1
|
Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, Ramirez BI, Sánchez-Guirales SA, Simon JA, Tomietto G, Rapti C, Ruiz HK, Rawat S, Kumar D, Lalatsa A. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics 2024; 16:1328. [PMID: 39458657 PMCID: PMC11510778 DOI: 10.3390/pharmaceutics16101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Artificial intelligence (AI) encompasses a broad spectrum of techniques that have been utilized by pharmaceutical companies for decades, including machine learning, deep learning, and other advanced computational methods. These innovations have unlocked unprecedented opportunities for the acceleration of drug discovery and delivery, the optimization of treatment regimens, and the improvement of patient outcomes. AI is swiftly transforming the pharmaceutical industry, revolutionizing everything from drug development and discovery to personalized medicine, including target identification and validation, selection of excipients, prediction of the synthetic route, supply chain optimization, monitoring during continuous manufacturing processes, or predictive maintenance, among others. While the integration of AI promises to enhance efficiency, reduce costs, and improve both medicines and patient health, it also raises important questions from a regulatory point of view. In this review article, we will present a comprehensive overview of AI's applications in the pharmaceutical industry, covering areas such as drug discovery, target optimization, personalized medicine, drug safety, and more. By analyzing current research trends and case studies, we aim to shed light on AI's transformative impact on the pharmaceutical industry and its broader implications for healthcare.
Collapse
Affiliation(s)
- Dolores R. Serrano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
- Instituto Universitario de Farmacia Industrial, 28040 Madrid, Spain
| | - Francis C. Luciano
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Brayan J. Anaya
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Baris Ongoren
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Aytug Kara
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Gracia Molina
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Bianca I. Ramirez
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Sergio A. Sánchez-Guirales
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Jesus A. Simon
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Greta Tomietto
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Chrysi Rapti
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Helga K. Ruiz
- Department of Pharmaceutics and Food Science, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (F.C.L.); (B.J.A.); (B.O.); (A.K.); (G.M.); (B.I.R.); (S.A.S.-G.); (J.A.S.); (G.T.); (C.R.); (H.K.R.)
| | - Satyavati Rawat
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (S.R.); (D.K.)
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (S.R.); (D.K.)
| | - Aikaterini Lalatsa
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
2
|
Mi H, Sivagnanam S, Ho WJ, Zhang S, Bergman D, Deshpande A, Baras AS, Jaffee EM, Coussens LM, Fertig EJ, Popel AS. Computational methods and biomarker discovery strategies for spatial proteomics: a review in immuno-oncology. Brief Bioinform 2024; 25:bbae421. [PMID: 39179248 PMCID: PMC11343572 DOI: 10.1093/bib/bbae421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Advancements in imaging technologies have revolutionized our ability to deeply profile pathological tissue architectures, generating large volumes of imaging data with unparalleled spatial resolution. This type of data collection, namely, spatial proteomics, offers invaluable insights into various human diseases. Simultaneously, computational algorithms have evolved to manage the increasing dimensionality of spatial proteomics inherent in this progress. Numerous imaging-based computational frameworks, such as computational pathology, have been proposed for research and clinical applications. However, the development of these fields demands diverse domain expertise, creating barriers to their integration and further application. This review seeks to bridge this divide by presenting a comprehensive guideline. We consolidate prevailing computational methods and outline a roadmap from image processing to data-driven, statistics-informed biomarker discovery. Additionally, we explore future perspectives as the field moves toward interfacing with other quantitative domains, holding significant promise for precision care in immuno-oncology.
Collapse
Affiliation(s)
- Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Shamilene Sivagnanam
- The Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR 97201, United States
| | - Won Jin Ho
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shuming Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Daniel Bergman
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Atul Deshpande
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Alexander S Baras
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Pathology, Johns Hopkins University School of Medicine, MD 21205, United States
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Lisa M Coussens
- The Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR 97201, United States
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR 97201, United States
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
- Convergence Institute, Johns Hopkins University, Baltimore, MD 21205, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, United States
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Department of Oncology, Johns Hopkins University School of Medicine, MD 21205, United States
| |
Collapse
|
3
|
Wang H, Arulraj T, Ippolito A, Popel AS. From virtual patients to digital twins in immuno-oncology: lessons learned from mechanistic quantitative systems pharmacology modeling. NPJ Digit Med 2024; 7:189. [PMID: 39014005 PMCID: PMC11252162 DOI: 10.1038/s41746-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Virtual patients and digital patients/twins are two similar concepts gaining increasing attention in health care with goals to accelerate drug development and improve patients' survival, but with their own limitations. Although methods have been proposed to generate virtual patient populations using mechanistic models, there are limited number of applications in immuno-oncology research. Furthermore, due to the stricter requirements of digital twins, they are often generated in a study-specific manner with models customized to particular clinical settings (e.g., treatment, cancer, and data types). Here, we discuss the challenges for virtual patient generation in immuno-oncology with our most recent experiences, initiatives to develop digital twins, and how research on these two concepts can inform each other.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Theinmozhi Arulraj
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alberto Ippolito
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Medicine and Oncology, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
An G, Cockrell C. A design specification for Critical Illness Digital Twins (CIDTs) to cure sepsis: responding to the National Academies of Sciences, Engineering and Medicine Report "Foundational Research Gaps and Future Directions for Digital Twins". ARXIV 2024:arXiv:2405.05301v2. [PMID: 38764598 PMCID: PMC11100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
On December 15, 2023, The National Academies of Sciences, Engineering and Medicine (NASEM) released a report entitled: "Foundational Research Gaps and Future Directions for Digital Twins." The ostensible purpose of this report was to bring some structure to the burgeoning field of digital twins by providing a working definition and a series of research challenges that need to be addressed to allow this technology to fulfill its full potential. In the work presented herein we focus on five specific findings from the NASEM Report: 1) definition of a Digital Twin, 2) using "fit-for-purpose" guidance, 3) developing novel approaches to Verification, Validation and Uncertainty Quantification (VVUQ) of Digital Twins, 4) incorporating control as an explicit purpose for a Digital Twin and 5) using a Digital Twin to guide data collection and sensor development, and describe how these findings are addressed through the design specifications for a Critical Illness Digital Twin (CIDT) aimed at curing sepsis.
Collapse
Affiliation(s)
- Gary An
- Department of Surgery, University of Vermont Larner College of Medicine
| | - Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine
| |
Collapse
|
5
|
Cockrell C, Vodovotz Y, Zamora R, An G. The Wound Environment Agent-based Model (WEABM): a digital twin platform for characterization and complex therapeutic discovery for volumetric muscle loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.595972. [PMID: 38895374 PMCID: PMC11185759 DOI: 10.1101/2024.06.04.595972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Volumetric Muscle Loss (VML) injuries are characterized by significant loss of muscle mass, usually due to trauma or surgical resection, often with a residual open wound in clinical settings and subsequent loss of limb function due to the replacement of the lost muscle mass with non-functional scar. Being able to regrow functional muscle in VML injuries is a complex control problem that needs to override robust, evolutionarily conserved healing processes aimed at rapidly closing the defect in lieu of restoration of function. We propose that discovering and implementing this complex control can be accomplished by the development of a Medical Digital Twin of VML. Digital Twins (DTs) are the subject of a recent report from the National Academies of Science, Engineering and Medicine (NASEM), which provides guidance as to the definition, capabilities and research challenges associated with the development and implementation of DTs. Specifically, DTs are defined as dynamic computational models that can be personalized to an individual real world "twin" and are connected to that twin via an ongoing data link. DTs can be used to provide control on the real-world twin that is, by the ongoing data connection, adaptive. We have developed an anatomic scale cell-level agent-based model of VML termed the Wound Environment Agent Based Model (WEABM) that can serve as the computational specification for a DT of VML. Simulations of the WEABM provided fundamental insights into the biology of VML, and we used the WEABM in our previously developed pipeline for simulation-based Deep Reinforcement Learning (DRL) to train an artificial intelligence (AI) to implement a robust generalizable control policy aimed at increasing the healing of VML with functional muscle. The insights into VML obtained include: 1) a competition between fibrosis and myogenesis due to spatial constraints on available edges of intact myofibrils to initiate the myoblast differentiation process, 2) the need to biologically "close" the wound from atmospheric/environmental exposure, which represents an ongoing inflammatory stimulus that promotes fibrosis and 3) that selective, multimodal and adaptive local mediator-level control can shift the trajectory of healing away from a highly evolutionarily beneficial imperative to close the wound via fibrosis. Control discovery with the WEABM identified the following design principles: 1) multimodal adaptive tissue-level mediator control to mitigate pro-inflammation as well as the pro-fibrotic aspects of compensatory anti-inflammation, 2) tissue-level mediator manipulation to promote myogenesis, 3) the use of an engineered extracellular matrix (ECM) to functionally close the wound and 4) the administration of an anti-fibrotic agent focused on the collagen-producing function of fibroblasts and myofibroblasts. The WEABM-trained DRL AI integrates these control modalities and provides design specifications for a potential device that can implement the required wound sensing and intervention delivery capabilities needed. The proposed cyber-physical system integrates the control AI with a physical sense-and-actuate device that meets the tenets of DTs put forth in the NASEM report and can serve as an example schema for the future development of Medical DTs.
Collapse
Affiliation(s)
- Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh
- McGowan Institute of Regenerative Medicine, University of Pittsburgh
| | | | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine
| |
Collapse
|
6
|
Mosquera-Lopez C, Jacobs PG. Digital twins and artificial intelligence in metabolic disease research. Trends Endocrinol Metab 2024; 35:549-557. [PMID: 38744606 DOI: 10.1016/j.tem.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Digital twin technology is emerging as a transformative paradigm for personalized medicine in the management of chronic conditions. In this article, we explore the concept and key characteristics of a digital twin and its applications in chronic non-communicable metabolic disease management, with a focus on diabetes case studies. We cover various types of digital twin models, including mechanistic models based on ODEs, data-driven ML algorithms, and hybrid modeling strategies that combine the strengths of both approaches. We present successful case studies demonstrating the potential of digital twins in improving glucose outcomes for individuals with T1D and T2D, and discuss the benefits and challenges of translating digital twin research applications to clinical practice.
Collapse
Affiliation(s)
- Clara Mosquera-Lopez
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Peter G Jacobs
- Artificial Intelligence for Medical Systems Lab, Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Fonseca LL, Böttcher L, Mehrad B, Laubenbacher RC. Surrogate modeling and control of medical digital twins. ARXIV 2024:arXiv:2402.05750v2. [PMID: 38827450 PMCID: PMC11142319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The vision of personalized medicine is to identify interventions that maintain or restore a person's health based on their individual biology. Medical digital twins, computational models that integrate a wide range of health-related data about a person and can be dynamically updated, are a key technology that can help guide medical decisions. Such medical digital twin models can be high-dimensional, multi-scale, and stochastic. To be practical for healthcare applications, they often need to be simplified into low-dimensional surrogate models that can be used for optimal design of interventions. This paper introduces surrogate modeling algorithms for the purpose of optimal control applications. As a use case, we focus on agent-based models (ABMs), a common model type in biomedicine for which there are no readily available optimal control algorithms. By deriving surrogate models that are based on systems of ordinary differential equations, we show how optimal control methods can be employed to compute effective interventions, which can then be lifted back to a given ABM. The relevance of the methods introduced here extends beyond medical digital twins to other complex dynamical systems.
Collapse
Affiliation(s)
- Luis L. Fonseca
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Lucas Böttcher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
- Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, 60322 Frankfurt am Main, Germany
| | - Borna Mehrad
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Reinhard C. Laubenbacher
- Laboratory for Systems Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Vallée A. Envisioning the Future of Personalized Medicine: Role and Realities of Digital Twins. J Med Internet Res 2024; 26:e50204. [PMID: 38739913 PMCID: PMC11130780 DOI: 10.2196/50204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/01/2023] [Accepted: 12/29/2023] [Indexed: 05/16/2024] Open
Abstract
Digital twins have emerged as a groundbreaking concept in personalized medicine, offering immense potential to transform health care delivery and improve patient outcomes. It is important to highlight the impact of digital twins on personalized medicine across the understanding of patient health, risk assessment, clinical trials and drug development, and patient monitoring. By mirroring individual health profiles, digital twins offer unparalleled insights into patient-specific conditions, enabling more accurate risk assessments and tailored interventions. However, their application extends beyond clinical benefits, prompting significant ethical debates over data privacy, consent, and potential biases in health care. The rapid evolution of this technology necessitates a careful balancing act between innovation and ethical responsibility. As the field of personalized medicine continues to evolve, digital twins hold tremendous promise in transforming health care delivery and revolutionizing patient care. While challenges exist, the continued development and integration of digital twins hold the potential to revolutionize personalized medicine, ushering in an era of tailored treatments and improved patient well-being. Digital twins can assist in recognizing trends and indicators that might signal the presence of diseases or forecast the likelihood of developing specific medical conditions, along with the progression of such diseases. Nevertheless, the use of human digital twins gives rise to ethical dilemmas related to informed consent, data ownership, and the potential for discrimination based on health profiles. There is a critical need for robust guidelines and regulations to navigate these challenges, ensuring that the pursuit of advanced health care solutions does not compromise patient rights and well-being. This viewpoint aims to ignite a comprehensive dialogue on the responsible integration of digital twins in medicine, advocating for a future where technology serves as a cornerstone for personalized, ethical, and effective patient care.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology and Public Health, Foch Hospital, Suresnes, France
| |
Collapse
|
9
|
Velleuer E, Domínguez-Hüttinger E, Rodríguez A, Harris LA, Carlberg C. Concepts of multi-level dynamical modelling: understanding mechanisms of squamous cell carcinoma development in Fanconi anemia. Front Genet 2023; 14:1254966. [PMID: 38028610 PMCID: PMC10652399 DOI: 10.3389/fgene.2023.1254966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Fanconi anemia (FA) is a rare disease (incidence of 1:300,000) primarily based on the inheritance of pathogenic variants in genes of the FA/BRCA (breast cancer) pathway. These variants ultimately reduce the functionality of different proteins involved in the repair of DNA interstrand crosslinks and DNA double-strand breaks. At birth, individuals with FA might present with typical malformations, particularly radial axis and renal malformations, as well as other physical abnormalities like skin pigmentation anomalies. During the first decade of life, FA mostly causes bone marrow failure due to reduced capacity and loss of the hematopoietic stem and progenitor cells. This often makes hematopoietic stem cell transplantation necessary, but this therapy increases the already intrinsic risk of developing squamous cell carcinoma (SCC) in early adult age. Due to the underlying genetic defect in FA, classical chemo-radiation-based treatment protocols cannot be applied. Therefore, detecting and treating the multi-step tumorigenesis process of SCC in an early stage, or even its progenitors, is the best option for prolonging the life of adult FA individuals. However, the small number of FA individuals makes classical evidence-based medicine approaches based on results from randomized clinical trials impossible. As an alternative, we introduce here the concept of multi-level dynamical modelling using large, longitudinally collected genome, proteome- and transcriptome-wide data sets from a small number of FA individuals. This mechanistic modelling approach is based on the "hallmarks of cancer in FA", which we derive from our unique database of the clinical history of over 750 FA individuals. Multi-omic data from healthy and diseased tissue samples of FA individuals are to be used for training constituent models of a multi-level tumorigenesis model, which will then be used to make experimentally testable predictions. In this way, mechanistic models facilitate not only a descriptive but also a functional understanding of SCC in FA. This approach will provide the basis for detecting signatures of SCCs at early stages and their precursors so they can be efficiently treated or even prevented, leading to a better prognosis and quality of life for the FA individual.
Collapse
Affiliation(s)
- Eunike Velleuer
- Department of Cytopathology, Heinrich Heine University, Düsseldorf, Germany
- Center for Child and Adolescent Health, Helios Klinikum, Krefeld, Germany
| | - Elisa Domínguez-Hüttinger
- Departamento Düsseldorf Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad México, Mexico
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad México, Mexico
- Instituto Nacional de Pediatría, Ciudad México, Mexico
| | - Leonard A. Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, United States
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States
- Cancer Biology Program, Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
10
|
Cockrell C, Larie D, An G. Preparing for the next pandemic: Simulation-based deep reinforcement learning to discover and test multimodal control of systemic inflammation using repurposed immunomodulatory agents. Front Immunol 2022; 13:995395. [PMID: 36479109 PMCID: PMC9720328 DOI: 10.3389/fimmu.2022.995395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Preparation to address the critical gap in a future pandemic between non-pharmacological measures and the deployment of new drugs/vaccines requires addressing two factors: 1) finding virus/pathogen-agnostic pathophysiological targets to mitigate disease severity and 2) finding a more rational approach to repurposing existing drugs. It is increasingly recognized that acute viral disease severity is heavily driven by the immune response to the infection ("cytokine storm" or "cytokine release syndrome"). There exist numerous clinically available biologics that suppress various pro-inflammatory cytokines/mediators, but it is extremely difficult to identify clinically effective treatment regimens with these agents. We propose that this is a complex control problem that resists standard methods of developing treatment regimens and accomplishing this goal requires the application of simulation-based, model-free deep reinforcement learning (DRL) in a fashion akin to training successful game-playing artificial intelligences (AIs). This proof-of-concept study determines if simulated sepsis (e.g. infection-driven cytokine storm) can be controlled in the absence of effective antimicrobial agents by targeting cytokines for which FDA-approved biologics currently exist. Methods We use a previously validated agent-based model, the Innate Immune Response Agent-based Model (IIRABM), for control discovery using DRL. DRL training used a Deep Deterministic Policy Gradient (DDPG) approach with a clinically plausible control interval of 6 hours with manipulation of six cytokines for which there are existing drugs: Tumor Necrosis Factor (TNF), Interleukin-1 (IL-1), Interleukin-4 (IL-4), Interleukin-8 (IL-8), Interleukin-12 (IL-12) and Interferon-γ(IFNg). Results DRL trained an AI policy that could improve outcomes from a baseline Recovered Rate of 61% to one with a Recovered Rate of 90% over ~21 days simulated time. This DRL policy was then tested on four different parameterizations not seen in training representing a range of host and microbe characteristics, demonstrating a range of improvement in Recovered Rate by +33% to +56. Discussion The current proof-of-concept study demonstrates that significant disease severity mitigation can potentially be accomplished with existing anti-mediator drugs, but only through a multi-modal, adaptive treatment policy requiring implementation with an AI. While the actual clinical implementation of this approach is a projection for the future, the current goal of this work is to inspire the development of a research ecosystem that marries what is needed to improve the simulation models with the development of the sensing/assay technologies to collect the data needed to iteratively refine those models.
Collapse
Affiliation(s)
| | | | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, United States
| |
Collapse
|