1
|
Sartaj A, Nabi B, Iqubal A, Aggarwal N, Haider K, Baboota S, Ali J. Development and Characterization of Oral Efavirenz-Loaded Nanostructured Lipid Carriers and Their Optimization with Box-Behnken Design Approach for the Neurological Disorder. Assay Drug Dev Technol 2025. [PMID: 39887046 DOI: 10.1089/adt.2024.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
To enhance brain delivery of efavirenz (EFV), optimized nanostructured lipid carriers (NLCs) were developed using a melt-emulsification technique and probe sonication. Box-Behnken design was chosen to systematically analyze the effects of variables on formulation outcomes, enabling efficient optimization with fewer experimental trials. This selection helped to improve the formulation by allowing us to refine key characteristics such as particle size, entrapment efficiency, and polydispersity index (PDI). The optimized EFV-NLCs had a mean particle size of 91.41 ± 7.90 nm, a PDI of 0.28 ± 0.04, a zeta potential of -17 mV, an entrapment efficiency of 85 ± 7%, and a drug loading of 14 ± 1%. Transmission electron microscopy confirmed that the EFV-NLCs were spherical with uniform size distribution. In vitro release tests showed prolonged drug release, with release rates ranging from 63.09 ± 2.76% to 84.43 ± 4.24% at pH 1.2 and 87.66 ± 6.31% to 92.56 ± 1.48% at pH 6.8. This was significantly better than the EFV suspension, which showed moderate and unsustainable release rates over 8 h. Furthermore, dissolution studies in both fasted and fed state simulated-intestinal-fluids (FaSSIF and FeSSIF) over 6 h revealed that % cumulative drug release was significantly higher in FeSSIF (94.06 ± 1.62%) compared with FaSSIF (65.21 ± 3.95%), indicating enhanced absorption in the presence of food. In vitro gut permeation studies revealed that EFV-NLCs had a 2.05-fold higher drug permeability than the suspension. These findings suggest that EFV-NLCs are promising for targeted brain delivery, are safe for oral administration, and could be instrumental in managing neuro-acquired immunodeficiency syndrome.
Collapse
Affiliation(s)
- Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi, India
| | - Nidhi Aggarwal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
2
|
Attaianese F, Dalpiaz I, Failla M, Pasquali E, Galli L, Chiappini E. Fixed-dose antiretroviral combinations in children living with human immunodeficiency virus type 1 (HIV-1): a systematic review. J Chemother 2024; 36:355-369. [PMID: 38153234 DOI: 10.1080/1120009x.2023.2297095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Fixed-Dose antiretroviral Combinations (FDCs) are the most used drug regimes in adult patients with human-immunodeficiency virus 1 infection, since they increase adherence to antiretroviral therapy and enable good quality of life. The European AIDS Clinical Society guidelines recommend the use of FDCs in paediatrics. However, the use of FDCs in paediatric population is restricted since studies in children and adolescents are mostly conducted in small sample sizes and are heterogeneous in settings and design. This systematic review aims to summarize the current knowledge about the use of FDCs in paediatric population, highlighting the relevant outcomes regarding efficacy and effectiveness, adherence, safety, and adverse events of these regimens.
Collapse
Affiliation(s)
- Federica Attaianese
- Department of Health Sciences, Section of Paediatrics, University of Florence, Florence, Italy
| | - Irene Dalpiaz
- Department of Health Sciences, Section of Paediatrics, University of Florence, Florence, Italy
| | - Martina Failla
- Department of Health Sciences, Section of Paediatrics, University of Florence, Florence, Italy
| | - Elisa Pasquali
- Department of Health Sciences, Section of Paediatrics, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, Section of Paediatrics, University of Florence, Florence, Italy
- Paediatric Infectious Disease Unit, IRCCS Anna Meyer Children's Hospital, Florence, Italy
| | - Elena Chiappini
- Department of Health Sciences, Section of Paediatrics, University of Florence, Florence, Italy
- Paediatric Infectious Disease Unit, IRCCS Anna Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
3
|
Tanushree, Sharma A, Monika, Singh RP, Jhawat V. Human immunodeficiency virus infection challenges: Current therapeutic limitations and strategies for improved management through long-acting injectable formulation. Rev Med Virol 2024; 34:e2563. [PMID: 38886179 DOI: 10.1002/rmv.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
HIV infection has been a severe global health burden, with millions living with the virus and continuing new infections each year. Antiretroviral therapy can effectively suppress HIV replication but requires strict lifelong adherence to daily oral medication regimens, which presents a significant challenge. Long-acting formulations of antiretroviral drugs administered infrequently have emerged as a promising strategy to improve treatment outcomes and adherence to HIV therapy and prevention. Long-acting injectable (LAI) formulations are designed to gradually release drugs over extended periods of weeks or months following a single injection. Critical advantages of LAIs over conventional oral dosage forms include less frequent dosing requirements, enhanced patient privacy, reduced stigma associated with daily pill regimens, and optimised pharmacokinetic/pharmacodynamic profiles. Several LAI antiretroviral products have recently gained regulatory approval, such as the integrase strand transfer inhibitor cabotegravir for HIV preexposure prophylaxis and the Cabotegravir/Rilpivirine combination for HIV treatment. A leading approach for developing long-acting antiretroviral depots involves encapsulating drug compounds in polymeric microspheres composed of biocompatible, biodegradable materials like poly (lactic-co-glycolic acid). These injectable depot formulations enable high drug loading with customisable extended-release kinetics controlled by the polymeric matrix. Compared to daily oral therapies, LAI antiretroviral formulations leveraging biodegradable polymeric microspheres offer notable benefits, including prolonged therapeutic effects, reduced dosing frequency for improved adherence, and the potential to kerb the initial HIV transmission event. The present manuscript aims to review the pathogenesis of the virus and its progression and propose therapeutic targets and long-acting drug delivery strategies that hold substantial promise for enhancing outcomes in HIV treatment and prevention.
Collapse
Affiliation(s)
- Tanushree
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Monika
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
4
|
Azzman N, Gill MSA, Hassan SS, Christ F, Debyser Z, Mohamed WAS, Ahemad N. Pharmacological advances in anti-retroviral therapy for human immunodeficiency virus-1 infection: A comprehensive review. Rev Med Virol 2024; 34:e2529. [PMID: 38520650 DOI: 10.1002/rmv.2529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
The discovery of anti-retroviral (ARV) drugs over the past 36 years has introduced various classes, including nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitor, fusion, and integrase strand transfer inhibitors inhibitors. The introduction of combined highly active anti-retroviral therapies in 1996 was later proven to combat further ARV drug resistance along with enhancing human immunodeficiency virus (HIV) suppression. As though the development of ARV therapies was continuously expanding, the variation of action caused by ARV drugs, along with its current updates, was not comprehensively discussed, particularly for HIV-1 infection. Thus, a range of HIV-1 ARV medications is covered in this review, including new developments in ARV therapy based on the drug's mechanism of action, the challenges related to HIV-1, and the need for combination therapy. Optimistically, this article will consolidate the overall updates of HIV-1 ARV treatments and conclude the significance of HIV-1-related pharmacotherapy research to combat the global threat of HIV infection.
Collapse
Affiliation(s)
- Nursyuhada Azzman
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Pulau Pinang Kampus Bertam, Permatang Pauh, Pulau Pinang, Malaysia
| | - Muhammad Shoaib Ali Gill
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Wan Ahmad Syazani Mohamed
- Nutrition Unit, Nutrition, Metabolism and Cardiovascular Research Centre (NMCRC), Level 3, Block C, Institute for Medical Research (IMR), National Institutes of Health (NIH) Complex, Ministry of Health Malaysia (MOH), Shah Alam, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
5
|
Singh AK, Kumar A, Arora S, Kumar R, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Current insights and molecular docking studies of HIV-1 reverse transcriptase inhibitors. Chem Biol Drug Des 2024; 103:e14372. [PMID: 37817296 DOI: 10.1111/cbdd.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
Human immunodeficiency virus (HIV) causes acquired immunodeficiency syndrome (AIDS), a lethal disease that is prevalent worldwide. According to the Joint United Nations Programme on HIV/AIDS (UNAIDS) data, 38.4 million people worldwide were living with HIV in 2021. Viral reverse transcriptase (RT) is an excellent target for drug intervention. Nucleoside reverse transcriptase inhibitors (NRTIs) were the first class of approved antiretroviral drugs. Later, a new type of non-nucleoside reverse transcriptase inhibitors (NNRTIs) were approved as anti-HIV drugs. Zidovudine, didanosine, and stavudine are FDA-approved NRTIs, while nevirapine, efavirenz, and delavirdine are FDA-approved NNRTIs. Several agents are in clinical trials, including apricitabine, racivir, elvucitabine, doravirine, dapivirine, and elsulfavirine. This review addresses HIV-1 structure, replication cycle, reverse transcription, and HIV drug targets. This study focuses on NRTIs and NNRTIs, their binding sites, mechanisms of action, FDA-approved drugs and drugs in clinical trials, their resistance and adverse effects, their molecular docking studies, and highly active antiretroviral therapy (HAART).
Collapse
Affiliation(s)
- Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Sahil Arora
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Amita Verma
- Department of Pharmaceutical Sciences, Bioorganic and Medicinal Chemistry Research Laboratory, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
6
|
Balaji S, Chakraborty R, Aggarwal S. Neurological Complications Caused by Human Immunodeficiency Virus (HIV) and Associated Opportunistic Co-infections: A Review on their Diagnosis and Therapeutic Insights. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:284-305. [PMID: 37005520 DOI: 10.2174/1871527322666230330083708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 12/28/2022] [Accepted: 01/25/2023] [Indexed: 04/04/2023]
Abstract
Neurocognitive disorders associated with human immunodeficiency virus (HIV) infected individuals increase the risk of mortality and morbidity that remain a prevalent clinical complication even in the antiretroviral therapy era. It is estimated that a considerable number of people in the HIV community are developing neurological complications at their early stages of infection. The daily lives of people with chronic HIV infections are greatly affected by cognitive declines such as loss of attention, learning, and executive functions, and other adverse conditions like neuronal injury and dementia. It has been found that the entry of HIV into the brain and subsequently crossing the blood-brain barrier (BBB) causes brain cell damage, which is the prerequisite for the development of neurocognitive disorders. Besides the HIV replication in the central nervous system and the adverse effects of antiretroviral therapy on the BBB, a range of opportunistic infections, including viral, bacterial, and parasitic agents, augment the neurological complications in people living with HIV (PLHIV). Given the immuno-compromised state of PLHIV, these co-infections can present a wide range of clinical syndromes with atypical manifestations that pose challenges in diagnosis and clinical management, representing a substantial burden for the public health system. Therefore, the present review narrates the neurological complications triggered by HIV and their diagnosis and treatment options. Moreover, coinfections that are known to cause neurological disorders in HIV infected individuals are highlighted.
Collapse
Affiliation(s)
- Sivaraman Balaji
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research-Headquarters, Ansari Nagar, New Delhi, 110029, India
| | - Rohan Chakraborty
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Aggarwal
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research-Headquarters, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
7
|
Malli IA, Hamdan D, Aljahdali A, Almutairi A, Jar R, Alzahrani R, Khan MA. Medical Interns' Knowledge, Attitude, and Practice Toward People Living with HIV: Multicenter Experience from Saudi Arabia. HIV AIDS (Auckl) 2023; 15:571-582. [PMID: 37744212 PMCID: PMC10516208 DOI: 10.2147/hiv.s418948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
Background Discrimination by some healthcare providers toward people living with HIV/AIDS has been documented. Differences in cultural backgrounds make it harder for future doctors, who need a lot of knowledge and a positive attitude to treat patients. In conservative countries like Saudi Arabia, not enough is known about how much medical interns know about HIV and how they feel about people living with HIV/AIDS. Methods From April to September 2021, this cross-sectional study use non-probability random sampling and utilized a self-administered questionnaire to collected the data from 346 medical interns who had graduated from five different medical schools. Results Most of the subjects correctly identified the main transmission routes, such as unprotected sex (94.57%), blood and body fluid exchange (94.19%), and sharing needles or syringes (91.47%). But they did not know what the most common co-infections were for HIV patients or how to protect themselves after exposure. This paper showed that medical interns have some stigmatizing behaviors toward patients living with HIV, as 31.1% and 22.9% agreed, respectively, that they would feel more sympathetic toward people who get AIDS from blood transfusions compared to IV drug users (IDU). Conclusion Medical interns also showed some positive attitudes, as more than half of the sample (56.2%) would not isolate beds for people living with HIV/AIDS. The study's conclusion is that HIV education and training programs should be added for medical interns, which might have a significant positive impact on their attitude.
Collapse
Affiliation(s)
- Israa Abdullah Malli
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, 22384, Saudi Arabia
- Ministry of the National Guard - Health Affairs, Jeddah, 22384, Saudi Arabia
| | - Dalia Hamdan
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, 22384, Saudi Arabia
| | - Alhanoof Aljahdali
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, 22384, Saudi Arabia
| | - Amal Almutairi
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, 22384, Saudi Arabia
| | - Raghad Jar
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, 22384, Saudi Arabia
| | - Reham Alzahrani
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, 22384, Saudi Arabia
| | - Muhammad Anwar Khan
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, 22384, Saudi Arabia
| |
Collapse
|
8
|
Kalita E, Panda M, Rao A, Prajapati VK. Exploring the role of secretory proteins in the human infectious diseases diagnosis and therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:231-269. [PMID: 36707203 DOI: 10.1016/bs.apcsb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secretory proteins are playing important role during the host-pathogen interaction to develop the infection or protection into the cell. Pathogens developing infectious disease to human being are taken up by host macrophages or number of immune cells, play an important role in physiological, developmental and immunological function. At the same time, infectious agents are also secreting various proteins to neutralize the resistance caused by host cells and also helping the pathogens to develop the infection. Secretory proteins (secretome) are only developed at the time of host-pathogen interaction, therefore they become very important to develop the targeted and potential therapeutic strategies. Pathogen specific secretory proteins released during interaction with host cell provide opportunity to develop point of care and rapid diagnostic kits. Proteins secreted by pathogens at the time of interaction with host cell have also been found as immunogenic in nature and numbers of vaccines have been developed to control the spread of human infectious diseases. This chapter highlights the importance of secretory proteins in the development of diagnostic and therapeutic strategies to fight against human infectious diseases.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
9
|
Eksin E, Erdem A. Recent Progress on Optical Biosensors Developed for Nucleic Acid Detection Related to Infectious Viral Diseases. MICROMACHINES 2023; 14:mi14020295. [PMID: 36837995 PMCID: PMC9966969 DOI: 10.3390/mi14020295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 05/28/2023]
Abstract
Optical biosensors have many advantages over traditional analytical methods. They enable the identification of several biological and chemical compounds directly, instantly, and without the need of labels. Their benefits include excellent specificity, sensitivity, compact size, and low cost. In this review, the main focus is placed on the nucleic acid-based optical biosensor technologies, including colorimetric, fluorescence, surface plasmon resonance (SPR), Evanescent-Wave Optical, Fiber optic and bioluminescent optical fibre. The fundamentals of each type of biosensor are briefly explained, and particular emphasis has been placed on the achievements which have been gained in the last decade on the field of diagnosis of infectious viral diseases. Concluding remarks concerning the perspectives of further developments are discussed.
Collapse
Affiliation(s)
- Ece Eksin
- Biomedical Device Technology Program, Vocational School of Health Services, Izmir Democracy University, 35290 Izmir, Turkey
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
10
|
Abstract
Western blotting (WB), also known as immunoblotting, is a well-known molecular biology method that biologists often use to investigate many features of the protein, ranging from basic protein analysis to disease detection. WB is simple, unique, rapid, widely used routine tool with easy interpretation and definite results. It is being used in various fields of science, research and development, diagnostic labs and hospitals. The principle of WB is to accomplish the separation of proteins based on molecular weight and charge. This review addresses in detail the individual steps involved in the WB technique, its troubleshooting, internal loading controls, total protein staining and its diverse applications in scientific research and clinical settings, along with its future perspectives.
Collapse
|
11
|
Finding a chink in the armor: Update, limitations, and challenges toward successful antivirals against flaviviruses. PLoS Negl Trop Dis 2022; 16:e0010291. [PMID: 35482672 PMCID: PMC9049358 DOI: 10.1371/journal.pntd.0010291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Flaviviruses have caused large epidemics and ongoing outbreaks for centuries. They are now distributed in every continent infecting up to millions of people annually and may emerge to cause future epidemics. Some of the viruses from this group cause severe illnesses ranging from hemorrhagic to neurological manifestations. Despite decades of research, there are currently no approved antiviral drugs against flaviviruses, urging for new strategies and antiviral targets. In recent years, integrated omics data-based drug repurposing paired with novel drug validation methodologies and appropriate animal models has substantially aided in the discovery of new antiviral medicines. Here, we aim to review the latest progress in the development of both new and repurposed (i) direct-acting antivirals; (ii) host-targeting antivirals; and (iii) multitarget antivirals against flaviviruses, which have been evaluated both in vitro and in vivo, with an emphasis on their targets and mechanisms. The search yielded 37 compounds that have been evaluated for their efficacy against flaviviruses in animal models; 20 of them are repurposed drugs, and the majority of them exhibit broad-spectrum antiviral activity. The review also highlighted the major limitations and challenges faced in the current in vitro and in vivo evaluations that hamper the development of successful antiviral drugs for flaviviruses. We provided an analysis of what can be learned from some of the approved antiviral drugs as well as drugs that failed clinical trials. Potent in vitro and in vivo antiviral efficacy alone does not warrant successful antiviral drugs; current gaps in studies need to be addressed to improve efficacy and safety in clinical trials.
Collapse
|
12
|
Xue Y, Liu C, Andrews G, Wang J, Ge Y. Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection. NANO CONVERGENCE 2022; 9:15. [PMID: 35366117 PMCID: PMC8976173 DOI: 10.1186/s40580-022-00307-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/17/2022] [Indexed: 05/28/2023]
Abstract
In the last decade, carbon quantum dots (CQDs), as a novel class of carbon-based nanomaterials, have received increasing attention due to their distinct properties. CQDs are ultimately small nanoparticles with an average size below 10 nm, possessing high water solubility, alluring photoluminescence, photostability, excellent biocompatibility, low/none toxicity, environmental friendliness, and high sustainability, etc. In history, there are intermittent threats from viruses to humans, animals and plants worldwide, resulting in enormous crises and impacts on our life, environment, economy and society. Some recent studies have unveiled that certain types of CQDs exhibited high and potent antiviral activities against various viruses such as human coronavirus, arterivirus, norovirus and herpesvirus. Moreover, they have been successfully explored and developed for different virus detections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This article exclusively overviews and discusses the recent progress of designing, synthesizing, modifying/functionalizing and developing CQDs towards effective virus detection as well as the inhibition and treatment of viral infection. Their mechanisms and applications against various pathogenic viruses are addressed. The latest outcomes for combating the coronavirus disease 2019 (COVID-19) utilizing CQDs are also highlighted. It can be envisaged that CQDs could further benefit the development of virus detectors and antiviral agents with added broad-spectrum activity and cost-effective production.
Collapse
Affiliation(s)
- Yuxiang Xue
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3HL, UK
| | - Chenchen Liu
- Department of Metabolism, Digestion and Reproductive, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Gavin Andrews
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jinyan Wang
- College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Yi Ge
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK.
| |
Collapse
|
13
|
Singh KK, Gupta A, Bharti C, Sharma H. Emerging techniques of western blotting for purification and analysis of protein. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00386-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Western blotting is frequently employed in molecular techniques like Proteomics and Biology. Because it is a sequential framework, differences and inaccuracies could even take place at any stage, decreasing this particular method's reproducibility and reliability.
Main text
New approaches, like automated microfluid western blotting, DigiWest, single cell resolution, microchip electrophoresis, and capillary electrophoresis, were all implemented to reduce the future conflicts linked with the western blot analysis approach. Discovery of new in devices and higher susceptibility for western blots gives innovative opportunities to expand Western blot’s clinical relevance. The advancements in various region of west blotting included in this analysis of transfer of protein and validation of antibody are described.
Conclusion
This paper describes another very developed strategy available as well as demonstrated the correlation among Western blotting techniques of the next generation and their clinical implications. In this review, the different techniques of western blotting and their improvement in different stages have been discussed.
Collapse
|
14
|
Chávez-Hernández AL, Juárez-Mercado KE, Saldívar-González FI, Medina-Franco JL. Towards the De Novo Design of HIV-1 Protease Inhibitors Based on Natural Products. Biomolecules 2021; 11:1805. [PMID: 34944448 PMCID: PMC8698858 DOI: 10.3390/biom11121805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/14/2023] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) continues to be a public health problem. In 2020, 680,000 people died from HIV-related causes, and 1.5 million people were infected. Antiretrovirals are a way to control HIV infection but not to cure AIDS. As such, effective treatment must be developed to control AIDS. Developing a drug is not an easy task, and there is an enormous amount of work and economic resources invested. For this reason, it is highly convenient to employ computer-aided drug design methods, which can help generate and identify novel molecules. Using the de novo design, novel molecules can be developed using fragments as building blocks. In this work, we develop a virtual focused compound library of HIV-1 viral protease inhibitors from natural product fragments. Natural products are characterized by a large diversity of functional groups, many sp3 atoms, and chiral centers. Pseudo-natural products are a combination of natural products fragments that keep the desired structural characteristics from different natural products. An interactive version of chemical space visualization of virtual compounds focused on HIV-1 viral protease inhibitors from natural product fragments is freely available in the supplementary material.
Collapse
Affiliation(s)
| | | | | | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (A.L.C.-H.); (K.E.J.-M.); (F.I.S.-G.)
| |
Collapse
|
15
|
Sharma A, Mishra RK, Goud KY, Mohamed MA, Kummari S, Tiwari S, Li Z, Narayan R, Stanciu LA, Marty JL. Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics (Basel) 2021; 11:2083. [PMID: 34829430 PMCID: PMC8625106 DOI: 10.3390/diagnostics11112083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The design and development of biosensors, analytical devices used to detect various analytes in different matrices, has emerged. Biosensors indicate a biorecognition element with a physicochemical analyzer or detector, i.e., a transducer. In the present scenario, various types of biosensors have been deployed in healthcare and clinical research, for instance, biosensors for blood glucose monitoring. Pathogenic microbes are contributing mediators of numerous infectious diseases that are becoming extremely serious worldwide. The recent outbreak of COVID-19 is one of the most recent examples of such communal and deadly diseases. In efforts to work towards the efficacious treatment of pathogenic viral contagions, a fast and precise detection method is of the utmost importance in biomedical and healthcare sectors for early diagnostics and timely countermeasures. Among various available sensor systems, optical biosensors offer easy-to-use, fast, portable, handy, multiplexed, direct, real-time, and inexpensive diagnosis with the added advantages of specificity and sensitivity. Many progressive concepts and extremely multidisciplinary approaches, including microelectronics, microelectromechanical systems (MEMSs), nanotechnologies, molecular biology, and biotechnology with chemistry, are used to operate optical biosensors. A portable and handheld optical biosensing device would provide fast and reliable results for the identification and quantitation of pathogenic virus particles in each sample. In the modern day, the integration of intelligent nanomaterials in the developed devices provides much more sensitive and highly advanced sensors that may produce the results in no time and eventually help clinicians and doctors enormously. This review accentuates the existing challenges engaged in converting laboratory research to real-world device applications and optical diagnostics methods for virus infections. The review's background and progress are expected to be insightful to the researchers in the sensor field and facilitate the design and fabrication of optical sensors for life-threatening viruses with broader applicability to any desired pathogens.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram 122505, Haryana, India;
| | - Rupesh Kumar Mishra
- Bindley Bio-Science Center, Lab 222, 1203 W. State St., Purdue University, West Lafayette, IN 47907, USA
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - K. Yugender Goud
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mona A. Mohamed
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority, Giza 99999, Egypt;
| | - Shekher Kummari
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh, India;
| | - Zhanhong Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Yangpu District, Shanghai 200093, China;
| | - Roger Narayan
- Department of Materials Science and Engineering, NC State University, Raleigh, NC 27695, USA;
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
16
|
Kasahara T, Imahashi M, Hashiba C, Mori M, Kogure A, Yokomaku Y, Hashimoto N, Iwatani Y, Hasegawa Y. Retrospective Analysis of the Efficacy of Early Antiretroviral Therapy in HIV-1-Infected Patients Coinfected with Pneumocystis jirovecii. AIDS Res Hum Retroviruses 2021; 37:754-760. [PMID: 34235941 DOI: 10.1089/aid.2021.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The early initiation of antiretroviral therapy (ART) in HIV-infected patients shortly after the initiation of treatment for Pneumocystis pneumonia (PCP) has not been fully validated in a clinical setting. We retrospectively extracted all patients diagnosed with HIV-related PCP (HIV-PCP), including those with severe cases, who were treated with first-line ART in our hospital. The HIV-PCP patients were divided into two groups: an early ART group (patients who commenced ART within 21 days after the start of PCP treatment) and a deferred ART group (patients who started ART after 22 days). We compared the incidence of AIDS progression or death, the virological suppression rate, and changes in the CD4+ cell count at 24 weeks after the initiation of ART between the two groups. In addition, we analyzed the incidences of immune reconstitution inflammatory syndrome and grade 3 or 4 laboratory and clinical adverse events within 24 weeks as safety outcomes. Ninety-one HIV-PCP patients (36 in the early ART group and 55 in the deferred group) were included in this study. We found no significant difference in the incidence of AIDS progression or death between the two groups. Virological outcomes tended to be better in the early ART group but were not significantly different. Increases in the CD4+ cell counts at 24 weeks were comparable in both groups, suggesting that the safety was not significantly different. Analysis of the propensity-score matched cohort was performed to adjust for selection bias, and no significant difference was found in any outcome. Our results suggest that early ART introduction can be considered for untreated HIV-positive patients with PCP on the basis of efficacy and safety.
Collapse
Affiliation(s)
- Takaaki Kasahara
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of AIDS Research and Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Chieko Hashiba
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Mikiko Mori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of AIDS Research and Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayumi Kogure
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of HIV Clinic, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of AIDS Research and Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Cunha RF, Simões S, Carvalheiro M, Pereira JMA, Costa Q, Ascenso A. Novel Antiretroviral Therapeutic Strategies for HIV. Molecules 2021; 26:molecules26175305. [PMID: 34500737 PMCID: PMC8434305 DOI: 10.3390/molecules26175305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/18/2023] Open
Abstract
When the first cases of HIV infection appeared in the 1980s, AIDS was a deadly disease without any therapeutic alternatives. Currently, there is still no cure for most cases mainly due to the multiple tissues that act as a reservoir for this virus besides the high viral mutagenesis that leads to an antiretroviral drug resistance. Throughout the years, multiple drugs with specific mechanisms of action on distinct targets have been approved. In this review, the most recent phase III clinical studies and other research therapies as advanced antiretroviral nanodelivery systems will be here discussed. Although the combined antiretroviral therapy is effective in reducing viral loading to undetectable levels, it also presents some disadvantages, such as usual side effects, high frequency of administration, and the possibility of drug resistance. Therefore, several new drugs, delivery systems, and vaccines have been tested in pre-clinical and clinical trials. Regarding drug delivery, an attempt to change the route of administration of some conventional antiretrovirals has proven to be successful and surpassed some issues related to patient compliance. Nanotechnology has brought a new approach to overcoming certain obstacles of formulation design including drug solubility and biodistribution. Overall, the encapsulation of antiretroviral drugs into nanosystems has shown improved drug release and pharmacokinetic profile.
Collapse
Affiliation(s)
- Rita F. Cunha
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
| | - Sandra Simões
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
| | - Manuela Carvalheiro
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
| | - José M. Azevedo Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.M.A.P.); (Q.C.)
| | - Quirina Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.M.A.P.); (Q.C.)
| | - Andreia Ascenso
- Drug Delivery Research Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.F.C.); (S.S.); (M.C.)
- Correspondence:
| |
Collapse
|
18
|
Khatibi S, Sahebkar A, Aghaee-Bakhtiari SH. CRISPR Genome Editing Technology and its Application in Genetic Diseases: A Review. Curr Pharm Biotechnol 2021; 22:468-479. [PMID: 32564746 DOI: 10.2174/1389201021666200621161610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
Gene therapy has been a long lasting goal for scientists, and there are many optimal methods and tools to correct disease-causing mutations in humans. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been progressively adopted for the assessment a treatment of human diseases, including thalassemia, Parkinson's disease, cystic fibrosis, glaucoma, Huntington's disease, and Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS). CRISPR sequences belong to the bacterial immune system, which includes the nuclease Cas enzyme and an RNA sequence. The RNA sequence is unique and pathogen-specific, and identifies and binds to the DNA of invasive viruses, allowing the nuclease Cas enzyme to cut the identified DNA and destroy the invasive viruses. This feature provides the possibility to edit mutations in the DNA sequence of live cells by replacing a specific targeted RNA sequence with the RNA sequence in the CRISPR system. Previous studies have reported the improvement steps in confrontation with human diseases caused by single-nucleotide mutations using this system. In this review, we first introduce CRISPR and its functions and then elaborate on the use of CRISPR in the treatment of human diseases.
Collapse
Affiliation(s)
- Sepideh Khatibi
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
19
|
Shinde PB, Bhowmick S, Alfantoukh E, Patil PC, Wabaidur SM, Chikhale RV, Islam MA. De novo design based identification of potential HIV-1 integrase inhibitors: A pharmacoinformatics study. Comput Biol Chem 2020; 88:107319. [PMID: 32801062 DOI: 10.1016/j.compbiolchem.2020.107319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
In the present study, pharmacoinformatics paradigms include receptor-based de novo design, virtual screening through molecular docking and molecular dynamics (MD) simulation are implemented to identify novel and promising HIV-1 integrase inhibitors. The de novodrug/ligand/molecule design is a powerful and effective approach to design a large number of novel and structurally diverse compounds with the required pharmacological profiles. A crystal structure of HIV-1 integrase bound with standard inhibitor BI-224436 is used and a set of 80,000 compounds through the de novo approach in LigBuilder is designed. Initially, a number of criteria including molecular docking, in-silico toxicity and pharmacokinetics profile assessments are implied to reduce the chemical space. Finally, four de novo designed molecules are proposed as potential HIV-1 integrase inhibitors based on comparative analyses. Notably, strong binding interactions have been identified between a few newly identified catalytic amino acid residues and proposed HIV-1 integrase inhibitors. For evaluation of the dynamic stability of the protein-ligand complexes, a number of parameters are explored from the 100 ns MD simulation study. The MD simulation study suggested that proposed molecules efficiently retained their molecular interaction and structural integrity inside the HIV-1 integrase. The binding free energy is calculated through the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach for all complexes and it also explains their thermodynamic stability. Hence, proposed molecules through de novo design might be critical to inhibiting the HIV-1 integrase.
Collapse
Affiliation(s)
- Pooja Balasaheb Shinde
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Etidal Alfantoukh
- Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, India
| | - Saikh Mohammad Wabaidur
- Department of Chemistry P.O. Box 2455, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom; School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South Africa; Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
20
|
Dehghani-Dehej F, Hosseini Z, Mortazkar P, Khanaliha K, Esghaei M, Fakhim A, Bokharaei-Salim F. Prevalence of HCV and/or HBV coinfection in Iranian HIV-infected patients. Future Virol 2020. [PMCID: PMC7273902 DOI: 10.2217/fvl-2019-0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aim: HIV-infected patients risk coinfection with HBV and HCV. This study aimed to investigate molecular epidemiology of HBV and HCV coinfection in Iranian HIV-infected individuals. Materials & methods: In this cross-sectional study, serological markers of HBV and HCV infection (hepatitis B surface antigen [HBsAg], hepatitis B e-antigen [HBeAg], hepatitis B e-antibody [HBeAb] and hepatitis B core antibody [HBcAb]) and anti-HCV antibodies [anti-HCV Abs] were tested in 198 Iranian HIV-infected patients. From plasma, HBV viral load was determined using COBAS TaqMan 48, and HCV-RNA was detected by reverse transcriptase-nested PCR. Results: 85 out of 198 (42.9%) patients were anti-HCV Ab positive and 42/198 (21.2%) had detectable HCV-RNA. Eight (4.0%) had traceable HBV-DNA. All these patients were infected by HBV genotype D. 55 (27.8%) were HBcAb positive. Nine (4.4%) were HBsAg and anti-HCV Ab positive. Conclusion: None were HIV-RNA/HCV-RNA/HBV-DNA positive, 21.2% were HIV-RNA/HCV-RNA positive and 4.0% were HIV-RNA/HBV-DNA positive. Therefore, studies on diagnosing these infections in HIV-infected individuals may be valuable.
Collapse
Affiliation(s)
- Farzaneh Dehghani-Dehej
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Master of Science of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Zinat Hosseini
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- General Medical Student, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Poupak Mortazkar
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- PhD Student of Virology, Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology & Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Assistant Professor of Parasitology, Research Center of Pediatric Infectious Diseases, Institute of Immunology & Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Associate Professor of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Fakhim
- Department of Architectural Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
- Student of Architectural Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Assistant Professor of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Kalidasan V, Theva Das K. Lessons Learned From Failures and Success Stories of HIV Breakthroughs: Are We Getting Closer to an HIV Cure? Front Microbiol 2020; 11:46. [PMID: 32082282 PMCID: PMC7005723 DOI: 10.3389/fmicb.2020.00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
There is a continuous search for an HIV cure as the success of ART in blocking HIV replication and the role of CD4+ T cells in HIV pathogenesis and immunity do not entirely eradicate HIV. The Berlin patient, who is virus-free, serves as the best model for a 'sterilizing cure' and many experts are trying to mimic this approach in other patients. Although failures were reported among Boston and Essen patients, the setbacks have provided valuable lessons to strengthen cure strategies. Following the Berlin patient, two more patients known as London and Düsseldorf patients might be the second and third person to be cured of HIV. In all the cases, the patients underwent chemotherapy regimen due to malignancy and hematopoietic stem cell transplantation (HSCT) which required matching donors for CCR5Δ32 mutation - an approach that may not always be feasible. The emergence of newer technologies, such as long-acting slow-effective release ART (LASER ART) and CRISPR/Cas9 could potentially overcome the barriers due to HIV latency and persistency and eliminate the need for CCR5Δ32 mutation donor. Appreciating the failure and success stories learned from these HIV breakthroughs would provide some insight for future HIV eradication and cure strategies.
Collapse
Affiliation(s)
| | - Kumitaa Theva Das
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
22
|
Chaisri S, Pabalan N, Tabunhan S, Tharabenjasin P, Sankuntaw N, Leelayuwat C. Effects of the killer immunoglobulin-like receptor (KIR) polymorphisms on HIV acquisition: A meta-analysis. PLoS One 2019; 14:e0225151. [PMID: 31790432 PMCID: PMC6886768 DOI: 10.1371/journal.pone.0225151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic involvement of Killer Immunoglobulin-like Receptor (KIR) polymorphisms and Human Immunodeficiency Virus (HIV)-exposed seronegative (HESN) compared to HIV-infected (HIVI) individuals has been reported. However, inconsistency of the outcomes reduces precision of the estimates. A meta-analysis was applied to obtain more precise estimates of association. METHODS A multi-database literature search yielded thirteen case-control studies. Risks were expressed as odds ratios (ORs) and 95% confidence intervals (CIs) with significance set at a two-tailed P-value of ≤ 0.05. We used two levels of analyses: (1) gene content that included 13 KIR polymorphisms (2DL1-3, 2DL5A, 2DL5B, 2DS1-3, 2DS4F, 2DS4D, 2DS5, 3DL1 and 3DS1); and (2) 3DL1/S1 genotypes. Subgroup analysis was ethnicity-based (Caucasians, Asians and Africans). Outlier treatment was applied to heterogeneous effects which dichotomized the outcomes into pre-outlier (PRO) and post-outlier (PSO). Multiple comparisons were addressed with the Bonferroni correction. RESULTS We generated 52 and 18 comparisons from gene content and genotype analyses, respectively. Of the 70 comparisons, 13 yielded significant outcomes, two (indicating reduced risk) of which survived the Bonferroni correction (Pc). These protective effects pointed to the Caucasian subgroup in 2DL3 (OR 0.19, 95% CI 0.09, 0.40, Pc < 10-3) and 3DS1S1 (OR 0.37, 95% CI 0.24, 0.56, Pc < 10-3). These two PSO outcomes yielded effects of increased magnitude and precision, as well as raised significance and deemed robust by sensitivity analysis. Of the two, the 2DL3 effect was improved with a test of interaction (Pc interaction < 10-4). CONCLUSION Multiple meta-analytical treatments presented strong evidence of the protective effect (up to 81%) of the KIR polymorphisms (2DL3 and 3DS1S1) among Caucasians. The Asian and African outcomes were inconclusive due to the low number of studies.
Collapse
Affiliation(s)
- Suwit Chaisri
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- * E-mail:
| | - Sompong Tabunhan
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Nipaporn Sankuntaw
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chanvit Leelayuwat
- The Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
23
|
Nucleic acid testing and molecular characterization of HIV infections. Eur J Clin Microbiol Infect Dis 2019; 38:829-842. [PMID: 30798399 DOI: 10.1007/s10096-019-03515-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/14/2019] [Indexed: 01/21/2023]
Abstract
Significant advances have been made in the molecular assays used for the detection of human immunodeficiency virus (HIV), which are crucial in preventing HIV transmission and monitoring disease progression. Molecular assays for HIV diagnosis have now reached a high degree of specificity, sensitivity and reproducibility, and have less operator involvement to minimize risk of contamination. Furthermore, analyses have been developed for the characterization of host gene polymorphisms and host responses to better identify and monitor HIV-1 infections in the clinic. Currently, molecular technologies including HIV quantitative and qualitative assays are mainly based on the polymerase chain reaction (PCR), transcription-mediated amplification (TMA), nucleic acid sequence-based amplification (NASBA), and branched chain (b) DNA methods and widely used for HIV detection and characterization, such as blood screening, point-of-care testing (POCT), pediatric diagnosis, acute HIV infection (AHI), HIV drug resistance testing, antiretroviral (AR) susceptibility testing, host genome polymorphism testing, and host response analysis. This review summarizes the development and the potential utility of molecular assays used to detect and characterize HIV infections.
Collapse
|
24
|
Franco-Tormo MJ, Salas-Crisostomo M, Rocha NB, Budde H, Machado S, Murillo-Rodríguez E. CRISPR/Cas9, the Powerful New Genome-Editing Tool for Putative Therapeutics in Obesity. J Mol Neurosci 2018; 65:10-16. [PMID: 29732484 DOI: 10.1007/s12031-018-1076-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
The molecular technology known as clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is revolutionizing the field of medical research and deepening our understanding of numerous biological processes. The attraction of CRISPR/Cas9 lies in its ability to efficiently edit DNA or modulate gene expression in living eukaryotic cells and organisms, a technology that was once considered either too expensive or scientifically risky. CRISPR/Cas9 has been successfully applied in agriculture to develop the next generation of disease-resistant plants. Now, the capability of gene editing has been translated to the biomedical area, focusing on the future of medicine faced with drug-resistant microbes by selectively targeting genes involved in antibiotic resistance, for example, or finding the ultimate strategy for cancer or HIV. In this regard, it was recently demonstrated that an injection of cancer-fighting CRISPR-modified white blood cells in a patient suffering from metastatic lung cancer could lead to promising results. Researchers and bioethicists are debating questions about the regulation of CRISPR/Cas9 that must be addressed. While legal challenges surround the use of this technique for genetically modifying cell lines in humans, we review the basic understanding of CRISPR/Cas9 and discuss how this technology could represent a candidate for treatment of non-communicable diseases in nutrition, such as obesity.
Collapse
Affiliation(s)
- María José Franco-Tormo
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, A.P. 96 Cordemex C.P, 97310, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico
| | - Mireille Salas-Crisostomo
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, A.P. 96 Cordemex C.P, 97310, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico
| | - Nuno Barbosa Rocha
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Health School, Polytechnic Institute of Porto, Porto, Portugal
| | - Henning Budde
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany.,Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and Engineering, Reykjavik University, Reykjavik, Iceland.,Lithuanian Sports University, Kaunas, Lithuania
| | - Sérgio Machado
- Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.,Laboratory of Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Physical Activity Neuroscience Laboratory, Physical Activity Sciences Postgraduate Program of Salgado de Oliveira University, Niterói, Brazil
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, A.P. 96 Cordemex C.P, 97310, Mérida, Yucatán, Mexico. .,Intercontinental Neuroscience Research Group, Mérida, Yucatán, Mexico.
| |
Collapse
|
25
|
Safari H, Anani Sarab G, Fereidouni M, Ziaee M, Mahavar N, Naghizadeh MS, Taene A, Mahdavi R, Naseri M. The CCR5-∆32 Mutation: Impact on Disease Outcome in Individuals with Hepatitis B Infection in the Southern Khorasan Population (East of Iran). HEPATITIS MONTHLY 2017; 17. [DOI: 10.5812/hepatmon.55014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
26
|
Mishra M, Tiwari S, Gomes AV. Protein purification and analysis: next generation Western blotting techniques. Expert Rev Proteomics 2017; 14:1037-1053. [PMID: 28974114 DOI: 10.1080/14789450.2017.1388167] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Western blotting is one of the most commonly used techniques in molecular biology and proteomics. Since western blotting is a multistep protocol, variations and errors can occur at any step reducing the reliability and reproducibility of this technique. Recent reports suggest that a few key steps, such as the sample preparation method, the amount and source of primary antibody used, as well as the normalization method utilized, are critical for reproducible western blot results. Areas covered: In this review, improvements in different areas of western blotting, including protein transfer and antibody validation, are summarized. The review discusses the most advanced western blotting techniques available and highlights the relationship between next generation western blotting techniques and its clinical relevance. Expert commentary: Over the last decade significant improvements have been made in creating more sensitive, automated, and advanced techniques by optimizing various aspects of the western blot protocol. New methods such as single cell-resolution western blot, capillary electrophoresis, DigiWest, automated microfluid western blotting and microchip electrophoresis have all been developed to reduce potential problems associated with the western blotting technique. Innovative developments in instrumentation and increased sensitivity for western blots offer novel possibilities for increasing the clinical implications of western blot.
Collapse
Affiliation(s)
- Manish Mishra
- a Department of Physiology , University of Saskatchewan College of Medicine , Saskatoon , SK , Canada
| | - Shuchita Tiwari
- b Department of Neurobiology, Physiology, and Behavior , University of California , Davis , CA , USA
| | - Aldrin V Gomes
- b Department of Neurobiology, Physiology, and Behavior , University of California , Davis , CA , USA.,c Department of Physiology and Membrane Biology , University of California , Davis , CA , USA
| |
Collapse
|
27
|
Chistiakov DA, Grechko AV, Orekhov AN, Bobryshev YV. An immunoregulatory role of dendritic cell-derived exosomes versus HIV-1 infection: take it easy but be warned. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:362. [PMID: 28936456 DOI: 10.21037/atm.2017.06.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Alexander N Orekhov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.,Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia.,Department of Biophysics, Biological Faculty, Moscow State University, Moscow, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia.,School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| |
Collapse
|