1
|
Han JH, Yoo DS, Lee CM. Effect of a Mismatched Vaccine against the Outbreak of a Novel FMD Strain in a Pig Population. Animals (Basel) 2023; 13:3082. [PMID: 37835688 PMCID: PMC10571925 DOI: 10.3390/ani13193082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
In December 2014, a novel foot and mouth disease (FMD) virus was introduced to a pig farm in South Korea, despite the animals being vaccinated. A marginal antigenic matching between the novel and vaccine strains potentially led to the infection of the vaccinated animals. To understand the impact of using an FMD vaccine on the transmission dynamics of an unmatched field strain, simulation models were employed using daily reported data on clinical cases from the farm. The results of this study indicated that immunisation with the FMD vaccine reduced the shedding of the novel FMD virus in pigs. However, there was no evidence to suggest that the immunisation had a significant effect in reducing the development of clinical signs. These findings highlight that the use of an unmatched FMD vaccine can confound the outbreak by altering the disease dynamics of the novel virus. Based on this study, we emphasise the importance of continuous testing to ensure antigenic matching between the circulating strains and the vaccine pool.
Collapse
Affiliation(s)
- Jun-Hee Han
- EpiCentre, School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand;
| | - Dae-Sung Yoo
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Chang-Min Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea;
| |
Collapse
|
2
|
Gilbertson MLJ, Fountain-Jones NM, Malmberg JL, Gagne RB, Lee JS, Kraberger S, Kechejian S, Petch R, Chiu ES, Onorato D, Cunningham MW, Crooks KR, Funk WC, Carver S, VandeWoude S, VanderWaal K, Craft ME. Apathogenic proxies for transmission dynamics of a fatal virus. Front Vet Sci 2022; 9:940007. [PMID: 36157183 PMCID: PMC9493079 DOI: 10.3389/fvets.2022.940007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events. Here, we tested a novel approach in the Florida panther, which is affected by several directly-transmitted feline retroviruses. We first inferred the transmission network for an apathogenic, directly-transmitted retrovirus, feline immunodeficiency virus (FIV), and then used exponential random graph models to determine drivers structuring this network. We then evaluated the utility of these drivers in predicting transmission of the analogously transmitted, pathogenic agent, feline leukemia virus (FeLV), and compared FIV-based predictions of outbreak dynamics against empirical FeLV outbreak data. FIV transmission was primarily driven by panther age class and distances between panther home range centroids. FIV-based modeling predicted FeLV dynamics similarly to common modeling approaches, but with evidence that FIV-based predictions captured the spatial structuring of the observed FeLV outbreak. While FIV-based predictions of FeLV transmission performed only marginally better than standard approaches, our results highlight the value of proactively identifying drivers of transmission-even based on analogously-transmitted, apathogenic agents-in order to predict transmission of emerging infectious agents. The identification of underlying drivers of transmission, such as through our workflow here, therefore holds promise for improving predictions of pathogen transmission in novel host populations, and could provide new strategies for proactive pathogen management in human and animal systems.
Collapse
Affiliation(s)
- Marie L. J. Gilbertson
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | | | - Jennifer L. Malmberg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Roderick B. Gagne
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Wildlife Futures Program, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Justin S. Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Sarah Kechejian
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Raegan Petch
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elliott S. Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Dave Onorato
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL, United States
| | - Mark W. Cunningham
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, United States
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, United States
| | - W. Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
3
|
Rabies in the Middle East, Eastern Europe, Central Asia and North Africa: Building evidence and delivering a regional approach to rabies elimination. J Infect Public Health 2021; 14:787-794. [PMID: 34022738 DOI: 10.1016/j.jiph.2021.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
The Middle East, Eastern Europe, Central Asia and North Africa Rabies Control Network (MERACON), is built upon the achievements of the Middle East and Eastern Europe Rabies Expert Bureau (MEEREB). MERACON aims to foster collaboration among Member States (MS) and develop shared regional objectives, building momentum towards dog-mediated rabies control and elimination. Here we assess the epidemiology of rabies and preparedness in twelve participating MS, using case and rabies capacity data for 2017, and compare our findings with previous published reports and a predictive burden model. Across MS, the number of reported cases of dog rabies per 100,000 dog population and the number of reported human deaths per 100,000 population as a result of dog-mediated rabies appeared weakly associated. Compared to 2014 there has been a decrease in the number of reported human cases in five of the twelve MS, three MS reported an increase, two MS continued to report zero cases, and the remaining two MS were not listed in the 2014 study and therefore no comparison could be drawn. Vaccination coverage in dogs has increased since 2014 in half (4/8) of the MS where data are available. Most importantly, it is evident that there is a need for improved data collection, sharing and reporting at both the national and international levels. With the formation of the MERACON network, MS will be able to align with international best practices, while also fostering international support with other MS and international organisations.
Collapse
|
4
|
Servadio JL, Machado G, Alvarez J, de Ferreira Lima Júnior FE, Vieira Alves R, Convertino M. Information differences across spatial resolutions and scales for disease surveillance and analysis: The case of Visceral Leishmaniasis in Brazil. PLoS One 2020; 15:e0235920. [PMID: 32678864 PMCID: PMC7367469 DOI: 10.1371/journal.pone.0235920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
Nationwide disease surveillance at a high spatial resolution is desired for many infectious diseases, including Visceral Leishmaniasis. Statistical and mathematical models using data collected from surveillance activities often use a spatial resolution and scale either constrained by data availability or chosen arbitrarily. Sensitivity of model results to the choice of spatial resolution and scale is not, however, frequently evaluated. This study aims to determine if the choice of spatial resolution and scale are likely to impact statistical and mathematical analyses. Visceral Leishmaniasis in Brazil is used as a case study. Probabilistic characteristics of disease incidence, representing a likely outcome in a model, are compared across spatial resolutions and scales. Best fitting distributions were fit to annual incidence from 2004 to 2014 by municipality and by state. Best fits were defined as the distribution family and parameterization minimizing the sum of absolute error, evaluated through a simulated annealing algorithm. Gamma and Poisson distributions provided best fits for incidence, both among individual states and nationwide. Comparisons of distributions using Kullback-Leibler divergence shows that incidence by state and by municipality do not follow distributions that provide equivalent information. Few states with Gamma distributed incidence follow a distribution closely resembling that for national incidence. These results demonstrate empirically how choice of spatial resolution and scale can impact mathematical and statistical models.
Collapse
Affiliation(s)
- Joseph L. Servadio
- Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis, Minnesota, United States of America
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Julio Alvarez
- VISAVET Health Surveillance Center, Universidad Complutense, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Renato Vieira Alves
- Secretaria de Vigilância em Saúde, Ministério da Saúde (SVS-MH), Brasília, Brazil
| | - Matteo Convertino
- Nexus Group, Graduate School of Information Science and Technology and GI-CoRE Station for Big-Data and Cybersecurity, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
5
|
Stenfeldt C, Bertram MR, Smoliga GR, Hartwig EJ, Delgado AH, Arzt J. Duration of Contagion of Foot-And-Mouth Disease Virus in Infected Live Pigs and Carcasses. Front Vet Sci 2020; 7:334. [PMID: 32596275 PMCID: PMC7300267 DOI: 10.3389/fvets.2020.00334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Data-driven modeling of incursions of high-consequence, transboundary pathogens of animals is a critical component of veterinary preparedness. However, simplifying assumptions and excessive use of proxy measures to compensate for gaps in available data may compromise modeled outcomes. The current investigation was prospectively designed to address two major gaps in current knowledge of foot-and-mouth disease virus (FMDV) pathogenesis in pigs: the end (duration) of the infectious period and the viability of FMDV in decaying carcasses. By serial exposure of sentinel groups of pigs to the same group of donor pigs infected by FMDV A24 Cruzeiro, it was demonstrated that infected pigs transmitted disease at 10 days post infection (dpi), but not at 15 dpi. Assuming a latent period of 1 day, this would result in a conservative estimate of an infectious duration of 9 days, which is considerably longer than suggested by a previous report from an experiment performed in cattle. Airborne contagion was diminished within two days of removal of infected pigs from isolation rooms. FMDV in muscle was inactivated within 7 days in carcasses stored at 4oC. By contrast, FMDV infectivity in vesicle epithelium harvested from intact carcasses stored under similar conditions remained remarkably high until the study termination at 11 weeks post mortem. The output from this study consists of experimentally determined data on contagion associated with FMDV-infected pigs. This information may be utilized to update parameterization of models used for foot-and-mouth disease outbreak simulations involving areas of substantial pig production.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Miranda R Bertram
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - George R Smoliga
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Ethan J Hartwig
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Amy H Delgado
- Monitoring and Modeling, Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, United States
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| |
Collapse
|
6
|
Sellman S, Tildesley MJ, Burdett CL, Miller RS, Hallman C, Webb CT, Wennergren U, Portacci K, Lindström T. Realistic assumptions about spatial locations and clustering of premises matter for models of foot-and-mouth disease spread in the United States. PLoS Comput Biol 2020; 16:e1007641. [PMID: 32078622 PMCID: PMC7053778 DOI: 10.1371/journal.pcbi.1007641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 03/03/2020] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
Spatially explicit livestock disease models require demographic data for individual farms or premises. In the U.S., demographic data are only available aggregated at county or coarser scales, so disease models must rely on assumptions about how individual premises are distributed within counties. Here, we addressed the importance of realistic assumptions for this purpose. We compared modeling of foot and mouth disease (FMD) outbreaks using simple randomization of locations to premises configurations predicted by the Farm Location and Agricultural Production Simulator (FLAPS), which infers location based on features such as topography, land-cover, climate, and roads. We focused on three premises-level Susceptible-Exposed-Infectious-Removed models available from the literature, all using the same kernel approach but with different parameterizations and functional forms. By computing the basic reproductive number of the infection (R0) for both FLAPS and randomized configurations, we investigated how spatial locations and clustering of premises affects outbreak predictions. Further, we performed stochastic simulations to evaluate if identified differences were consistent for later stages of an outbreak. Using Ripley’s K to quantify clustering, we found that FLAPS configurations were substantially more clustered at the scales relevant for the implemented models, leading to a higher frequency of nearby premises compared to randomized configurations. As a result, R0 was typically higher in FLAPS configurations, and the simulation study corroborated the pattern for later stages of outbreaks. Further, both R0 and simulations exhibited substantial spatial heterogeneity in terms of differences between configurations. Thus, using realistic assumptions when de-aggregating locations based on available data can have a pronounced effect on epidemiological predictions, affecting if, where, and to what extent FMD may invade the population. We conclude that methods such as FLAPS should be preferred over randomization approaches. When modeling the spread of infectious livestock diseases such as foot-and-mouth disease (FMD), the distance between premises is an important aspect. In the U.S., locations of premises are not available, forcing modelers to make assumptions about their coordinates. Such assumptions can be more or less crude and will impact the conclusions drawn from the model. To investigate the impact of such assumptions, we modeled outbreaks of FMD within the cattle population of the U.S. under two assumptions about premises locations. Their position was either randomly distributed within counties or informed by a state-of-the-art method developed specifically to simulate realistic locations of agricultural operations. We found that the higher degree of spatial clustering of premises associated with more realistic assumptions about locations leads to a substantially higher risk of outbreaks. Our results also show that the amount with which the risk is under-estimated by randomizing locations is unevenly distributed across the landscape. Together, these findings show a clear support for using informed methods to determine the spatial locations of premises and highlight the importance of spatial clustering when modeling FMD-like diseases.
Collapse
Affiliation(s)
- Stefan Sellman
- Department of Physics, Chemistry and Biology, Division of Theoretical Biology, Linköping University, Linköping, Sweden
- * E-mail:
| | - Michael J. Tildesley
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Christopher L. Burdett
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Ryan S. Miller
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Clayton Hallman
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Colleen T. Webb
- Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Uno Wennergren
- Department of Physics, Chemistry and Biology, Division of Theoretical Biology, Linköping University, Linköping, Sweden
| | - Katie Portacci
- Center for Epidemiology and Animal Health, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Tom Lindström
- Department of Physics, Chemistry and Biology, Division of Theoretical Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Walz E, Middleton J, Sampedro F, VanderWaal K, Malladi S, Goldsmith T. Modeling the Transmission of Foot and Mouth Disease to Inform Transportation of Infected Carcasses to a Disposal Site During an Outbreak Event. Front Vet Sci 2020; 6:501. [PMID: 31993448 PMCID: PMC6971117 DOI: 10.3389/fvets.2019.00501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
In the event of a Food and Mouth Disease (FMD) outbreak in the United States, an infected livestock premises is likely to result in a high number of carcasses (swine and/or cattle) as a result of depopulation. If relocating infected carcasses to an off-site disposal site is allowed, the virus may have increased opportunity to spread to uninfected premises and result in exposure of susceptible livestock. A stochastic within-herd disease spread model was used to predict the time to detect the disease by observation of clinical signs within the herd, and the number of animals in different disease stages over time. Expert opinion was elicited to estimate depopulation parameters in various scenarios. Disease detection was assumed when 5% of the population showed clinical signs by direct observation. Time to detection (5 and 95th percentile values) was estimated for all swine farm sizes (500-10,000 head) ranged from 102 to 282 h, from 42 to 216 h for all dairy cattle premises sizes (100-2,000 head) and from 66 to 240 h for all beef cattle premises sizes (5,000-50,000 head). Total time from infection to beginning depopulation (including disease detection and confirmation) for the first FMD infected case was estimated between 8.5-14.3 days for swine, 6-12.8 days for dairy or beef cattle premises. Total time estimated for subsequent FMD cases was between 6.8-12.3 days for swine, 4.3-10.8 days for dairy and 4.5-10.5 days for beef cattle premises. On an average sized operation, a sizable proportion of animals in the herd (34-56% of swine, 48-60% of dairy cattle, and 47-60% of beef cattle for the first case and 49-60% of swine, 55-60% of dairy cattle, 56-59% of beef cattle for subsequent cases) would be viremic at the time of beginning depopulation. A very small fraction of body fluids from the carcasses (i.e., 1 mL) would contain virus that greatly exceeds the minimum infectious dose by oral (4-7x) or inhalation (7-13x) route for pigs and cattle.
Collapse
Affiliation(s)
- Emily Walz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jamie Middleton
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Fernando Sampedro
- Environmental Health Sciences Division, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Sasidhar Malladi
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Timothy Goldsmith
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
8
|
Walz E, Evanson J, Sampedro F, VanderWaal K, Goldsmith T. Planning "Plan B": The Case of Moving Cattle From an Infected Feedlot Premises During a Hypothetical Widespread FMD Outbreak in the United States. Front Vet Sci 2020; 6:484. [PMID: 31998764 PMCID: PMC6964524 DOI: 10.3389/fvets.2019.00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
In the event of a foot-and-mouth disease (FMD) outbreak in the United States, "stamping out" FMD infected premises has been proposed as the method of choice for the control of outbreaks. However, if a widespread, catastrophic FMD outbreak in the U.S. were to occur, alternative solutions to stamping out may be required, particularly for large feedlots with over 10,000 cattle. Such strategies include moving cattle from infected or not known to be infected operations to slaughter facilities either with or without prior implementation of vaccination. To understand the risk of these strategies, it is important to estimate levels of herd viremia. Multiple factors must be considered when determining risk and feasibility of moving cattle from a feedlot to a slaughter facility during an FMD outbreak. In addition to modeling within-herd disease spread to estimate prevalence of viremic animals, we explore potential pathways for viral spread associated with the movement of asymptomatic beef cattle (either pre-clinical or recovered) from an infected feedlot premises to offsite harvest facilities. This analysis was proactive in nature, however evaluation of the likelihood of disease spread relative to disease (infection) phase, time of movement, and vaccination status are all factors which should be considered in managing and containing a large-scale FMD outbreak in the United States.
Collapse
Affiliation(s)
- Emily Walz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jessica Evanson
- Center for Animal Health and Food Safety, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Fernando Sampedro
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Timothy Goldsmith
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
9
|
Lazarus DD, Mutowembwa PB, Sirdar MM, Rametse TM, Heath L, Opperman PA, Burroughs RE, Fosgate GT. Clinical presentation of FMD virus SAT1 infections in experimentally challenged indigenous South African goats. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Fukai K, Nishi T, Morioka K, Yamada M, Yoshida K, Yamakawa M. Horizontal transmission of foot-and-mouth disease virus O/JPN/2010 among different animal species by direct contact. Transbound Emerg Dis 2019; 67:223-233. [PMID: 31482692 DOI: 10.1111/tbed.13344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 07/16/2019] [Accepted: 08/26/2019] [Indexed: 11/26/2022]
Abstract
Foot-and-mouth disease (FMD) is highly contagious and easily transmitted among species of cloven-hoofed animals. To investigate the transmission of FMD virus (FMDV) among different animal species, experimental infections using the O/JPN/2010 strain were performed in cows, goats and pigs. One cow or two goats/pigs were housed with a different species of inoculated animals, and clinical observations, virus shedding and antibody responses were analysed daily. Whilst all cows and goats were infected horizontally by contact with inoculated pigs, transmission from cows to goats/pigs and from goats to cows/pigs was not observed in all in-contact animals. In particular, no pigs were infected horizontally by contact with inoculated goats. Comparison with our previous study on experimental infections among animals of the same species indicates that horizontal transmission occurred more easily between animals of the same species than between those of the different species. These findings will be useful for establishing and performing species-specific countermeasures in farms and regions where multiple species of animals coexist in potential future outbreaks.
Collapse
Affiliation(s)
- Katsuhiko Fukai
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Tatsuya Nishi
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Kazuki Morioka
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Manabu Yamada
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Kazuo Yoshida
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| | - Makoto Yamakawa
- Exotic Disease Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira, Japan
| |
Collapse
|
11
|
Beemer O, Remmenga M, Gustafson L, Johnson K, Hsi D, Antognoli MC. Assessing the value of PCR assays in oral fluid samples for detecting African swine fever, classical swine fever, and foot-and-mouth disease in U.S. swine. PLoS One 2019; 14:e0219532. [PMID: 31310643 PMCID: PMC6634402 DOI: 10.1371/journal.pone.0219532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/27/2019] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Oral fluid sampling and testing offers a convenient, unobtrusive mechanism for evaluating the health status of swine, especially grower and finisher swine. This assessment evaluates the potential testing of oral fluid samples with real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) to detect African swine fever, classical swine fever, or foot-and-mouth disease for surveillance during a disease outbreak and early detection in a disease-free setting. METHODS We used a series of logical arguments, informed assumptions, and a range of parameter values from literature and industry practices to examine the cost and value of information provided by oral fluid sampling and rRT-PCR testing for the swine foreign animal disease surveillance objectives outlined above. RESULTS Based on the evaluation, oral fluid testing demonstrated value for both settings evaluated. The greatest value was in an outbreak scenario, where using oral fluids would minimize disruption of animal and farm activities, reduce sample sizes by 23%-40%, and decrease resource requirements relative to current individual animal sampling plans. For an early detection system, sampling every 3 days met the designed prevalence detection threshold with 0.95 probability, but was quite costly. LIMITATIONS Implementation of oral fluid testing for African swine fever, classical swine fever, or foot-and-mouth disease surveillance is not yet possible due to several limitations and information gaps. The gaps include validation of PCR diagnostic protocols and kits for African swine fever, classical swine fever, or foot-and-mouth disease on swine oral fluid samples; minimal information on test performance in a field setting; detection windows with low virulence strains of some foreign animal disease viruses; and the need for confirmatory testing protocol development.
Collapse
Affiliation(s)
- Oriana Beemer
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Marta Remmenga
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Lori Gustafson
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Kamina Johnson
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - David Hsi
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| | - Maria Celia Antognoli
- Surveillance Design and Analysis Unit, Center for Epidemiology and Animal Health, Veterinary Services, Strategy and Policy, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States of America
| |
Collapse
|
12
|
Gabriele-Rivet V, Arsenault J, Wilhelm B, Brookes VJ, Newsome TM, Ward MP. A Scoping Review of Dingo and Wild-Living Dog Ecology and Biology in Australia to Inform Parameterisation for Disease Spread Modelling. Front Vet Sci 2019; 6:47. [PMID: 30891452 PMCID: PMC6411765 DOI: 10.3389/fvets.2019.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Dingoes and wild-living dogs in Australia, which include feral domestic dogs and dingo-dog hybrids, play a role as reservoirs of disease. In the case of an exotic disease incursion-such as rabies-these reservoirs could be a threat to the health of humans, domestic animals and other wildlife in Australia. Disease spread models are needed to explore this impact and develop mitigation strategies for responding to an incursion. Our study aim was to describe relevant information from the literature, using a scoping review, on specific topics related to dingo and wild-living dog ecology and biology (topics of interest) in Australia to inform parameterisation of disease spread modelling and identify major research gaps. Methods: A broad electronic search was conducted in five bibliographic databases and grey literature. Two levels of screening and two levels of data extraction were each performed independently by two reviewers. Data extracted included topics of interest investigated, type of population sampled, the presence of lethal control, type of environment, years of collection and GPS coordinates of study sites. Results: From 1666 records captured, the screening process yielded 229 individual studies published between 1862 and 2016. The most frequently reported topics of interest in studies were index of abundance (n = 93) and diet (n = 68). Among the three key parameters in disease spread modelling (i.e., density, contacts and home range), data on density and contacts were identified as major research gaps in the literature due to the small number of recent studies on these topics and the scarcity of quantitative estimates. The research reviewed was mostly located around central Australia and the east coast, including a few studies on density, contacts and home range. Data from these regions could potentially be used to inform parameterisation for disease spread modelling of dingoes and wild-living dogs. However, the number of studies is limited in equatorial and tropical climate zones of northern Australia, which is a high-risk area for a rabies incursion. Conclusions: Research in northern regions of Australia, especially to generate data regarding density, contacts and home ranges, should be prioritised for future research on dingoes and wild-living dogs.
Collapse
Affiliation(s)
- Vanessa Gabriele-Rivet
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Julie Arsenault
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | - Victoria J. Brookes
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Thomas M. Newsome
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Michael P. Ward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
13
|
Arzt J, Branan MA, Delgado AH, Yadav S, Moreno-Torres KI, Tildesley MJ, Stenfeldt C. Quantitative impacts of incubation phase transmission of foot-and-mouth disease virus. Sci Rep 2019; 9:2707. [PMID: 30804426 PMCID: PMC6389902 DOI: 10.1038/s41598-019-39029-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/04/2019] [Indexed: 01/13/2023] Open
Abstract
The current investigation applied a Bayesian modeling approach to a unique experimental transmission study to estimate the occurrence of transmission of foot-and-mouth disease (FMD) during the incubation phase amongst group-housed pigs. The primary outcome was that transmission occurred approximately one day prior to development of visible signs of disease (posterior median 21 hours, 95% CI: 1.1-45.0). Updated disease state durations were incorporated into a simulation model to examine the importance of addressing preclinical transmission in the face of robust response measures. Simulation of FMD outbreaks in the US pig production sector demonstrated that including a preclinical infectious period of one day would result in a 40% increase in the median number of farms affected (166 additional farms and 664,912 pigs euthanized) compared to the scenario of no preclinical transmission, assuming suboptimal outbreak response. These findings emphasize the importance of considering transmission of FMD during the incubation phase in modeling and response planning.
Collapse
Affiliation(s)
- Jonathan Arzt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA.
| | - Matthew A Branan
- Monitoring and Modeling, Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Amy H Delgado
- Monitoring and Modeling, Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
| | - Shankar Yadav
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA
- Monitoring and Modeling, Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
- PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Karla I Moreno-Torres
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA
- Monitoring and Modeling, Center for Epidemiology and Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO, USA
- PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Michael J Tildesley
- Zeeman Institute (SBIDER), School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, UK
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, USA.
- Department of Veterinary Population Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
14
|
Rossi G, Aubry P, Dubé C, Smith RL. The spread of bovine tuberculosis in Canadian shared pastures: Data, model, and simulations. Transbound Emerg Dis 2018; 66:562-577. [PMID: 30407739 DOI: 10.1111/tbed.13066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/03/2023]
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease typical of cattle. Nonetheless, it can affect many mammals including humans, making it one of the most widespread zoonotic diseases worldwide. In industrialized countries, the main pathways of introduction of bTB into a herd are animal trade and contact with infected wildlife. In addition, for slow-spreading diseases with a long latent period such as bTB, shared seasonal pastures might be a between-herd transmission pathway, indeed farmers might unknowingly send infected animals to the pasture, since clinical signs are rarely evident in early infection. In this study, we developed a dynamic stochastic model to represent the spread of bTB in pastures. This was tailored to Canadian cow-calf herds, as we calibrated the model with data sourced from a recent bTB outbreak in Western Canada. We built a model for a herd with seasonal management, characterized by its partition into a group staying in the main facility and the remaining group(s) moving to summer pastures. We used this model to estimate the time of the first introduction of bTB into the herd. Furthermore, we expanded the model to include herds categorized as high-risk contacts with the index herd, in order to estimate the potential for disease spread on shared pastures. Finally, we explored two control scenarios to be applied to high-risk farms after the outbreak detection. Our results showed that the first introduction likely happened 3 to 5 years prior to the detection of the index herd, and the probability of bTB spreading in pastures was low, but not negligible. Nevertheless, the surveillance system currently in place was effective to detect potential outbreaks.
Collapse
Affiliation(s)
- Gianluigi Rossi
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Pascale Aubry
- Animal Health Risk Assessment Unit, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Caroline Dubé
- Animal Health Risk Assessment Unit, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Rebecca L Smith
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| |
Collapse
|
15
|
Cabezas AH, Sanderson MW, Jaberi-Douraki M, Volkova VV. Clinical and infection dynamics of foot-and-mouth disease in beef feedlot cattle: An expert survey. Prev Vet Med 2018; 158:160-168. [PMID: 30220390 DOI: 10.1016/j.prevetmed.2018.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Parameterizing mathematical models of foot-and-mouth disease virus (FMDv) transmission is challenging due to knowledge gaps on the variable dynamics in susceptible populations. Expert opinion surveys are an approach to gather data on topics where no data have been reported. The objective of this study was to collect-via an expert-opinion survey-key parameter values of the potential FMD natural history and transmissibility in beef feedlot cattle in the U.S. Experts with experience working with FMD in endemic and non-endemic settings were targeted. Parameters surveyed were: duration of infection and disease stages, proportions of animals with specific clinical manifestations, duration and extent of the reduction in feed consumption, and probabilities of severe clinical disease and FMDv transmission. We surveyed the parameter values for infections by strains of different virulence, different infection doses, and routes of transmission. Twenty-seven experts from around the world agreed to participate and 16 (59%) completed the survey. The expert responses to individual questions were resampled via Monte Carlo simulations; to the resulting distributions, candidate theoretical distributions were fitted using the maximum likelihood method and the sought parameter values estimated based on the best-fit distributions. Of the infection stages, the estimates of the expected FMD latent period in beef feedlot ranged from 1.7 to 5.3 days and the infectious period from 5.6 to 10.9 days. Of the disease stages, the estimated incubation period ranged from 2.9 to 6.1 days, subclinical period from 1.2 to 2.8 days, and clinical period from 4.2 to 7.5 days. Probability of developing clinical disease after infection varied from 82% (IQ range 90-70%) with high-virulent to 63% (IQ range 89-60%) with low-virulent strains. Reduction in feed consumption was estimated to last 5 (SD ± 2) days in cattle infected by a low-virulent FMDv strain and 7 (SD ± 2) days for high virulent strains. The study results can be used in combination with experimental and outbreak investigation data to parameterize FMDv-transmission models to evaluate intervention responses during hypothetical FMD epidemics in beef feedlot populations in the U.S.
Collapse
Affiliation(s)
- Aurelio H Cabezas
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| | - Michael W Sanderson
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States
| | - Majid Jaberi-Douraki
- Institute of Computational Comparative Medicine, Department of Mathematics, Kansas State University, Manhattan, KS 66506, United States
| | - Victoriya V Volkova
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States; Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
16
|
Moreno-Torres KI, Brito BP, Branan MA, Rodriguez LL, Delgado AH, Stenfeldt C, Arzt J. Foot-and-Mouth Disease Infection Dynamics in Contact-Exposed Pigs Are Determined by the Estimated Exposure Dose. Front Vet Sci 2018; 5:167. [PMID: 30079340 PMCID: PMC6062637 DOI: 10.3389/fvets.2018.00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
The quantitative relationship between the exposure dose of foot-and-mouth disease virus (FMDV) and subsequent infection dynamics has been demonstrated through controlled inoculation studies in various species. However, similar quantitation of viral doses has not been achieved during contact exposure experiments due to the intrinsic difficulty of measuring the virus quantities exchanged between animals. In the current study, novel modeling techniques were utilized to investigate FMDV infection dynamics in groups of pigs that had been contact-exposed to FMDV-infected donors shedding varying levels of virus, as well as in pigs inoculated via the intra-oropharyngeal (IOP) route. Estimated virus exposure doses were modeled and were found to be statistically significantly associated with the dynamics of FMDV RNA detection in serum and oropharyngeal fluid (OPF), and with the time to onset of clinical disease. The minimum estimated shedding quantity in OPF that defined infectiousness of donor pigs was 6.55 log10 genome copy numbers (GCN)/ml (95% CI 6.11, 6.98), which delineated the transition from the latent to infectious phase of disease which occurred during the incubation phase. This quantity corresponded to a minimum estimated exposure dose of 5.07 log10 GCN/ml (95% CI 4.25, 5.89) in contact-exposed pigs. Thus, we demonstrated that a threshold quantity of FMDV detection in donor pigs was necessary in order to achieve transmission by direct contact. The outcomes from this investigation demonstrate that variability of infection dynamics which occurs during the progression of FMD in naturally exposed pigs can be partially attributed to variations in exposure dose. Moreover, these modeling approaches for dose-quantitation may be retrospectively applied to contact-exposure experiments or field scenarios. Hence, robust information could be incorporated into models used to evaluate FMD spread and control.
Collapse
Affiliation(s)
- Karla I Moreno-Torres
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States.,United States Department of Agriculture, Monitoring and Modeling, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Barbara P Brito
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Matthew A Branan
- United States Department of Agriculture, Monitoring and Modeling, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Amy H Delgado
- United States Department of Agriculture, Monitoring and Modeling, Animal and Plant Health Inspection Service, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, United States
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, Greenport, NY, United States
| |
Collapse
|
17
|
Kinsley AC, VanderWaal K, Craft ME, Morrison RB, Perez AM. Managing complexity: Simplifying assumptions of foot-and-mouth disease models for swine. Transbound Emerg Dis 2018; 65:1307-1317. [PMID: 29687629 DOI: 10.1111/tbed.12880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Indexed: 11/29/2022]
Abstract
Compartmental models have often been used to test the effectiveness and efficiency of alternative control strategies to mitigate the spread of infectious animal diseases. A fundamental principle of epidemiological modelling is that models should start as simple as possible and become as complex as needed. The simplest version of a compartmental model assumes that the population is closed, void of births and deaths and that this closed population mixes homogeneously, meaning that each infected individual has an equal probability of coming into contact with each susceptible individual in the population. However, this assumption may oversimplify field conditions, leading to conclusions about disease mitigation strategies that are suboptimal. Here, we assessed the impact of the homogeneous mixing/closed population assumption, which is commonly assumed for within-farm models of highly contagious diseases of swine, such as foot-and-mouth disease (FMD), on predictions about disease spread. Incorporation of farm structure (different barns or rooms for breeding and gestation, farrowing, nursery and finishing) and demography (piglet births and deaths, and animal movement within and off of the farm) resulted in transmission dynamics that differed in the latter portion of an outbreak. Specifically, farm structure and demography, which were included in the farrow to finish and farrow to wean farms, resulted in FMD virus persistence within the population under certain conditions. Results here demonstrate the impact of incorporating farm structure and demography into models of FMD spread in swine populations and will ultimately contribute to the design and evaluation of effective disease control strategies to mitigate the impact of potential incursions.
Collapse
Affiliation(s)
- A C Kinsley
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - K VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - M E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - R B Morrison
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - A M Perez
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
18
|
Understanding the transmission of foot-and-mouth disease virus at different scales. Curr Opin Virol 2017; 28:85-91. [PMID: 29245054 DOI: 10.1016/j.coviro.2017.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
Foot-and-mouth disease (FMD) is highly infectious, but despite the large quantities of FMD virus released into the environment and the extreme susceptibility of host species to infection, transmission is not always predictable. Whereas virus spread in endemic settings is characterised by frequent direct and indirect animal contacts, incursions into FMD-free countries may be seeded by low-probability events such as fomite or wind-borne aerosol routes. There remains a void between data generated from small-scale experimental studies and our ability to reliably reconstruct transmission routes at different scales between farms, countries and regions. This review outlines recent transmission studies in susceptible host species, and considers new approaches that integrate virus genomics and epidemiological data to recreate and understand the spread of FMD.
Collapse
|
19
|
Hayer SS, VanderWaal K, Ranjan R, Biswal JK, Subramaniam S, Mohapatra JK, Sharma GK, Rout M, Dash BB, Das B, Prusty BR, Sharma AK, Stenfeldt C, Perez A, Delgado AH, Sharma MK, Rodriguez LL, Pattnaik B, Arzt J. Foot-and-mouth disease virus transmission dynamics and persistence in a herd of vaccinated dairy cattle in India. Transbound Emerg Dis 2017; 65:e404-e415. [PMID: 29205858 DOI: 10.1111/tbed.12774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 11/28/2022]
Abstract
Foot-and-mouth disease (FMD) is an important transboundary disease with substantial economic impacts. Although between-herd transmission of the disease has been well studied, studies focusing on within-herd transmission using farm-level outbreak data are rare. The aim of this study was to estimate parameters associated with within-herd transmission, host physiological factors and FMD virus (FMDV) persistence using data collected from an outbreak that occurred at a large, organized dairy farm in India. Of 1,836 regularly vaccinated, adult dairy cattle, 222 had clinical signs of FMD over a 39-day period. Assuming homogenous mixing, a frequency-dependent compartmental model of disease transmission was built. The transmission coefficient and basic reproductive number were estimated to be between 16.2-18.4 and 67-88, respectively. Non-pregnant animals were more likely to manifest clinical signs of FMD as compared to pregnant cattle. Based on oropharyngeal fluid (probang) sampling and FMDV-specific RT-PCR, four of 36 longitudinally sampled animals (14%) were persistently infected carriers 10.5 months post-outbreak. There was no statistical difference between subclinical and clinically infected animals in the duration of the carrier state. However, prevalence of NSP-ELISA antibodies differed significantly between subclinical and clinically infected animals 12 months after the outbreak with 83% seroprevalence amongst clinically infected cattle compared to 69% of subclinical animals. This study further elucidates within-herd FMD transmission dynamics during the acute-phase and characterizes duration of FMDV persistence and seroprevalence of FMD under natural conditions in an endemic setting.
Collapse
Affiliation(s)
- S S Hayer
- UMN, STEMMA Laboratory, Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - K VanderWaal
- UMN, STEMMA Laboratory, Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - R Ranjan
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - J K Biswal
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - S Subramaniam
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - J K Mohapatra
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - G K Sharma
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - M Rout
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - B B Dash
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - B Das
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - B R Prusty
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - A K Sharma
- ICAR-Indian Veterinary Research Institute, Mukteshwar, Nainital, Uttarakhand, India
| | - C Stenfeldt
- UMN, STEMMA Laboratory, Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA.,Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, NY, USA
| | - A Perez
- UMN, STEMMA Laboratory, Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - A H Delgado
- Center for Epidemiology and Animal Health, APHIS, USDA, Fort Collins, CO, USA
| | - M K Sharma
- ABIS Dairy, Rajnandgaon, Chhattisgarh, India
| | - L L Rodriguez
- Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, NY, USA
| | - B Pattnaik
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - J Arzt
- Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, NY, USA
| |
Collapse
|
20
|
Lyons NA, Lyoo YS, King DP, Paton DJ. Challenges of Generating and Maintaining Protective Vaccine-Induced Immune Responses for Foot-and-Mouth Disease Virus in Pigs. Front Vet Sci 2016; 3:102. [PMID: 27965966 PMCID: PMC5127833 DOI: 10.3389/fvets.2016.00102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
Vaccination can play a central role in the control of outbreaks of foot-and-mouth disease (FMD) by reducing both the impact of clinical disease and the extent of virus transmission between susceptible animals. Recent incursions of exotic FMD virus lineages into several East Asian countries have highlighted the difficulties of generating and maintaining an adequate immune response in vaccinated pigs. Factors that impact vaccine performance include (i) the potency, antigenic payload, and formulation of a vaccine; (ii) the antigenic match between the vaccine and the heterologous circulating field strain; and (iii) the regime (timing, frequency, and herd-level coverage) used to administer the vaccine. This review collates data from studies that have evaluated the performance of foot-and-mouth disease virus vaccines at the individual and population level in pigs and identifies research priorities that could provide new insights to improve vaccination in the future.
Collapse
Affiliation(s)
- Nicholas A. Lyons
- The Pirbright Institute, Pirbright, UK
- European Commission for the Control of Foot-and-Mouth Disease, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Young S. Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | | | | |
Collapse
|