1
|
Oliva HNP, Prudente TP, Nunes EJ, Cosgrove KP, Radhakrishnan R, Potenza MN, Angarita GA. Substance use and spine density: a systematic review and meta-analysis of preclinical studies. Mol Psychiatry 2024; 29:2873-2885. [PMID: 38561468 DOI: 10.1038/s41380-024-02519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
The elucidation of synaptic density changes provides valuable insights into the underlying brain mechanisms of substance use. In preclinical studies, synaptic density markers, like spine density, are altered by substances of abuse (e.g., alcohol, amphetamine, cannabis, cocaine, opioids, nicotine). These changes could be linked to phenomena including behavioral sensitization and drug self-administration in rodents. However, studies have produced heterogeneous results for spine density across substances and brain regions. Identifying patterns will inform translational studies given tools that now exist to measure in vivo synaptic density in humans. We performed a meta-analysis of preclinical studies to identify consistent findings across studies. PubMed, ScienceDirect, Scopus, and EBSCO were searched between September 2022 and September 2023, based on a protocol (PROSPERO: CRD42022354006). We screened 6083 publications and included 70 for meta-analysis. The meta-analysis revealed drug-specific patterns in spine density changes. Hippocampal spine density increased after amphetamine. Amphetamine, cocaine, and nicotine increased spine density in the nucleus accumbens. Alcohol and amphetamine increased, and cannabis reduced, spine density in the prefrontal cortex. There was no convergence of findings for morphine's effects. The effects of cocaine on the prefrontal cortex presented contrasting results compared to human studies, warranting further investigation. Publication bias was small for alcohol or morphine and substantial for the other substances. Heterogeneity was moderate-to-high across all substances. Nonetheless, these findings inform current translational efforts examining spine density in humans with substance use disorders.
Collapse
Affiliation(s)
- Henrique Nunes Pereira Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Tiago Paiva Prudente
- Faculdade de Medicina, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Eric J Nunes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Yale Tobacco Center of Regulatory Science, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly P Cosgrove
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA.
| |
Collapse
|
2
|
Li D, Ai S, Huang C, Liu ZH, Wang HL. Icariin rescues developmental BPA exposure induced spatial memory deficits in rats. Toxicol Appl Pharmacol 2024; 482:116776. [PMID: 38043803 DOI: 10.1016/j.taap.2023.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Bisphenol A (BPA) has been implicated in cognitive impairment. Icariin is the main active ingredient extracted from Epimedium Herb with protective function of nervous system. However, the potential therapeutic effects of Icariin on spatial memory deficits induced by developmental BPA exposure in Sprague-Dawley rats have not been investigated. This study investigated the therapeutic effect of Icariin (10 mg/kg/day, from postnatal day (PND) 21 to PND 60 by gavage) on spatial memory deficits in rat induced by developmental BPA exposure (1 mg/kg/day, from embryonic to PND 60), demonstrating that Icariin can markedly improve spatial memory in BPA-exposed rat. Furthermore, intra-gastric administration of Icariin could attenuate abnormal hippocampal cell dispersion and loss, improved the dendritic spine density and Nissl bodies. Moreover, Icariin reversed BPA induced reduction of frequency of miniature excitatory postsynaptic currents(mEPSC) and decrease of Vesicular glutamate transporter 1(VGlut1). Collectively, Icariin could effectively rescue BPA-induced spatial memory impairment in male rats by preventing cell loss and reduction of dendritic spines in the hippocampus. In addition, we also found that VGlut1 is a critical target in the repair of BPA-induced spatial memory by Icariin. Thus, Icariin may be a promising therapeutic agent to attenuate BPA-induced spatial memory deficits.
Collapse
Affiliation(s)
- Danyang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Shu Ai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Chengqing Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| |
Collapse
|
3
|
Kargbo RB. Exploring Next-Generation Therapeutics: Morphic Mixtures and Specified Salts for the Treatment of Mental Disorders and CNS Modulation. ACS Med Chem Lett 2023; 14:1159-1161. [PMID: 37736167 PMCID: PMC10510663 DOI: 10.1021/acsmedchemlett.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 09/23/2023] Open
Abstract
This Patent Highlight delves into the potential of next-generation therapeutics for treating mental disorders and modulating the central nervous system (CNS). Among the serotonin receptor subtypes, 5-HT2A, 5-HT2C, 5-HT1A, and 5-HT1B have shown promise in CNS disorder treatment. Approved drugs targeting these receptors, such as antipsychotics and psychedelics, provide valuable insights into their therapeutic effects. However, modulation of these receptors can lead to side effects like hallucinations and altered perception. The development of 5-HT2A agonists with minimized mood changes and improved therapeutic benefits is crucial. Furthermore, exploring morphic salt mixtures and specified salts offers innovative approaches to effectively modulating CNS activity and treating mental disorders.
Collapse
|