1
|
Sagan B, Czerny B, Stasiłowicz-Krzemień A, Szulc P, Skomra U, Karpiński TM, Lisiecka J, Kamiński A, Kryszak A, Zimak-Krótkopad O, Cielecka-Piontek J. Anticholinesterase Activity and Bioactive Compound Profiling of Six Hop ( Humulus lupulus L.) Varieties. Foods 2024; 13:4155. [PMID: 39767097 PMCID: PMC11675283 DOI: 10.3390/foods13244155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Hops (Humulus lupulus L.) are widely recognized for their use in brewing, but they also possess significant pharmacological properties due to their rich bioactive compounds, with many varieties exhibiting diverse characteristics. This study investigates the chemical composition and biological activities of extracts from six hop varieties, focusing on quantifying xanthohumol and lupulone using High-Performance Liquid Chromatography (HPLC) and Total Phenolic Content (TPC) analysis. The hop varieties demonstrated significant variability in bioactive compound concentrations, with Aurora showing the highest xanthohumol (0.665 mg/g) and Zwiegniowski the highest lupulone (9.228 mg/g). TPC analysis revealed Aurora also had the highest phenolic content (22.47 mg GAE/g). Antioxidant activities were evaluated using DPPH, ABTS, CUPRAC, and FRAP assays, with Aurora and Oregon Fuggle displaying the most potent capacities. Aurora, in particular, showed the highest activity across multiple assays, including significant acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase inhibition, with IC50 values of 24.39 mg/mL, 20.38 mg/mL, and 9.37 mg/mL, respectively. The chelating activity was also assessed, with Apolon demonstrating the strongest metal ion binding capacity (IC50 = 1.04 mg/mL). Additionally, Aurora exhibited the most effective hyaluronidase inhibition (IC50 = 10.27 mg/mL), highlighting its potential for anti-inflammatory applications. The results underscore the influence of genetic and environmental factors on the bioactive compound profiles of hop varieties and their biological activity offering promising avenues for pharmaceutical and nutraceutical applications. However, further studies are needed to fully understand the potential interactions between hop cones components.
Collapse
Affiliation(s)
- Bartłomiej Sagan
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University Hospital No. 1 in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland
| | - Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Urszula Skomra
- Institute of Soil Science and Plant Cultivation State Research Institute, Department of Biotechnology and Plant Breeding, Czartoryskich 8 Str., 24-100 Puławy, Poland;
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland;
| | - Jolanta Lisiecka
- Department of Vegetable Crops, Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Dabrowskiego 159, 60-594 Poznan, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Pomeranian Medical University Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Aleksandra Kryszak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Oskar Zimak-Krótkopad
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; (A.K.); (O.Z.-K.)
| |
Collapse
|
2
|
Kober L, Strauch SM, Schwab S, Becker AM, Erzinger GS, Castiglione K. Hop as a phytogenic alternative to antibiotic growth promoters in poultry production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39360504 DOI: 10.1002/jsfa.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
With the rapid growth of the world's population, the demand for food is also increasing. Poultry accounts for 40% of the global meat sector and therefore represents a significant area for further growth. One starting point for increasing production is to refine the composition of feed to improve the efficiency of growth and nutrient utilization, prevent disease and at the same time reduce environmental impact. Similar considerations have led to the long-standing sub-therapeutic use of antibiotics as growth promoters in animal husbandry, which is associated with the threat of rising antimicrobial resistances and the resulting consequences for human and animal health. In order to circumvent these drawbacks, an increasing number of alternative feed additives are becoming more prevalent. The use of phytogenic feed additives, which includes hops (Humulus lupulus), is regarded as a viable alternative. In addition to its natural availability, hops have been demonstrated to exhibit antimicrobial effects and there is increasing evidence of growth-promoting effects in vivo. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Luisa Kober
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian M Strauch
- Postgraduate Program in Health and Environment, University of the Region of Joinville - UNIVILLE, Joinville, Brazil
| | - Stefan Schwab
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna M Becker
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gilmar S Erzinger
- Postgraduate Program in Health and Environment, University of the Region of Joinville - UNIVILLE, Joinville, Brazil
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Zeng Y, Ahmed HGMD, Li X, Yang L, Pu X, Yang X, Yang T, Yang J. Physiological Mechanisms by Which the Functional Ingredients in Beer Impact Human Health. Molecules 2024; 29:3110. [PMID: 38999065 PMCID: PMC11243521 DOI: 10.3390/molecules29133110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Nutritional therapy, for example through beer, is the best solution to human chronic diseases. In this article, we demonstrate the physiological mechanisms of the functional ingredients in beer with health-promoting effects, based on the PubMed, Google, CNKI, and ISI Web of Science databases, published from 1997 to 2024. Beer, a complex of barley malt and hops, is rich in functional ingredients. The health effects of beer against 26 chronic diseases are highly similar to those of barley due to the physiological mechanisms of polyphenols (phenolic acids, flavonoids), melatonin, minerals, bitter acids, vitamins, and peptides. Functional beer with low purine and high active ingredients made from pure barley malt, as well as an additional functional food, represents an important development direction, specifically, ginger beer, ginseng beer, and coix-lily beer, as consumed by our ancestors ca. 9000 years ago. Low-purine beer can be produced via enzymatic and biological degradation and adsorption of purines, as well as dandelion addition. Therefore, this review paper not only reveals the physiological mechanisms of beer in overcoming chronic human diseases, but also provides a scientific basis for the development of functional beer with health-promoting effects.
Collapse
Affiliation(s)
- Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Hafiz Ghulam Muhu-Din Ahmed
- Department of Plant Breeding and Genetics, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Xia Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Li'e Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Tao Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China
| | - Jiazhen Yang
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming 650205, China
| |
Collapse
|
4
|
Tamilselvan R, Immanuel Selwynraj A. Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi. Anaerobe 2024; 85:102815. [PMID: 38145708 DOI: 10.1016/j.anaerobe.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Biogas production from Lignocellulosic Biomass (LB) via anaerobic digestion (AD) has gained attention for its potential in self-sustainability. However, the recalcitrance of LB cell walls pose a challenge to its degradability and biogas generation. Therefore, pretreatment of LB is necessary to enhance lignin removal and increase degradability. Among the different approaches, environmentally friendly biological pretreatment ispromising as it avoids the production of inhibitors. The ruminal microbial community, including anaerobic fungi, bacteria, and protozoa, has shown an ability to effectively degrade LB through biomechanical and microbial penetration of refractory cell structures. In this review, we provide an overview of ruminant microbes dominating LB's AD, their degradation mechanism, and the bioaugmentation of the rumen. We also explore the potential cultivation of anaerobic fungi from the rumen, their enzyme potential, and their role in AD. The rumen ecosystem, comprising both bacteria and fungi, plays a crucial role in enhancing AD. This comprehensive review delves into the intricacies of ruminant microorganisms' adhesion to plant cells, elucidates degradation mechanisms, and explores integrated pretreatment approaches for the effective utilization of LB, minimizing the impact of inhibitors. The discussion underscores the considerable potential of ruminant microbes in pretreating LB, paving the way for sustainable biogas production. Optimizing fungal colonization and ligninolytic enzyme production, such as manganese peroxidase and laccase, significantly enhances the efficiency of fungal pretreatment. Integrating anaerobic fungi through bioaugmentation during mainstream processing demonstrably increases methane production. This study opens promising avenues for further research and development of these microorganisms for bioenergy production.
Collapse
Affiliation(s)
- R Tamilselvan
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - A Immanuel Selwynraj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
5
|
Barbosa CR, Pantoja JC, Fernandes T, Chagas RA, Souza CG, Santos ARD, Alves JP, Vargas Junior FM. Ruminal modulator additive effect of Stryphnodendron rotundifolium bark in feedlot lambs. Trop Anim Health Prod 2024; 56:53. [PMID: 38261014 DOI: 10.1007/s11250-024-03903-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
The study aimed to evaluate the inclusion effects of Stryphnodendron rotundifolium (barbatimão) extracts in substitution of the lasalocid sodium on the ingestive behaviour, intake, ruminal parameters, and digestibility of feedlot lambs. Twenty-four pantaneiro lambs were used, with an average age of 150 ± 4.59 days and an initial body weight of 21.2 ± 3.63 kg. The lambs were distributed in three treatments in an experimental design with randomized blocks. The treatments correspond to the additive supplements: LAS (0.019 g of lasalocid sodium/lamb/d); DGB (1.50 g of barbatimão dried ground bark/lamb/d); DHE (0.30 g of barbatimão dry hydroalcoholic extract/lamb/d). The DHE increased 59.74 min in the time spent for ingestion per day, resulting in an efficiency reduction of dry matter (DM) ingestion (127 g of DM/h of feed). There was a reduction of 1.8 mg/dL in the ammoniacal nitrogen concentration with extract supplementation compared to LAS. The DGB reduced total volatile fatty acids by 48.9% compared to the control treatment. The inclusion of barbatimão extracts (DGB and DHE) reduced 12.05% of ruminal butyrate content. The supplementation of barbatimão extracts replacing lasalocid sodium in the diet of feedlot lambs did not affect intake and caused small changes on ingestive behaviour.
Collapse
Affiliation(s)
- Cristiane R Barbosa
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Jéssica C Pantoja
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Tatiane Fernandes
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA
| | - Renata A Chagas
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Carla G Souza
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Aylpy R D Santos
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Joyce P Alves
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil
| | - Fernando M Vargas Junior
- Agrarian Sciences Department, Federal University of Grande Dourados, Dourados, 79804-970, Brazil.
| |
Collapse
|
6
|
Bryant RW, Burns EER, Feidler-Cree C, Carlton D, Flythe MD, Martin LJ. Spent Craft Brewer's Yeast Reduces Production of Methane and Ammonia by Bovine Rumen Microbes. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.720646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methane and ammonia are byproducts of rumen fermentation that do not promote animal growth, and methane is a key contributor to anthropogenic climate disruption. Cows eructate every few breaths and typically emit 250–500 L of methane gas daily. Significant research is focused on finding diets and additives that lower the production of methane and ammonia. Emerging research has shown that humulones and lupulones, molecules that are found in the cones of hops (Humulus lupulus), have potential in this regard. These molecules, which are also key flavor components in beer, are biologically active: they are known inhibitors of Gram-positive bacteria. Ruminants' sophisticated digestive systems host billions of microorganisms, and these systems' outputs will likely be affected in the presence of brewer's yeast (Saccharomyces cerevisiae). So-called spent yeast is produced during the beer-brewing process and contains humulones and lupulones in concentrations that vary by beer style, but it is generally discarded as waste. Our research suggests that adding spent craft brewer's yeast to rumen microbes by single time-point 24-h in vitro incubations suppresses production of methane and ammonia. This project examines the correlation between the quantities of hop acids in spent yeast and the production of methane and ammonia by bovine rumen microbes in vitro. We determined, by HPLC, the hop acid concentrations in spent yeast obtained from six beer styles produced at a local brewery. We performed anaerobic incubation studies on bovine rumen microbes, comparing the effects of these materials to a baker's yeast control and to the industry-standard antibiotic monensin. Results include promising decreases in both methane (measured by GC–FID) and ammonia (measured by colorimetric assay) in the presence of craft brewer's yeast, and a strong correlation between the quantities of hop acids in the spent yeast and the reduction of methane and ammonia. Notably, two of the yeast samples inhibited methane production to a greater degree than the industry-standard antibiotic monensin. Our results suggest that spent brewer's yeast has potential to improve ruminant growth while reducing anthropogenic methane emission.
Collapse
|
7
|
Harlow BE, Flythe MD, Klotz JL, Harmon DL, Aiken GE. Effect of biochanin A on the rumen microbial community of Holstein steers consuming a high fiber diet and subjected to a subacute acidosis challenge. PLoS One 2021; 16:e0253754. [PMID: 34288928 PMCID: PMC8294529 DOI: 10.1371/journal.pone.0253754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
Subacute rumen acidosis (SARA) occurs when highly fermentable carbohydrates are introduced into the diet, decreasing pH and disturbing the microbial ecology of the rumen. Rumen amylolytic bacteria rapidly catabolize starch, fermentation acids accumulate in the rumen and reduce environmental pH. Historically, antibiotics (e.g., monensin, MON) have been used in the prevention and treatment of SARA. Biochanin A (BCA), an isoflavone produced by red clover (Trifolium pratense), mitigates changes associated with starch fermentation ex vivo. The objective of the study was to determine the effect of BCA on amylolytic bacteria and rumen pH during a SARA challenge. Twelve rumen fistulated steers were assigned to 1 of 4 treatments: HF CON (high fiber control), SARA CON, MON (200 mg d-1), or BCA (6 g d-1). The basal diet consisted of corn silage and dried distiller’s grains ad libitum. The study consisted of a 2-wk adaptation, a 1-wk HF period, and an 8-d SARA challenge (d 1–4: 40% corn; d 5–8: 70% cracked corn). Samples for pH and enumeration were taken on the last day of each period (4 h). Amylolytic, cellulolytic, and amino acid/peptide-fermenting bacteria (APB) were enumerated. Enumeration data were normalized by log transformation and data were analyzed by repeated measures ANOVA using the MIXED procedure of SAS. The SARA challenge increased total amylolytics and APB, but decreased pH, cellulolytics, and in situ DMD of hay (P < 0.05). BCA treatment counteracted the pH, microbiological, and fermentative changes associated with SARA challenge (P < 0.05). Similar results were also observed with MON (P < 0.05). These results indicate that BCA may be an effective alternative to antibiotics for mitigating SARA in cattle production systems.
Collapse
Affiliation(s)
- Brittany E. Harlow
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, KY, United States of America
- * E-mail:
| | - Michael D. Flythe
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, KY, United States of America
| | - James L. Klotz
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, KY, United States of America
| | - David L. Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Glen E. Aiken
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| |
Collapse
|
8
|
Zou J, Reddivari L, Shi Z, Li S, Wang Y, Bretin A, Ngo VL, Flythe M, Pellizzon M, Chassaing B, Gewirtz AT. Inulin Fermentable Fiber Ameliorates Type I Diabetes via IL22 and Short-Chain Fatty Acids in Experimental Models. Cell Mol Gastroenterol Hepatol 2021; 12:983-1000. [PMID: 33940221 PMCID: PMC8346662 DOI: 10.1016/j.jcmgh.2021.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Nourishment of gut microbiota via consumption of fermentable fiber promotes gut health and guards against metabolic syndrome. In contrast, how dietary fiber impacts type 1 diabetes is less clear. METHODS To examine impact of dietary fibers on development of type 1 diabetes in the streptozotocin (STZ)-induced and spontaneous non-obese diabetes (NOD) models, mice were fed grain-based chow (GBC) or compositionally defined diets enriched with a fermentable fiber (inulin) or an insoluble fiber (cellulose). Spontaneous (NOD mice) or STZ-induced (wild-type mice) diabetes was monitored. RESULTS Relative to GBC, low-fiber diets exacerbated STZ-induced diabetes, whereas diets enriched with inulin, but not cellulose, strongly protected against or treated it. Inulin's restoration of glycemic control prevented loss of adipose depots, while reducing food and water consumption. Inulin normalized pancreatic function and markedly enhanced insulin sensitivity. Such amelioration of diabetes was associated with alterations in gut microbiota composition and was eliminated by antibiotic administration. Pharmacologic blockade of fermentation reduced inulin's beneficial impact on glycemic control, indicating a role for short-chain fatty acids (SCFA). Furthermore, inulin's microbiota-dependent anti-diabetic effect associated with SCFA-independent restoration of interleukin 22, which was necessary and sufficient to ameliorate STZ-induced diabetes. Inulin-enriched diets significantly delayed diabetes in NOD mice. CONCLUSIONS Fermentable fiber confers microbiota-dependent increases in SCFA and interleukin 22 that, together, may have potential to prevent and/or treat type 1 diabetes.
Collapse
Affiliation(s)
- Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Zhenda Shi
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Shiyu Li
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Yanling Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Alexis Bretin
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Vu L Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | | | | | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; Neuroscience Institute, Georgia State University, Atlanta, Georgia; INSERM, U1016, Team "Mucosal microbiota in chronic inflammatory diseases", Paris, France; Université de Paris, Paris, France
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
9
|
Recent patents on therapeutic activities of xanthohumol: a prenylated chalconoid from hops ( Humulus lupulus L.). Pharm Pat Anal 2021; 10:37-49. [PMID: 33445965 DOI: 10.4155/ppa-2020-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is expanding proof that specific natural compounds found in plants have additional conventional medicinal properties. One such compound is xanthohumol (XN), which is being explored as an antimicrobial, anticarcinogenic, antidiabetic and anti-inflammatory agent - aside from its utilization in dealing with conditions like autism, bone and skin improvement and microbial infections, lipid-related illnesses, and so on. XN is reported to suppress the uncontrolled production of inflammatory mediators responsible for diseases including cardiovascular disease, neurodegeneration and tumors. Further, it is accounted to limit adipogenesis and control obesity by focusing on principal adipocyte marker proteins. It is most generally utilized in the brewing industry as an additive and flavoring agent to add bitterness and aroma to beer. Present investigation sum up the patents filed in most recent 2 years on development of different pharmaceutical mixes and strategies dependent on various therapeutic potentials of XN.
Collapse
|
10
|
Razo Ortiz PB, Mendoza Martinéz GD, Silva GV, Osorio Teran AI, González Sánchez JF, Hernández García PA, de la Torre Hérnandez ME, Espinosa Ayala E. Polyherbal feed additive for lambs: effects on performance, blood biochemistry and biometry. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1814786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pablo Benjamín Razo Ortiz
- Universidad Autónoma Metropolitana, Xochimilco, Doctorado en Ciencias Agropecuarias, México City, México
| | | | - Gabriela Vázquez Silva
- Centro Universitario UAEM Amecameca, Univerisidad Autónoma del Estado de México, Estado de México, México
| | - Amada Isabel Osorio Teran
- Centro Universitario UAEM Amecameca, Univerisidad Autónoma del Estado de México, Estado de México, México
| | | | | | | | - Enrique Espinosa Ayala
- Centro Universitario UAEM Amecameca, Univerisidad Autónoma del Estado de México, Estado de México, México
| |
Collapse
|
11
|
Lakes JE, Richards CI, Flythe MD. Inhibition of Bacteroidetes and Firmicutes by select phytochemicals. Anaerobe 2019; 61:102145. [PMID: 31918362 DOI: 10.1016/j.anaerobe.2019.102145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 01/26/2023]
Abstract
Current research indicates that changes in gut microbiota can impact the host, but it is not always clear how dietary and environmental factors alter gut microbiota. One potential factor is antimicrobial activity of compounds ingested by the host. The goal of this study was to determine the antimicrobial activity of common plant secondary metabolites against pure cultures of paired, structurally and phylogenetically distinct gastrointestinal bacteria of human or bovine origin: Prevotella bryantii B14, Bacteroides fragilis 25285, Acetoanaerobium (Clostridium) sticklandii SR and Clostridioides difficile 9689. When growth media were amended with individual phytochemicals (the alkaloids: berberine, capsaicin, nicotine, piperine and quinine and the phenolic: curcumin), growth of each species was inhibited to varying degrees at the three greatest concentrations tested (0.10-10.00 mg mL-1). The viable cell numbers of all the cultures were reduced, ≥4-logs, by berberine at concentrations ≥1.00 mg mL-1. Quinine performed similarly to berberine for B14, 25285, and SR at the same concentrations. The other phytochemicals were inhibitory, but not as much as quinine or berberine. Nicotine had activity against all four species (≥2-log reduction in viable cell number at 10.00 mg mL-1), but had stronger activity against the Gram-positive bacteria, SR and 9689, (≥4-log reductions at 10.00 mg mL-1). In conclusion, the phytochemicals had varying spectra of antimicrobial activity. These results are consistent with the hypothesis that ingested phytochemicals have the ability to differentially impact gut microbiota through antimicrobial activity.
Collapse
Affiliation(s)
- Jourdan E Lakes
- Department of Chemistry, College of Arts & Sciences, University of Kentucky, Lexington, KY, USA
| | - Christopher I Richards
- Department of Chemistry, College of Arts & Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael D Flythe
- USDA Agricultural Research Service Forage-Animal Production Research Unit, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Kagan IA, Goodman JP, Seman DH, Lawrence LM, Smith SR. Effects of Harvest Date, Sampling Time, and Cultivar on Total Phenolic Concentrations, Water-Soluble Carbohydrate Concentrations, and Phenolic Profiles of Selected Cool-Season Grasses in Central Kentucky. J Equine Vet Sci 2019; 79:86-93. [DOI: 10.1016/j.jevs.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 01/11/2023]
|
13
|
Effect of hop (Humulus lupulus L.) inclusion in the diet for fattening lambs on animal performance, ruminal characteristics and meat quality. Food Res Int 2018; 108:42-47. [PMID: 29735075 DOI: 10.1016/j.foodres.2018.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 11/23/2022]
Abstract
Thirty male merino lambs were fed with a pelleted total mixed ration (TMR) alone or supplemented with hop (Humulus lupulus L.) cones at two different doses (1.5 and 3.0 g hop cones/kg pelleted TMR, respectively), to study the effects of this dietary source of antioxidants on animal performance, ruminal parameters and meat quality attributes. The results showed that dietary supplementation with hop cones decreased lambs' growth rate (P < 0.05) due to a shift in ruminal fermentation, towards a more acetic and less propionic acid production (P < 0.05). These changes in animal growth rate might have promoted microstructural modifications in the quantity and size of muscle fibres, thereby inducing the differences observed in meat chemical composition, colour and texture (P < 0.05), regardless of the lack of differences in meat antioxidant status (P > 0.10).
Collapse
|
14
|
Inhibition of Growth and Ammonia Production of Ruminal Hyper Ammonia-Producing Bacteria by Chinook or Galena Hops after Long-Term Storage. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|