1
|
Knorr D, Augustin MA. Expanding our food supply: underutilized resources and resilient processing technologies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38989972 DOI: 10.1002/jsfa.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Many underutilized food resources have been traditionally used by regional and poor communities. The history of their consumption makes them potential new food sources for incorporation into the wider food supply. The ability to tap the potential of undervalued and underutilized food sources will reduce the world's reliance on a limited number of food sources and improve food security and sustainability. The expansion of the food diversity of the food supply to include underutilized food resources will require overcoming challenges in the efficient and profitable production of the raw material, application of suitable postharvest handling procedures to maintain the quality of perishable produce, and the use of appropriate traditional and emerging food processing technologies for conversion of the raw material into safe, nutritious and consumer-acceptable foods. Improvement of food processing technologies, particularly resource-efficient resilient food processes, are required to ensure the safety, quality and functionality of the whole food or extracts, and to develop ingredient formulations containing new foods for manufacture of consumer food products. Factors that help facilitate the social acceptance of new underutilized foods include increasing consumer knowledge and understanding of the contribution of new underutilized food resources to diet diversity for good nutrition, confidence in the safety and value of new foods, and their low environmental impact and importance for future sustainable food. The introduction of new underutilized food resources will increasingly require collaboration along the whole food value chain, including support from government and industry. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | - Mary Ann Augustin
- CSIRO Agriculture and Food, Werribee, Victoria, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| |
Collapse
|
2
|
Abstract
Our current food system relies on unsustainable practices, which often fail to provide healthy diets to a growing population. Therefore, there is an urgent demand for new sustainable nutrition sources and processes. Microorganisms have gained attention as a new food source solution, due to their low carbon footprint, low reliance on land, water and seasonal variations coupled with a favourable nutritional profile. Furthermore, with the emergence and use of new tools, specifically in synthetic biology, the uses of microorganisms have expanded showing great potential to fulfil many of our dietary needs. In this review, we look at the different applications of microorganisms in food, and examine the history, state-of-the-art and potential to disrupt current foods systems. We cover both the use of microbes to produce whole foods out of their biomass and as cell factories to make highly functional and nutritional ingredients. The technical, economical, and societal limitations are also discussed together with the current and future perspectives.
Collapse
Affiliation(s)
- Alicia E Graham
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Philp J. Bioeconomy and net-zero carbon: lessons from Trends in Biotechnology, volume 1, issue 1. Trends Biotechnol 2023; 41:307-322. [PMID: 36272819 DOI: 10.1016/j.tibtech.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Many biotechnology applications tend to be for low production volumes and relatively high-value products such as insulin and vaccines. More difficult to perfect at scale are bioprocesses for high-volume products with lower value, especially if the target product is a reduced chemical such as a solvent or a plastic. Historically, industrial microbiology succeeded under special circumstances when fossil feedstocks were either unavailable or expensive. Inevitably, as these circumstances relaxed, bioprocesses struggled to compete with petrochemistry. Why try to compete? Fossil resources will be phased out in the coming decades in the struggle with climate change. To reach net-zero carbon by 2050 will require all sectors to transition, not only energy and transportation. This may herald a new opportunity for industrial bioprocesses with much better tools.
Collapse
Affiliation(s)
- Jim Philp
- Organization for Economic Cooperation and Development (OECD), Paris, France.
| |
Collapse
|
4
|
Pandey VK, Dar AH, Rohilla S, Mahanta CL, Shams R, Khan SA, Singh R. Recent Insights on the Role of Various Food Processing Operations Towards the Development of Sustainable Food Systems. CIRCULAR ECONOMY AND SUSTAINABILITY 2023; 3:1-24. [PMID: 36620426 PMCID: PMC9811882 DOI: 10.1007/s43615-022-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023]
Abstract
Chronic hunger and malnutrition will eventually result from the population's rapid growth. It is unlikely to succeed in tackling the rising challenges of delivering sustainable food for all people unless high attention is paid on the function of food processing to ensure the supply of stable food. It is impossible to overstate the importance of developing food processing and preservation technologies that can reduce food losses and wastage during surplus seasons. Therefore, sustainable food systems must be developed to provide healthy diets without damaging our world and its resources. The goal is to use various perspectives to confirm why food processing is crucial to future food supply. It is important to show the appropriate utilization of sustainability factors and effect assessments to construct for feeding the globe while staying within planetary limits. There has never been a better time to assure a plentiful food supply to feed the people than right now, when the population is expanding at a worrying rate. The sustainable food project seeks to move the food systems in a long-term, more equitable direction. Food processing, or the conversion of raw materials into functional, edible, and consumer acceptable food, is a critical link in the food value chain between consumption and production. This review looked at various existing and emerging food processing followed by preservation techniques. Food systems must also attempt to reduce food waste and losses, as well as the current and future impacts on the environment and society, to be sustainable.
Collapse
Affiliation(s)
- Vinay Kumar Pandey
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Shubham Rohilla
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, India
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, Tezpur, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Shafat Ahmad Khan
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Rahul Singh
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh India
| |
Collapse
|
5
|
Bajić B, Vučurović D, Vasić Đ, Jevtić-Mučibabić R, Dodić S. Biotechnological Production of Sustainable Microbial Proteins from Agro-Industrial Residues and By-Products. Foods 2022; 12:107. [PMID: 36613323 PMCID: PMC9818480 DOI: 10.3390/foods12010107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Microbial proteins, i.e., single-cell proteins or microbial biomass, can be cultivated for food and animal feed due to their high protein content and the fact that they represent a rich source of carbohydrates, minerals, fats, vitamins, and amino acids. Another advantage of single-cell proteins is their rapid production due to the growth rate of microorganisms and the possibility of using agro-industrial waste, residues and by-products for production through this renewable technology. Agro-industrial residues and by-products represent materials obtained from various processes in agriculture and agriculture-related industries; taking into account their composition and characteristics, as well as vast amounts, they have an enormous potential to generate sustainable bioproducts, such as microbial proteins. This review aims to summarize contemporary scientific research related to the production of microbial proteins on various agro-industrial residues and by-products, as well as to emphasize the current state of production of single-cell proteins and the importance of their production to ease the food crisis and support sustainable development.
Collapse
Affiliation(s)
- Bojana Bajić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Damjan Vučurović
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Đurđina Vasić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Rada Jevtić-Mučibabić
- Institute for Food Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Siniša Dodić
- Department of Biotechnology, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
6
|
Jonaitis T, Lewis EA, Lourens N, Groot A, Goodman RE, Mitchell D, Karpol A, Tracy B. Subchronic feeding, allergenicity, and genotoxicity safety evaluations of single strain bacterial protein. Food Chem Toxicol 2022; 162:112878. [PMID: 35196545 DOI: 10.1016/j.fct.2022.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
Abstract
Microbial proteins are potentially important alternatives to animal protein. A safety assessment was conducted on a Clostridium protein which can serve as a high-quality protein source in human food. A battery of toxicity studies was conducted comprising a 14-day dose-range finding dietary study in rats, 90-day dietary study in rats and in vitro genotoxicity studies. The allergenic potential was investigated by bioinformatics analysis. In the 90-day feeding study, rats were fed diets containing 0, 5.0, 7.5, and 10% Clostridium protein. The Clostridium protein-containing diets were well-tolerated and no adverse effects on the health or growth were observed. Significant reductions in neutrophil counts were observed in all female rats compared to controls, which were slightly outside of reference ranges. These effects were not deemed to be adverse due to the absence of comparable findings in male rats and high physiological variability of measured values within groups. A No-Observed-Adverse-Effect-Level (NOAEL) of at least 10% Clostridium protein, the highest dose tested and corresponding to 5,558 and 6,671 mg/kg body weight/day for male and female rats, respectively, was established. No evidence of genotoxicity was observed and the allergenic potential was low. These results support the use of Clostridium protein as a food ingredient.
Collapse
Affiliation(s)
- Tom Jonaitis
- NutraSteward, Ltd., 1 Cleddau Bridge Business Park, Pembroke Dock, SA72 6UP, UK
| | - Elizabeth A Lewis
- NutraSteward, Ltd., 1 Cleddau Bridge Business Park, Pembroke Dock, SA72 6UP, UK
| | - Nicky Lourens
- Charles River Laboratories 's-Hertogenbosch, the Netherlands
| | - Angelique Groot
- Charles River Laboratories 's-Hertogenbosch, the Netherlands
| | - Richard E Goodman
- RE Goodman Consulting LLC, 8110 Dougan Circle, Lincoln, NE, 68516, United States
| | - Daniel Mitchell
- Superbrewed Food, Inc., 239 Lisa Drive, New Castle, DE, 19720, United States
| | - Alon Karpol
- Superbrewed Food Israel, Prof. A.D. Bergman St. 2, Rehovot, 7670504, Israel
| | - Bryan Tracy
- Superbrewed Food, Inc., 239 Lisa Drive, New Castle, DE, 19720, United States.
| |
Collapse
|
7
|
Sharma B, Sadhu SD, Chopra R, Garg M. Role of Packaging in Food Processing. Food Chem 2021. [DOI: 10.1002/9781119792130.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Knorr D, Augustin MA, Tiwari B. Advancing the Role of Food Processing for Improved Integration in Sustainable Food Chains. Front Nutr 2020; 7:34. [PMID: 32309287 PMCID: PMC7145966 DOI: 10.3389/fnut.2020.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Food scientists need to work together with agriculturists, nutritionists, civil society, and governments to develop an integrative approach to feed a growing population sustainably. Current attention on food sustainability mainly concentrates on production agriculture and on nutrition, health, and well-being. Food processing, the necessary conversion of raw materials to edible, functional, and culturally acceptable food products, is an important link between production and consumption within the food value chain. Without increased attention to the role of food processing for a maintainable food supply, we are unlikely to succeed in addressing the mounting challenges in delivering sustainable diets for all people. The objective is to draw on multidisciplinary insights to demonstrate why food processing is integral to a future food supply. We aim to exemplify the importance of essential relevant sustainability indicators and impact assessment for developing informed strategies to feed the world within planetary boundaries. We provide a brief outlook on sustainable food sources, review food processing, and recommend future directions. We highlight the challenges and suggest strategies for improving the sustainability of food systems, to hopefully provide a catalyst for considering implementable initiatives for improving food and nutrition security.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | | | - Brijesh Tiwari
- Teagasc Food Res Ctr, Food Chem & Technol, Dublin, Ireland
| |
Collapse
|