1
|
Sethi Y, Agarwal P, Vora V, Gosavi S. Impact of Air Pollution on Neurological and Psychiatric Health. Arch Med Res 2024; 55:103063. [PMID: 39111273 DOI: 10.1016/j.arcmed.2024.103063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 11/22/2024]
Abstract
Air pollution is a critical global issue with extensive implications beyond respiratory health, significantly affecting neurological and psychiatric disorders. Emerging evidence establishes a link between exposure to fine particulate matter (PM < 2.5 µm), sulfur dioxide (SO2), and nitrogen dioxide (NO2) and heightened risks of dementia, Alzheimer's disease, schizophrenia, ADHD, stroke, Parkinson's disease, and multiple sclerosis. Mechanistic pathways include neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and blood-brain barrier disruption. Epidemiological studies indicate increased susceptibility among urban residents, particularly men, middle-aged individuals, and married persons, to the mental health impacts of air pollution. Additionally, socioeconomic factors, such as GDP per capita, access to health resources, green spaces, and sports facilities, modulate these health outcomes. Addressing this public health challenge necessitates stricter industrial emission controls, sustainable agricultural practices, promotion of cleaner energy sources, and incorporation of pollution exposure history into clinical assessments. Enhanced public awareness and interdisciplinary research are vital for mitigating the detrimental effects of air pollution on neurological and psychiatric health, ultimately striving for a cleaner and healthier environment for future generations.
Collapse
|
2
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
3
|
Yang S, Fang M, Jin L, Shao Z, Zhang X, Han Y, Du B, Yang D, Gu AZ, Chen Y, Li D, Chen J. In Situ and Rapid Toxicity Assessment of Air Pollution by Self-Assembly Passive Colonization Hydrogel. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18109-18121. [PMID: 39248495 DOI: 10.1021/acs.est.4c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Air pollution is a leading environmental health risk factor, and in situ toxicity assessment is urgently needed. Bacteria-based bioassays offer cost-effective and rapid toxicity assessments. However, the application of these bioassays for air toxicity assessment has been challenging, due to the instability of bacterial survival and functionality when directly exposed to air pollutants. Here, we developed an approach employing self-assembly passive colonization hydrogel (SAPCH) for in situ air toxicity assessment. The SAPCH features a core-shell structure, enabling the quantitatively immobilization of bacteria on its shell while continuously provides nutrients from its core. An antimicrobial polyelectrolyte layer between the core and shell confines bacteria to the air-liquid interface, synchronizing bacterial survival with exposure to air pollutants. The SAPCH immobilized a battery of natural and recombinant luminescent bacteria, enabling simultaneous detection of various toxicological endpoints (cytotoxicity, genotoxicity and oxidative stress) of air pollutants within 2 h. Its sensitivity was 3-5 orders of magnitude greater than that of traditional liquid-phase toxicity testing, and successfully evaluating the toxicity of volatile organic compounds and combustion smoke. This study presents a method for in situ, rapid, and economical toxicity assessment of air pollution, making a significant contribution to future air quality monitoring and control.
Collapse
Affiliation(s)
- Shuo Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Mingliang Fang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077 Kowloon, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 99907 Kowloon, Hong Kong
| | - Zhiwei Shao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yong Han
- Department of Civil and Environmental Engineering, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077 Kowloon, Hong Kong
| | - Banghao Du
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, 271018 Tai'an, China
| | - Dayong Yang
- Department of Chemistry, Fudan University, 200438 Shanghai, China
| | - April Z Gu
- Atkinson Center for a Sustainable Future Faculty Fellow Civil and Environmental Engineering, Cornell University, Ithaca, New York State 14853, United States
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan Tyndall Center, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Liu X, Li Y, Xie W, Hu M, Li S, Hu Y, Ling K, Zhang S, Wei J. Long-term effects of fine particulate matter components on depression among middle-aged and elderly adults in China: A nationwide cohort study. J Affect Disord 2024; 361:720-727. [PMID: 38917887 DOI: 10.1016/j.jad.2024.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Fine particulate matter (PM2.5) has been implicated in various health concerns. However, a comprehensive understanding of the specific PM2.5 components affecting depression remains limited. METHODS This study conducted a Cox proportional-hazards model to assess the effect of PM2.5 components on the incidence of depression based on the China Health and Retirement Longitudinal Study (CHARLS). Participants with 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) score of 10 or higher were classified as exhibiting depression. RESULTS Our findings demonstrated a significant positive correlation between long-term exposure to black carbon (BC), sulfate (SO42-), and organic matter (OM) components of PM2.5 and the prevalence of depression. Per 1 Interquartile Range (IQR) increment in 3-year average concentrations of BC, OM, and SO42- were associated with the hazard ratio (HR) of 1.54 (95 % confidence intervals (CI): 1.44, 1.64), 1.24 (95%CI: 1.16, 1.34) and 1.25 (95%CI: 1.16, 1.35). Notably, females, younger individuals, those with lower educational levels, urban residents, individuals who were single, widowed, or divorced, and those living in multi-story houses exhibited heightened vulnerability to the adverse effects of PM2.5 components on depression. LIMITATIONS Firstly, pollutant data is confined to subjects' fixed addresses, overlooking travel and international residence history. Secondly, the analysis only incorporates five fine particulate components, leaving room for further investigation into the remaining fine particulate components in future studies. CONCLUSIONS This study provides robust evidence supporting the detrimental impact of PM2.5 components on depression. The identification of specific vulnerable populations contributes to a deeper understanding of the underlying mechanisms involved in the relationship between PM2.5 components and depression.
Collapse
Affiliation(s)
- Xiangtong Liu
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing 100069, China.
| | - Yuan Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenhan Xie
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Meiling Hu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shuting Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yaoyu Hu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kexin Ling
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shuying Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, USA
| |
Collapse
|
5
|
Mokhtar SBA, Viljoen J, van der Kallen CJH, Berendschot TTJM, Dagnelie PC, Albers JD, Soeterboek J, Scarpa F, Colonna A, van der Heide FCT, van Greevenbroek MMJ, Bosm H, Kroon AA, Nuijts RMMA, Gijs M, Lakerveld J, Malik RA, Webers CAB, Stehouwer CDA, Koster A. Greater exposure to PM 2.5 and PM 10 was associated with lower corneal nerve measures: the Maastricht study - a cross-sectional study. Environ Health 2024; 23:70. [PMID: 39232744 PMCID: PMC11375839 DOI: 10.1186/s12940-024-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Epidemiological and toxicological studies indicate that increased exposure to air pollutants can lead to neurodegenerative diseases. To further confirm this relationship, we evaluated the association between exposure to ambient air pollutants and corneal nerve measures as a surrogate for neurodegeneration, using corneal confocal microscopy. METHODS We used population-based observational cross-sectional data from The Maastricht Study including N = 3635 participants (mean age 59.3 years, 51.6% were women, and 19.9% had type 2 diabetes) living in the Maastricht area. Using the Geoscience and hEalth Cohort COnsortium (GECCO) data we linked the yearly average exposure levels of ambient air pollutants at home address-level [particulate matter with diameters of ≤ 2.5 µm (PM2.5), and ≤ 10.0 µm (PM10), nitrogen dioxide (NO2), and elemental carbon (EC)]. We used linear regression analysis to study the associations between Z-score for ambient air pollutants concentrations (PM2.5, PM10, NO2, and EC) and Z-score for individual corneal nerve measures (corneal nerve bifurcation density, corneal nerve density, corneal nerve length, and fractal dimension). RESULTS After adjustment for potential confounders (age, sex, level of education, glucose metabolism status, corneal confocal microscopy lag time, inclusion year of participants, smoking status, and alcohol consumption), higher Z-scores for PM2.5 and PM10 were associated with lower Z-scores for corneal nerve bifurcation density, nerve density, nerve length, and nerve fractal dimension [stβ (95% CI): PM2.5 -0.10 (-0.14; -0.05), -0.04 (-0.09; 0.01), -0.11 (-0.16; -0.06), -0.20 (-0.24; -0.15); and PM10 -0.08 (-0.13; -0.03), -0.04 (-0.09; 0.01), -0.08 (-0.13; -0.04), -0.17 (-0.21; -0.12)], respectively. No associations were found between NO2 and EC and corneal nerve measures. CONCLUSIONS Our population-based study demonstrated that exposure to higher levels of PM2.5 and PM10 are associated with higher levels of corneal neurodegeneration, estimated from lower corneal nerve measures. Our results suggest that air pollution may be a determinant for neurodegeneration assessed in the cornea and may impact the ocular surface health as well.
Collapse
Grants
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
- 31O.041 OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs
Collapse
Affiliation(s)
- Sara B A Mokhtar
- Department of Internal Medicine, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands.
- School of Mental Health and Neuroscience, University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Jessica Viljoen
- Department of Internal Medicine, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Tos T J M Berendschot
- School of Mental Health and Neuroscience, University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Pieter C Dagnelie
- Department of Internal Medicine, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jeroen D Albers
- Department of Social Medicine, Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Jens Soeterboek
- Alzheimer Centrum Limburg, Department of Psychiatry and Neuropsychology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Fabio Scarpa
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Alessia Colonna
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Frank C T van der Heide
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Hans Bosm
- Department of Social Medicine, Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Abraham A Kroon
- Department of Internal Medicine, School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, the Netherlands
- Heart and Vascular Center, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rudy M M A Nuijts
- School of Mental Health and Neuroscience, University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marlies Gijs
- School of Mental Health and Neuroscience, University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jeroen Lakerveld
- Global Geo Health Data Center, University Medical Center Utrecht & Utrecht University, Utrecht, the Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rayaz A Malik
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, Qatar
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
| | - Carroll A B Webers
- School of Mental Health and Neuroscience, University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Louvain, Louvain, Belgium
| | - Annemarie Koster
- Department of Social Medicine, Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Ye Y, Tao Q, Wei H. Public health impacts of air pollution from the spatiotemporal heterogeneity perspective: 31 provinces and municipalities in China from 2013 to 2020. Front Public Health 2024; 12:1422505. [PMID: 39157526 PMCID: PMC11327077 DOI: 10.3389/fpubh.2024.1422505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Air pollution has long been a significant environmental health issue. Previous studies have employed diverse methodologies to investigate the impacts of air pollution on public health, yet few have thoroughly examined its spatiotemporal heterogeneity. Based on this, this study investigated the spatiotemporal heterogeneity of the impacts of air pollution on public health in 31 provinces in China from 2013 to 2020 based on the theoretical framework of multifactorial health decision-making and combined with the spatial durbin model and the geographically and temporally weighted regression model. The findings indicate that: (1) Air pollution and public health as measured by the incidence of respiratory diseases (IRD) in China exhibit significant spatial positive correlation and local spatial aggregation. (2) Air pollution demonstrates noteworthy spatial spillover effects. After controlling for economic development and living environment factors, including disposable income, population density, and urbanization rate, the direct and indirect spatial impacts of air pollution on IRD are measured at 3.552 and 2.848, correspondingly. (3) China's IRD is primarily influenced by various factors such as air pollution, economic development, living conditions, and healthcare, and the degree of its influence demonstrates an uneven spatiotemporal distribution trend. The findings of this study hold considerable practical significance for mitigating air pollution and safeguarding public health.
Collapse
Affiliation(s)
- Yizhong Ye
- School of Hospital Economics and Management, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Data Science and Innovative Development of Chinese Medicine in Anhui Province Philosophy and Social, Hefei, China
| | - Qunshan Tao
- School of Hospital Economics and Management, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Data Science and Innovative Development of Chinese Medicine in Anhui Province Philosophy and Social, Hefei, China
| | - Hua Wei
- School of Hospital Economics and Management, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Data Science and Innovative Development of Chinese Medicine in Anhui Province Philosophy and Social, Hefei, China
| |
Collapse
|
7
|
Yang S, Tong T, Wang H, Li Z, Wang M, Ni K. Causal relationship between air pollution and infections: a two-sample Mendelian randomization study. Front Public Health 2024; 12:1409640. [PMID: 39148655 PMCID: PMC11324489 DOI: 10.3389/fpubh.2024.1409640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Background Traditional observational studies exploring the association between air pollution and infections have been limited by small sample sizes and potential confounding factors. To address these limitations, we applied Mendelian randomization (MR) to investigate the potential causal relationships between particulate matter (PM2.5, PM2.5-10, and PM10), nitrogen dioxide, and nitrogen oxide and the risks of infections. Methods Single nucleotide polymorphisms (SNPs) related to air pollution were selected from the genome-wide association study (GWAS) of the UK Biobank. Publicly available summary data for infections were obtained from the FinnGen Biobank and the COVID-19 Host Genetics Initiative. The inverse variance weighted (IVW) meta-analysis was used as the primary method for obtaining the Mendelian randomization (MR) estimates. Complementary analyses were performed using the weighted median method, MR-Egger method, and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) test. Results The fixed-effect IVW estimate showed that PM2.5, PM2.5-10 and Nitrogen oxides were suggestively associated with COVID-19 [for PM2.5: IVW (fe): OR 3.573(1.218,5.288), PIVW(fe) = 0.021; for PM2.5-10: IVW (fe): OR 2.940(1.385,6.239), PIVW(fe) = 0.005; for Nitrogen oxides, IVW (fe): OR 1.898(1.318,2.472), PIVW(fe) = 0.010]. PM2.5, PM2.5-10, PM10, and Nitrogen oxides were suggestively associated with bacterial pneumonia [for PM2.5: IVW(fe): OR 1.720 (1.007, 2.937), PIVW(fe) = 0.047; for PM2.5-10: IVW(fe): OR 1.752 (1.111, 2.767), P IVW(fe) = 0.016; for PM10: IVW(fe): OR 2.097 (1.045, 4.208), PIVW(fe) = 0.037; for Nitrogen oxides, IVW(fe): OR 3.907 (1.209, 5.987), PIVW(fe) = 0.023]. Furthermore, Nitrogen dioxide was suggestively associated with the risk of acute upper respiratory infections, while all air pollution were not associated with intestinal infections. Conclusions Our results support a role of related air pollution in the Corona Virus Disease 2019, bacterial pneumonia and acute upper respiratory infections. More work is need for policy formulation to reduce the air pollution and the emission of toxic and of harmful gas.
Collapse
Affiliation(s)
- Shengyi Yang
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tong Tong
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Wang
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenwei Li
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengmeng Wang
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kaiwen Ni
- Department of Infection Control, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Wang P, Wang R, Matulis VE. Ionic Liquids as Green and Efficient Desulfurization Media Aiming at Clean Fuel. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:914. [PMID: 39063490 PMCID: PMC11276744 DOI: 10.3390/ijerph21070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
With increasingly stringent emission limits on sulfur and sulfur-containing substances, the reduction and removal of sulfur compounds from fuels has become an urgent task. Emissions of sulfur-containing compounds pose a significant threat to the environment and human health. Ionic liquids (ILs) have attracted much attention in recent years as green solvents and functional materials, and their unique properties make them useful alternatives to conventional desulfurization organic solvents. This paper reviews the advantages and disadvantages of traditional desulfurization technologies such as hydrodesulfurization, oxidative desulfurization, biological desulfurization, adsorptive desulfurization, extractive desulfurization, etc. It focuses on the synthesis of ionic liquids and their applications in oxidative desulfurization, extractive desulfurization, extractive oxidative desulfurization, and catalytic oxidative desulfurization, and it analyzes the problems of ionic liquids that need to be solved urgently in desulfurization, looking forward to the development of sulfuric compounds as a kind of new and emerging green solvent in the field of desulfurization.
Collapse
Affiliation(s)
- Peng Wang
- School of Environmental Science and Engineering, Shandong University, No.72 Seaside Road, Qingdao 266237, China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, No.72 Seaside Road, Qingdao 266237, China
| | - Vitaly Edwardovich Matulis
- Scientific-Research Institute for Physical Chemical Problems, The Belarusian State University, 220006 Minsk, Belarus
| |
Collapse
|
9
|
Rio P, Gasbarrini A, Gambassi G, Cianci R. Pollutants, microbiota and immune system: frenemies within the gut. Front Public Health 2024; 12:1285186. [PMID: 38799688 PMCID: PMC11116734 DOI: 10.3389/fpubh.2024.1285186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Pollution is a critical concern of modern society for its heterogeneous effects on human health, despite a widespread lack of awareness. Environmental pollutants promote several pathologies through different molecular mechanisms. Pollutants can affect the immune system and related pathways, perturbing its regulation and triggering pro-inflammatory responses. The exposure to several pollutants also leads to alterations in gut microbiota with a decreasing abundance of beneficial microbes, such as short-chain fatty acid-producing bacteria, and an overgrowth of pro-inflammatory species. The subsequent intestinal barrier dysfunction, together with oxidative stress and increased inflammatory responses, plays a role in the pathogenesis of gastrointestinal inflammatory diseases. Moreover, pollutants encourage the inflammation-dysplasia-carcinoma sequence through various mechanisms, such as oxidative stress, dysregulation of cellular signalling pathways, cell cycle impairment and genomic instability. In this narrative review, we will describe the interplay between pollutants, gut microbiota, and the immune system, focusing on their relationship with inflammatory bowel diseases and colorectal cancer. Understanding the biological mechanisms underlying the health-to-disease transition may allow the design of public health policies aimed at reducing the burden of disease related to pollutants.
Collapse
Affiliation(s)
| | | | | | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
10
|
Li J, Liu L, Gu J, Cao M, Lei J, Li H, He J, He J. The impact of air pollutants on spontaneous abortion: a case-control study in Tongchuan City. Public Health 2024; 227:267-273. [PMID: 38320452 DOI: 10.1016/j.puhe.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVES Studies related to air pollutants and spontaneous abortion in urban northwestern China are scarce, and the main exposure windows of pollutants acting on pregnant women are unclear. STUDY DESIGN Case-control study. METHODS Data were collected from pregnant women in Tongchuan City from 2018 to 2019. A total of 289 cases of spontaneous abortion and 1156 cases of full-term labor were included and analyzed using a case-control study. Logistic regression models were developed to explore the relationship between air pollutants and spontaneous abortion after Chi square analysis and Air pollutant description. RESULTS O3 (odds ratio [OR] = 1.028) is a risk factor for spontaneous abortion throughout pregnancy. PM2.5 (OR = 1.015), PM10 (OR = 1.010), SO2 (OR = 1.026), and NO2 (OR = 1.028) are risk factors for spontaneous abortion in the 30 days before the last menstrual period. PM2.5 (OR = 1.015), PM10 (OR = 1.013), SO2 (OR = 1.036), and NO2 (OR = 1.033) are risk factors for spontaneous abortion in the 30-60 days before the last menstrual period. PM2.5 (OR = 1.028), PM10 (OR = 1.013), SO2 (OR = 1.035), and NO2 (OR = 1.059) are risk factors for spontaneous abortion in the 60-90 days before the last menstrual period. CONCLUSION Exposure to high levels of air pollutants may be a cause of increased risk of spontaneous abortion, especially in the first trimester of the last menstrual period.
Collapse
Affiliation(s)
- J Li
- Medical School of Yan'an University, Shaanxi, China
| | - L Liu
- Medical School of Yan'an University, Shaanxi, China
| | - J Gu
- Medical School of Yan'an University, Shaanxi, China
| | - M Cao
- Medical School of Yan'an University, Shaanxi, China
| | - J Lei
- Yan'an University School Hospital, Shaanxi, China
| | - H Li
- Department of Laboratory, Yan'an University Affiliated Hospital, Shaanxi, China
| | - J He
- College of Mathematics and Computer Science of Yan'an University, Shaanxi, China
| | - J He
- Medical School of Yan'an University, Shaanxi, China.
| |
Collapse
|
11
|
Yamada H, Yamazaki Y, Takebayashi Y, Yazawa K, Sasanishi M, Motoda A, Nakamori M, Morino H, Takahashi T, Maruyama H. The long-term effects of heated tobacco product exposure on the central nervous system in a mouse model of prodromal Alzheimer's disease. Sci Rep 2024; 14:227. [PMID: 38167640 PMCID: PMC10761999 DOI: 10.1038/s41598-023-50941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Heated tobacco products (HTPs) have emerged as novel alternatives to conventional cigarettes (CCs), marketed by the tobacco industry as having a reduced potential for harm. Nevertheless, a significant dearth of information remains regarding the long-term effects of HTPs on the central nervous system (CNS). Here, we sought to shed light on the repercussions of prolonged exposure to HTPs on the CNS, employing a mouse model mimicking prodromal Alzheimer's disease (AD). Our study entailed subjecting App knock-in mice to 16 weeks of HTP exposure, administered 5 days per week, with serum cotinine concentration serving as confirmation of HTP exposure within this model. Histological analysis, aimed at assessing amyloid pathology, unveiled a minimal impact attributable to HTPs. However, exploration of differentially expressed genes in the cerebral cortex, using unadjusted p values, indicated an association between HTP exposure and non-inflammatory pathways, specifically linked to neurohypophyseal and neuropeptide hormone activity within the CNS. Of note, similar results have already been observed after exposure to CCs in vivo. Our study not only contributes insights into the potential non-inflammatory effects of HTPs within the context of AD pathogenesis but also underscores the significance of continued research to comprehend the full scope of their impact on the CNS.
Collapse
Affiliation(s)
- Hidetada Yamada
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan.
| | - Yoshiko Takebayashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Kyosuke Yazawa
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miwako Sasanishi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Atsuko Motoda
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuya Takahashi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| |
Collapse
|
12
|
Cao Y, Qi F, Cui H. Toward carbon neutrality: a bibliometric analysis of technological innovation and global emission reductions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27684-w. [PMID: 37202634 DOI: 10.1007/s11356-023-27684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
In the context of global carbon neutrality, climate change mitigation and response has become a top priority. Currently, countries around the world are setting emission reduction targets or are already involved in carbon-neutral actions, with technological innovation becoming the key to global emission reduction. Therefore, a systematic review of the literature related to technology innovation and emission reduction in response to carbon-neutral actions for climate change is conducted. A global bibliometric visualization analysis is presented using CiteSpace and VOSviewer software. This study visualizes the basic relationship between global emission reduction and technology-related literature under the carbon neutrality target and analyzes and discusses the spatial distribution and hotspot trends of the co-author network and knowledge base. The results show that (1) the trend of the number of relevant studies can be divided into two phases before and after, and starts to increase gradually after 2020. (2) The structural relationship of the author- and institution-based cooperative networks is relatively loose, and the main cooperative networks, mainly by countries, are initially formed by the key contributions of developed and emerging economies. (3) Relevant research hotspots are reflected in multiple perspectives such as investment, management, and policy, in addition to emission reduction targets and technological innovation itself. The causal relationship between relevant research and economic and political dimensions has become an important driving factor for research development. Especially in the paradigm shift phase, there are research characteristics of human intervention and specific actions. (4) In terms of future trends, research involving policy management, methodological efficiency, and systemic models will become important research paths in the future by matching the supply of actions to real needs.
Collapse
Affiliation(s)
- Yuequn Cao
- School of Public Policy and Administration, Chongqing University, 174 shazheng street, Shapingba District, Chongqing, 400044, China
| | - Fulin Qi
- School of Public Policy and Administration, Chongqing University, 174 shazheng street, Shapingba District, Chongqing, 400044, China.
| | - Huanyu Cui
- School of Public Policy and Administration, Chongqing University, 174 shazheng street, Shapingba District, Chongqing, 400044, China
| |
Collapse
|
13
|
Flood-Garibay JA, Angulo-Molina A, Méndez-Rojas MÁ. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:704-726. [PMID: 36752881 DOI: 10.1039/d2em00276k] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the World Health Organization, both indoor and urban air pollution are responsible for the deaths of around 3.5 million people annually. During the last few decades, the interest in understanding the composition and health consequences of the complex mixture of polluted air has steadily increased. Today, after decades of detailed research, it is well-recognized that polluted air is a complex mixture containing not only gases (CO, NOx, and SO2) and volatile organic compounds but also suspended particles such as particulate matter (PM). PM comprises particles with sizes in the range of 30 to 2.5 μm (PM30, PM10, and PM2.5) and ultrafine particles (UFPs) (less than 0.1 μm, including nanoparticles). All these constituents have different chemical compositions, origins and health consequences. It has been observed that the concentration of PM and UFPs is high in urban areas with moderate traffic and increases in heavy traffic areas. There is evidence that inhaling PM derived from fossil fuel combustion is associated with a wide variety of harmful effects on human health, which are not solely associated with the respiratory system. There is accumulating evidence that the brains of urban inhabitants contain high concentrations of nanoparticles derived from combustion and there is both epidemiological and experimental evidence that this is correlated with the appearance of neurodegenerative human diseases. Neurological disorders, such as Alzheimer's and Parkinson's disease, multiple sclerosis, and cerebrovascular accidents, are among the main debilitating disorders of our time and their epidemiology can be classified as a public health emergency. Therefore, it is crucial to understand the pathophysiology and molecular mechanisms related to PM exposure, specifically to UFPs, present as pollutants in air, as well as their correlation with the development of neurodegenerative diseases. Furthermore, PM can enhance the transmission of airborne diseases and trigger inflammatory and immune responses, increasing the risk of health complications and mortality. Therefore, understanding the different levels of this issue is important to create and promote preventive actions by both the government and civilians to construct a strategic plan to treat and cope with the current and future epidemic of these types of disorders on a global scale.
Collapse
Affiliation(s)
- Jessica Andrea Flood-Garibay
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| | | | - Miguel Ángel Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|