1
|
Gameli PS, Kutzler J, Berardinelli D, Carlier J, Auwärter V, Busardò FP. Exploring the Metabolism of Flubrotizolam, a Potent Thieno-Triazolo Diazepine, Using Human Hepatocytes and High-Resolution Mass Spectrometry. Metabolites 2024; 14:506. [PMID: 39330513 PMCID: PMC11433749 DOI: 10.3390/metabo14090506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The abuse of psychoactive substances presents challenges in clinical and forensic toxicology. The emergence of novel and potent drugs that pose significant health risks, in particular towards frequent abusers and users unaware of the ingredients, further complicates the situation. Designer benzodiazepines have become a fast-growing subgroup of these new psychoactive substances (NPSs), and their overdose may potentially turn fatal, especially when combined with other central nervous system depressants. In 2021, flubrotizolam, a potent thieno-triazolo designer benzodiazepine, emerged on the illicit market, available online as a "research chemical". The identification of markers of consumption for this designer benzodiazepine is essential in analytical toxicology, especially in clinical and forensic cases. METHODS We therefore aimed to identify biomarkers of flubrotizolam uptake in ten-donor-pooled human hepatocytes, applying liquid chromatography high-resolution mass spectrometry and software-aided data mining supported by in silico prediction tools. RESULTS Prediction studies resulted in 10 and 13 first- and second-generation metabolites, respectively, mainly transformed through hydroxylation and sulfation, methylation, and glucuronidation reactions. We identified six metabolites after 3 h human hepatocyte incubation: two hydroxylated metabolites (α- and 6-hydroxy-flubrotizolam), two 6-hydroxy-glucuronides, a reduced-hydroxy-N-glucuronide, and an N-glucuronide. CONCLUSIONS We suggest detecting flubrotizolam and its hydroxylated metabolites as markers of consumption after the glucuronide hydrolysis of biological samples. The results are consistent with the in vivo metabolism of brotizolam, a medically used benzodiazepine and a chloro-phenyl analog of flubrotizolam.
Collapse
Affiliation(s)
- Prince Sellase Gameli
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60126 Ancona, Italy; (P.S.G.); (D.B.); (F.P.B.)
| | - Johannes Kutzler
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (J.K.); (V.A.)
| | - Diletta Berardinelli
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60126 Ancona, Italy; (P.S.G.); (D.B.); (F.P.B.)
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (J.K.); (V.A.)
| | - Jeremy Carlier
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60126 Ancona, Italy; (P.S.G.); (D.B.); (F.P.B.)
| | - Volker Auwärter
- Institute of Forensic Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (J.K.); (V.A.)
| | - Francesco Paolo Busardò
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, 60126 Ancona, Italy; (P.S.G.); (D.B.); (F.P.B.)
| |
Collapse
|
2
|
Nguyen HD, Vu GH, Hoang LT, Kim MS. Elucidation of toxic effects of 1,2-diacetylbenzene: an in silico study. Forensic Toxicol 2024:10.1007/s11419-024-00702-3. [PMID: 39298088 DOI: 10.1007/s11419-024-00702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/30/2024] [Indexed: 09/21/2024]
Abstract
PURPOSE We aimed to explore the metabolite products of 1,2-diacetylbenzene (DAB) and investigate their harmful effects, physicochemical properties, and biological activities, along with those of DAB itself. METHODS Key approaches included MetaTox, PASS online, ADMESWISS, ADMETlab 2.0, molecular docking, and molecular dynamic simulation to identify metabolites, toxic effects, Lipinski's rule criteria, absorption, distribution, metabolism, and excretion properties, interactions with cytochrome (CYP) 450 isoforms, and the stability of the DAB-cytochrome complex. RESULTS A total of 13 metabolite products from DAB were identified, involving Phase I reactions (aliphatic hydroxylation, epoxidation, oxidative dehydrogenation, and hydrogenation) and Phase II reactions (oxidative sulfation and methylation). Molecular dynamics and modeling revealed a stable interaction between CYP1A2 and DAB, suggesting the involvement of CYP1A2 in DAB metabolism. All studied compounds adhered to Lipinski's rule, indicating their potential as inducers or activators of toxic mechanisms. The physicochemical parameters and pharmacokinetics of the investigated compounds were consistent with their harmful effects, which included neurotoxic, nephrotoxic, endocrine disruptor, and hepatotoxic consequences due to their high gastrointestinal absorption and ability to cross the blood-brain barrier. Various CYP450 isoforms exhibited different functions, and the compounds were found to act as superoxide dismutase inhibitors, neuropeptide Y2 antagonists, glutaminase inhibitors, and activators of caspases 3 and 8. DAB and its metabolites were also associated with apoptosis, oxidative stress, and neuroendocrine disruption. CONCLUSION The toxic effects of DAB and its metabolites were predicted in this study. Further research is warranted to explore their effects on other organs, such as the liver and kidneys, and to validate our findings.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA, 70433, USA.
| | - Giang Huong Vu
- Department of Public Heath, Hong Bang Health Center, Hai Phong, Vietnam
| | - Linh Thuy Hoang
- College of Pharmacy, California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
3
|
Chaves-González LE, Jaikel-Víquez D, Lozada-Alvarado S, Granados-Chinchilla F. Unveiling the fungal color palette: pigment analysis of Fusarium solani species complex and Curvularia verruculosa clinical isolates. Can J Microbiol 2024; 70:135-149. [PMID: 38232349 DOI: 10.1139/cjm-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Fungal species in the Nectriaceae, such as Fusarium spp. (Hypocreales: Nectriaceae), are etiologic agents of hyalohyphomycosis capable of producing violaceous or yellowish pigments under certain conditions, while Curvularia spp. (Pleosporales: Pleosporaceae) are agents of phaeohyphomycosis and typically produce melanin in their cell walls. In nectriaceous and pleosporaceous fungi, these pigments are mainly constituted by polyketides (e.g., azaphilones, naphthoquinones, and hydroxyanthraquinones). Considering the importance of pigments synthesized by these genera, this work focused on the selective extraction of pigments produced by eight Fusarium solani species complex and one Curvularia verruculosa isolate recovered from dermatomycosis specimens, their separation, purification, and posterior chemical analysis. The pigments were characterized through spectral and acid-base analysis, and their maximum production time was determined. Moreover, spectral identification of isolates was carried out to approach the taxonomic specificity of pigment production. Herein we describe the isolation and characterization of three acidic pigments, yellowish and pinkish azaphilones (i.e., coaherin A and sclerotiorin), and a purplish xanthone, reported for the first time in the Nectriaceae and Pleosporaceae, which appear to be synthesized in a species-independent manner, in the case of fusaria.
Collapse
Affiliation(s)
- Luis Enrique Chaves-González
- Sección de Micología Médica, Facultad de Microbiología, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Jaikel-Víquez
- Sección de Micología Médica, Facultad de Microbiología, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| | - Stefany Lozada-Alvarado
- Laboratorio Clínico y Banco de Sangre, Hospital del Trauma, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Enfermedades Tropicales, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Química, Facultad de Ciencias Básicas, Sede Central, Ciudad Universitaria Rodrigo Facio, 11501-2060, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
4
|
Reale E, Zare Jeddi M, Paini A, Connolly A, Duca R, Cubadda F, Benfenati E, Bessems J, S Galea K, Dirven H, Santonen T, M Koch H, Jones K, Sams C, Viegas S, Kyriaki M, Campisi L, David A, Antignac JP, B Hopf N. Human biomonitoring and toxicokinetics as key building blocks for next generation risk assessment. ENVIRONMENT INTERNATIONAL 2024; 184:108474. [PMID: 38350256 DOI: 10.1016/j.envint.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024]
Abstract
Human health risk assessment is historically built upon animal testing, often following Organisation for Economic Co-operation and Development (OECD) test guidelines and exposure assessments. Using combinations of human relevant in vitro models, chemical analysis and computational (in silico) approaches bring advantages compared to animal studies. These include a greater focus on the human species and on molecular mechanisms and kinetics, identification of Adverse Outcome Pathways and downstream Key Events as well as the possibility of addressing susceptible populations and additional endpoints. Much of the advancement and progress made in the Next Generation Risk Assessment (NGRA) have been primarily focused on new approach methodologies (NAMs) and physiologically based kinetic (PBK) modelling without incorporating human biomonitoring (HBM). The integration of toxicokinetics (TK) and PBK modelling is an essential component of NGRA. PBK models are essential for describing in quantitative terms the TK processes with a focus on the effective dose at the expected target site. Furthermore, the need for PBK models is amplified by the increasing scientific and regulatory interest in aggregate and cumulative exposure as well as interactions of chemicals in mixtures. Since incorporating HBM data strengthens approaches and reduces uncertainties in risk assessment, here we elaborate on the integrated use of TK, PBK modelling and HBM in chemical risk assessment highlighting opportunities as well as challenges and limitations. Examples are provided where HBM and TK/PBK modelling can be used in both exposure assessment and hazard characterization shifting from external exposure and animal dose/response assays to animal-free, internal exposure-based NGRA.
Collapse
Affiliation(s)
- Elena Reale
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland
| | - Maryam Zare Jeddi
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | | | - Alison Connolly
- UCD Centre for Safety & Health at Work, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, D04 V1W8, Dublin, Ireland for Climate and Air Pollution Studies, Physics, School of Natural Science and the Ryan Institute, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | - Radu Duca
- Unit Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire national de santé (LNS), 1, Rue Louis Rech, 3555 Dudelange, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 35, 3000 Leuven, Belgium
| | - Francesco Cubadda
- Istituto Superiore di Sanità - National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Jos Bessems
- VITO HEALTH, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, UK
| | - Hubert Dirven
- Department of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), P.O. Box 40, FI-00032 Työterveyslaitos, Finland
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Kate Jones
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Craig Sams
- HSE - Health and Safety Executive, Harpur Hill, Buxton SK17 9JN, UK
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Machera Kyriaki
- Benaki Phytopathological Institute, 8, Stephanou Delta Street, 14561 Kifissia, Athens, Greece
| | - Luca Campisi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Flashpoint srl, Via Norvegia 56, 56021 Cascina (PI), Italy
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000 Rennes, France
| | | | - Nancy B Hopf
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland.
| |
Collapse
|
5
|
Chung MK, House JS, Akhtari FS, Makris KC, Langston MA, Islam KT, Holmes P, Chadeau-Hyam M, Smirnov AI, Du X, Thessen AE, Cui Y, Zhang K, Manrai AK, Motsinger-Reif A, Patel CJ. Decoding the exposome: data science methodologies and implications in exposome-wide association studies (ExWASs). EXPOSOME 2024; 4:osae001. [PMID: 38344436 PMCID: PMC10857773 DOI: 10.1093/exposome/osae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 03/07/2024]
Abstract
This paper explores the exposome concept and its role in elucidating the interplay between environmental exposures and human health. We introduce two key concepts critical for exposomics research. Firstly, we discuss the joint impact of genetics and environment on phenotypes, emphasizing the variance attributable to shared and nonshared environmental factors, underscoring the complexity of quantifying the exposome's influence on health outcomes. Secondly, we introduce the importance of advanced data-driven methods in large cohort studies for exposomic measurements. Here, we introduce the exposome-wide association study (ExWAS), an approach designed for systematic discovery of relationships between phenotypes and various exposures, identifying significant associations while controlling for multiple comparisons. We advocate for the standardized use of the term "exposome-wide association study, ExWAS," to facilitate clear communication and literature retrieval in this field. The paper aims to guide future health researchers in understanding and evaluating exposomic studies. Our discussion extends to emerging topics, such as FAIR Data Principles, biobanked healthcare datasets, and the functional exposome, outlining the future directions in exposomic research. This abstract provides a succinct overview of our comprehensive approach to understanding the complex dynamics of the exposome and its significant implications for human health.
Collapse
Affiliation(s)
- Ming Kei Chung
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - John S House
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of TN, Knoxville, TN, USA
| | - Khandaker Talat Islam
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern CA, Los Angeles, CA, USA
| | - Philip Holmes
- Department of Physics, Villanova University, Villanova, Philadelphia, USA
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alex I Smirnov
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Xiuxia Du
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of NC at Charlotte, Charlotte, NC, USA
| | - Anne E Thessen
- Department of Biomedical Informatics, University of CO Anschutz Medical Campus, Aurora, CO, USA
| | - Yuxia Cui
- Exposure, Response, and Technology Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of NY, Rensselaer, NY, USA
| | - Arjun K Manrai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Alison Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|