Morais-Silva G. Involvement of brain cell phenotypes in stress-vulnerability and resilience. Front Neurosci 2023; 17:1175514. [PMID: 37476833 PMCID: PMC10354562 DOI: 10.3389/fnins.2023.1175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Stress-related disorders' prevalence is epidemically increasing in modern society, leading to a severe impact on individuals' well-being and a great economic burden on public resources. Based on this, it is critical to understand the mechanisms by which stress induces these disorders. The study of stress made great progress in the past decades, from deeper into the hypothalamic-pituitary-adrenal axis to the understanding of the involvement of a single cell subtype on stress outcomes. In fact, many studies have used state-of-the-art tools such as chemogenetic, optogenetic, genetic manipulation, electrophysiology, pharmacology, and immunohistochemistry to investigate the role of specific cell subtypes in the stress response. In this review, we aim to gather studies addressing the involvement of specific brain cell subtypes in stress-related responses, exploring possible mechanisms associated with stress vulnerability versus resilience in preclinical models. We particularly focus on the involvement of the astrocytes, microglia, medium spiny neurons, parvalbumin neurons, pyramidal neurons, serotonergic neurons, and interneurons of different brain areas in stress-induced outcomes, resilience, and vulnerability to stress. We believe that this review can shed light on how diverse molecular mechanisms, involving specific receptors, neurotrophic factors, epigenetic enzymes, and miRNAs, among others, within these brain cell subtypes, are associated with the expression of a stress-susceptible or resilient phenotype, advancing the understanding/knowledge on the specific machinery implicate in those events.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gessynger Morais-Silva
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
13
|
Themann A, Rodriguez M, Garcia-Carachure I, Lira O, Iñiguez SD. Adolescent fluoxetine exposure increases ERK-related signaling within the prefrontal cortex of adult male Sprague-Dawley rats. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac015. [PMID: 36776564 PMCID: PMC9918101 DOI: 10.1093/oons/kvac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There has been a disproportionate increase in fluoxetine (FLX) prescription rates within the juvenile population. Thus, we evaluated how adolescent FLX exposure alters expression/phosphorylation of proteins from the extracellular signal regulated kinase (ERK)-1/2 cascade within the adult prefrontal cortex (PFC). Male Sprague-Dawley rats were exposed to FLX (20 mg/kg) for 15 consecutive days (postnatal-day [PD] 35-49). At PD70 (adulthood), we examined protein markers for ERK1/2, ribosomal S6 kinase (RSK), and mammalian target of rapamycin (mTOR). FLX-pretreatment decreased body weight, while increasing PFC phosphorylation of ERK1/2 and RSK, as well as total mTOR protein expression in adulthood. We provide first-line evidence that juvenile FLX-pretreatment induces long-term decreases in body weight-gain, along with neurobiological changes in the adult PFC - highlighting that early-life antidepressant exposure increases ERK-related signaling markers in later life.
Collapse
Affiliation(s)
| | | | | | | | - Sergio D. Iñiguez
- Corresponding Author: Sergio D. Iñiguez, Ph.D., Department of Psychology, 500 University Ave, The University of Texas at El Paso, El Paso, TX, 79968. Tel: 915-747-5769. Fax: 915-747-6553.
| |
Collapse
|