1
|
Lin ET, Bae Y, Birkett R, Sharma AM, Zhang R, Fisch KM, Funk W, Mestan KK. Cord Blood Adductomics Reveals Oxidative Stress Exposure Pathways of Bronchopulmonary Dysplasia. Antioxidants (Basel) 2024; 13:494. [PMID: 38671941 PMCID: PMC11047351 DOI: 10.3390/antiox13040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal and neonatal exposures to perinatal oxidative stress (OS) are key mediators of bronchopulmonary dysplasia (BPD). To characterize these exposures, adductomics is an exposure science approach that captures electrophilic addition products (adducts) in blood protein. Adducts are bound to the nucleophilic cysteine loci of human serum albumin (HSA), which has a prolonged half-life. We conducted targeted and untargeted adductomics to test the hypothesis that adducts of OS vary with BPD. We studied 205 preterm infants (≤28 weeks) and 51 full-term infants from an ongoing birth cohort. Infant plasma was collected at birth (cord blood), 1-week, 1-month, and 36-weeks postmenstrual age. HSA was isolated from plasma, trypsin digested, and analyzed using high-performance liquid chromatography-mass spectrometry to quantify previously annotated (known) and unknown adducts. We identified 105 adducts in cord and postnatal blood. A total of 51 known adducts (small thiols, direct oxidation products, and reactive aldehydes) were increased with BPD. Postnatally, serial concentrations of several known OS adducts correlated directly with supplemental oxygen exposure. The application of large-scale adductomics elucidated OS-mediated pathways of BPD. This is the first study to investigate the "neonatal-perinatal exposome" and to identify oxidative stress-related exposure biomarkers that may inform antioxidant strategies to protect the health of future generations of infants.
Collapse
Affiliation(s)
- Erika T. Lin
- Department of Pediatrics, Division of Neonatology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yeunook Bae
- Department of Preventive Medicine, Northwestern University, 680 North Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA; (Y.B.)
| | - Robert Birkett
- Department of Pediatrics, Division of Neonatology, Northwestern University, Chicago, IL 60611, USA
| | - Abhineet M. Sharma
- Department of Pediatrics, Division of Neonatology, Northwestern University, Chicago, IL 60611, USA
| | - Runze Zhang
- Department of Preventive Medicine, Northwestern University, 680 North Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA; (Y.B.)
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - William Funk
- Department of Preventive Medicine, Northwestern University, 680 North Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA; (Y.B.)
| | - Karen K. Mestan
- Department of Pediatrics, Division of Neonatology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Pediatrics, Division of Neonatology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Bae Y, Liu X. Unveiling the effects of protein corona formation on the aggregation kinetics of gold nanoparticles in monovalent and divalent electrolytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123552. [PMID: 38346633 DOI: 10.1016/j.envpol.2024.123552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Elucidation of the aggregation behaviors of gold nanoparticles (AuNPs) in water systems is crucial to understanding their environmental fate and transport as well as human health effects. We investigated the early-stage aggregation kinetics of AuNPs coated by human serum albumin (HSA) protein corona (PC) in NaCl and CaCl2 through time-resolved dynamic light scattering. We found that the aggregation of PC-AuNPs depended on the concerted effects of electrolyte concentration, valence, and HSA concentration. At low HSA concentration (≤0.005 g/L), the aggregation kinetics of PC-AuNPs was similar to that of bare AuNPs due to insignificant HSA adsorption. At intermediate HSA concentrations of 0.025-0.050 g/L, the aggregation of PC-AuNPs was retarded in both electrolytes due to steric repulsive forces imparted by the PCs. Additionally, HSA PCs had a weaker retardation effect on PC-AuNPs aggregation in divalent than in monovalent electrolytes. Quartz crystal microbalance measurements revealed that the presence of Ca2+ promoted additional HSA adsorption on PC-AuNPs likely via -COO-Ca2+ bond, and eventually enhanced the aggregation between PC-AuNPs. High-concentration HSA (>0.5 g/L) resulted in no PC-AuNPs aggregation regardless of electrolyte valence and concentrations. Finally, desorption of HSA barely occurred after adsorption on the gold surface, suggesting that the formation of PC-AuNPs is mostly irreversible.
Collapse
Affiliation(s)
- Yeunook Bae
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Xitong Liu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States.
| |
Collapse
|
3
|
Zeng Y, Zhang A, Yang X, Xing C, Zhai J, Wang Y, Cai B, Shi S, Zhang Y, Shen Z, Fu TM, Zhu L, Shen H, Ye J, Wang C. Internal exposure potential of water-soluble organic molecules in urban PM 2.5 evaluated by non-covalent adductome of human serum albumin. ENVIRONMENT INTERNATIONAL 2024; 184:108492. [PMID: 38350258 DOI: 10.1016/j.envint.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
Water-soluble organic molecules (WSOMs) in inhaled PM2.5 can readily translocate from the lungs into the blood circulation, facilitating their distribution to and health effects on distant organs and tissues in the human body. Human serum albumin (HSA), the most abundant protein carrier in the blood, readily binds exogenous substances to form non-covalent adducts and subsequently transports them throughout the circulatory system, thereby indicating their internal exposure. The direct internal exposure of WSOMs in PM2.5 needs to be understood. In this study, the non-covalent HSA-WSOM adductome was developed as a dosimeter to evaluate the internal exposure potential of WSOMs in urban PM2.5. The WSOM composition was acquired from non-target high-resolution mass spectrometry analysis coupled with multiple ionizations. The binding level of HSA-WSOM non-covalent adducts was obtained from surface plasma resonance. Machine learning combined WSOM composition and the binding level of HSA-WSOM non-covalent adducts to screen bindable (also internalizable) WSOMs. The concentration of WSOM ranged from 4 to 13 μg/m3 during our observation period. Of the 17,513 mass spectral features detected, 9,484 contributed to the non-covalent adductome and possessed the internal exposure potential. 102 major contributors accounted for 90.6 % of the HSA-WSOM binding level. The fraction of internalizable WSOMs in PM2.5 varied from 11.9 % to 61.3 %, averaging 26.2 %. WSOMs that have internal exposure potential were primarily lignin-like and lipid-like substances. The HSA-WSOMs non-covalent adductome represents direct internal exposure potential, which can provide crucial insights into the molecular diagnosis of PM2.5 exposure and precise assessments of PM2.5 health effects.
Collapse
Affiliation(s)
- Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China.
| | - Chunbo Xing
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Shao Shi
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen 518055, China
| |
Collapse
|
4
|
Zeigler MB, Fay EE, Moreni SL, Mao J, Totah RA, Hebert MF. Plasma hydrogen sulfide, nitric oxide, and thiocyanate levels are lower during pregnancy compared to postpartum in a cohort of women from the Pacific northwest of the United States. Life Sci 2023; 322:121625. [PMID: 37001802 PMCID: PMC10133030 DOI: 10.1016/j.lfs.2023.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
AIMS Pregnancy alters multiple physiological processes including angiogenesis, vasodilation, inflammation, and cellular redox, which are partially modulated by the gasotransmitters hydrogen sulfide (H2S) and nitric oxide (NO). In this study, we sought to determine how plasma levels of H2S, NO, and the H2S-related metabolites thiocyanate (SCN-), and methanethiol (CH3SH) change during pregnancy progression. MATERIALS AND METHODS Plasma was collected from 45 women at three points: 25-28 weeks gestation, 28-32 week gestation, and at ≥3 months postpartum. Plasma levels of H2S, SCN-, and CH3SH were measured following derivatization using monobromobimane followed by LC-MS/MS. Plasma NO was measured indirectly using the Griess reagent. KEY FINDINGS NO and SCN- were significantly lower in women at 25-28 weeks gestation and 28-32 weeks gestation than postpartum while plasma H2S levels were significantly lower at 28-32 weeks gestation than postpartum. No significant differences were observed in CH3SH. SIGNIFICANCE Previous reports demonstrated that the production of H2S and NO are stimulated during pregnancy, but we observed lower levels during pregnancy compared to postpartum. Previous reports on NO have been mixed, but given the related effects of H2S and NO, it is expected that their levels would be higher during pregnancy vs. postpartum. Future studies determining the mechanism for decreased H2S and NO during pregnancy will elucidate the role of these gasotransmitters during normal and pathological progression of pregnancy.
Collapse
Affiliation(s)
- Maxwell B Zeigler
- University of Washington, Department of Medicinal Chemistry, Seattle, WA, USA.
| | - Emily E Fay
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Sue L Moreni
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Jennie Mao
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA
| | - Rheem A Totah
- University of Washington, Department of Medicinal Chemistry, Seattle, WA, USA
| | - Mary F Hebert
- University of Washington, Department of Obstetrics and Gynecology, Seattle, WA, USA; University of Washington, Department of Pharmacy, Seattle, WA, USA
| |
Collapse
|
5
|
Ebbels TMD, van der Hooft JJJ, Chatelaine H, Broeckling C, Zamboni N, Hassoun S, Mathé EA. Recent advances in mass spectrometry-based computational metabolomics. Curr Opin Chem Biol 2023; 74:102288. [PMID: 36966702 PMCID: PMC11075003 DOI: 10.1016/j.cbpa.2023.102288] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/03/2023]
Abstract
The computational metabolomics field brings together computer scientists, bioinformaticians, chemists, clinicians, and biologists to maximize the impact of metabolomics across a wide array of scientific and medical disciplines. The field continues to expand as modern instrumentation produces datasets with increasing complexity, resolution, and sensitivity. These datasets must be processed, annotated, modeled, and interpreted to enable biological insight. Techniques for visualization, integration (within or between omics), and interpretation of metabolomics data have evolved along with innovation in the databases and knowledge resources required to aid understanding. In this review, we highlight recent advances in the field and reflect on opportunities and innovations in response to the most pressing challenges. This review was compiled from discussions from the 2022 Dagstuhl seminar entitled "Computational Metabolomics: From Spectra to Knowledge".
Collapse
Affiliation(s)
- Timothy M D Ebbels
- Section of Bioinformatics, Department of Metabolism, Digestion & Reproduction, Imperial College London, Burlington Danes Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, Wageningen 6708 PB, the Netherlands; Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Haley Chatelaine
- Informatics Core, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Corey Broeckling
- Bioanalysis and Omics Center, Analytical Resources Core, Colorado State University, Fort Collins, CO, USA
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, MA, USA; Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Ewy A Mathé
- Informatics Core, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD, USA.
| |
Collapse
|
6
|
Owagboriaye F, Oladunjoye R, Adekunle O, Salisu T, Adenekan A, Ojadeni P, Dedeke G, Lawal O. Human health risks and hepatotoxicity associated with exposure to atrazine surveyed in drinking water from Ijebu-North, Southwest, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:402. [PMID: 36790565 DOI: 10.1007/s10661-023-10980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
No recognized study has been conducted in rural agricultural areas in Nigeria to monitor atrazine in drinking water and its potential health implications. Here, a total of 69 hand-dug wells (HDW), 40 boreholes (BH), and 4 streams were collected from the six (6) communities in Ijebu-North Local Government Area, Southwest Nigeria and analyzed for atrazine residue using gas chromatography-mass spectrometry (GC-MS). Values of atrazine obtained were further used to evaluate the non-carcinogenic risk associated with ingestion and dermal routes in children and adults using the standard US EPA protocols. Sub-chronic hepatotoxicity of the atrazine residue in the water sample was assessed using standard methods. A total of 41 HDW, 22 BH, and the 4 streams tested positive for atrazine. The highest concentration of atrazine recorded in the HDW water from Ijebu-North ranged from 0.01 to 0.08 mg/L. Hazard index (HI) values associated with the exposure routes in both adults and children were less than 1 for all the communities. Although atrazine at 0.01, 0.03, and 0.04 mg/L concentrations appear to trigger defense mechanisms capable of protecting the structural integrity of the liver, significant (p < 0.05) changes in hepatic markers, oxidative stress parameters, mixed-function oxygenases, ATPase enzymes, and mild structural lesions were seen in the liver of rats exposed to atrazine at 0.08 mg/L. Atrazine at 0.01, 0.03, and 0.04 mg/L concentrations found in water from Ijebu-North may not pose any threat to liver function, but concern should be raised at 0.08 mg/L.
Collapse
Affiliation(s)
- Folarin Owagboriaye
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University Ago- Iwoye, Ago-Iwoye, Ogun State, Nigeria.
| | - Rasheed Oladunjoye
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University Ago- Iwoye, Ago-Iwoye, Ogun State, Nigeria
| | - Oladunni Adekunle
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University Ago- Iwoye, Ago-Iwoye, Ogun State, Nigeria
| | - Titilola Salisu
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University Ago- Iwoye, Ago-Iwoye, Ogun State, Nigeria
| | - Adedamola Adenekan
- Department of Environmental Management and Toxicology, College of Environmental Management, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Promise Ojadeni
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University Ago- Iwoye, Ago-Iwoye, Ogun State, Nigeria
| | - Gabriel Dedeke
- Department of Pure and Applied Zoology, College of Bioscience, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Olusegun Lawal
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University Ago- Iwoye, Ago-Iwoye, Ogun State, Nigeria
| |
Collapse
|
7
|
Mu D, Li H, Wang D, Yang X, Wang S. Analysis of Environmental and Social Significant Factors Affecting the Flow of Maternal Patients in Jilin, China. Front Public Health 2022; 10:780452. [PMID: 35669749 PMCID: PMC9164295 DOI: 10.3389/fpubh.2022.780452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background With the implementation of China's Two-child policy, the number of pregnant women has been increasing year by year in recent years. However, the pregnancy success rate of pregnant women is declining year by year, and it is almost necessary for all the elderly mothers to do pregnancy protection. Objective The purpose of this study is to analyze the social and environmental factors that affect the patient flow of pregnant women in Jilin area of China, and further utilize the favorable factors to avoid the negative effects of adverse factors, so as to improve the pregnancy success rate and eugenics level. Methods Monthly patient flow data from 2018 to 2020 were collected in the obstetrics department of the First Hospital of Jilin University. The decompose function in R software was used to decompose the time series data, and the seasonal and trend change rules of the data were obtained; the significant factors influencing patient flow were analyzed by using Poisson regression model, and the prediction model was verified by using assumptions, such as the normal distribution of residuals and the constant difference of residuals. Results Temperature in environmental factors (P = 4.00E-08) had a significant impact on the flow of obstetric patient. The flow of patients was also significantly affected by the busy farming (P = 0.0013), entrance (P = 3.51E-10) and festivals (P = 0.00299). The patient flow was accompanied by random flow, but also showed trend change and seasonal change. The trend of change has been increasing year by year. The seasonal variation rule is that the flow of patients presents a trough in February every year, and reaches the peak in July. Conclusion In this article, Poisson regression model is used to obtain the social and environmental significant factors of obstetric patient flow. According to the significant factors, we should give full play to significant factors to further improve the level of eugenics. By using time series decomposition model, we can obtain the rising trend and seasonal trend of patient flow, and then provide the management with decision support, which is conducive to providing pregnant women with higher level of medical services and more comfortable medical experience.
Collapse
Affiliation(s)
- Dongmei Mu
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, China
- School of Public Health, Jilin University, Changchun, China
| | - Hua Li
- Department of Abdominal Ultrasound, The First Hospital of Jilin University, Changchun, China
- School of Public Health, Jilin University, Changchun, China
| | - Dongxuan Wang
- Department of Abdominal Ultrasound, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Yang
- School of Public Health, Jilin University, Changchun, China
| | - Shutong Wang
- School of Public Health, Jilin University, Changchun, China
| |
Collapse
|