1
|
Huang R, Jiang X, Jiang Y, Qian Y, Huang J, Liu T, Wang Y, Hu K, Yang Z, Wei Z. Efficacy of cordycepin against Neospora caninum infection in vitro and in vivo. Vet Parasitol 2024; 331:110284. [PMID: 39126893 DOI: 10.1016/j.vetpar.2024.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Neospora caninum (N. caninum) is an obligate intracellular Apicomplexa parasite that causes abortions in dairy cows and incurs substantial to significant economic losses in the global dairy farming industry. Cordycepin, a nucleoside antibiotic derived from Chinese medicine Cordyceps militaries, exhibits diverse biological activities. However, it remains unclear whether cordycepin possesses inhibitory effects against N. caninum infection. Therefore, this study aimed to establish both in vivo and in vitro models of N. caninum to investigate the potential impact of cordycepin against N. caninum infection. We successfully established an in vitro model of N. caninum infection in RAW264.7 cells, followed by qRT- PCR analysis to detect the content of N. caninum DNA within the cells. The effects of cordycepin on N. caninum was observed using the Giemsa method on RAW264.7, and the rate of cell infection was calculated. Cordycepin exhibited inhibitory effects on N. caninum tachyzoites in vitro, preserving cellular integrity and reducing the rate of cell infection. In mice, we established an in vivo model of N. caninum infection and detected N. caninum presence in tissues using. Real-time fluorescence quantitative PCR. Histopathological changes were observed through Hematoxylin-eosin staining. Liver function was assessed by using glutamic acid aminotransferase (ALT) and aspartic acid aminotransferase (AST) kits. Oxidative stress status was measured using catalase (CAT), malondialdehyde (MDA), and glutathione (GSH) kits. Compared with the model group, mice treated with cordycepin showed reduced clinical symptoms, increased food intake, and their body weight (P=0.0143, P=0.0068) was significantly higher than those in the model group. Furthermore, cordycepin treatment significantly alleviated hepatic cord disorders, hepatocellular swelling, detachment, and vacuolization; duodenal epithelial detachment and shortening of villi caused by N. caninum infection. Cordycepin administration reduced the increase in ALT (P=0.01, P=0.008) and AST (P<0.001) levels caused by N. caninum infection, while ameliorating hepatocyte swelling, necrosis, and detachment as well as inflammatory cell infiltration within mice liver; it also led to shortened or even disappeared duodenal villi along with and oedema of the submucosa. Analysis of oxidative stress showed that cordycepin ameliorated the damage caused by N. caninum by reducing MDA (P=0.03, P=0.02, P=0.005) and increasing CAT (P=0.004, P<0.001) and GSH (P=0.004, P<0.001) levels. In conclusion, this study reports for the first time on cordycepin's efficacy against N. caninum infection providing a potential candidate drug for neosporosis treatment.
Collapse
Affiliation(s)
- Rongsheng Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Xi Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Yuqian Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Yuxiao Qian
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Jing Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Tingting Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Yiwen Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Kairao Hu
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province 528225, People's Republic of China; College of Veterinary Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Semeraro M, Boubaker G, Scaccaglia M, Müller J, Vigneswaran A, Hänggeli KPA, Amdouni Y, Kramer LH, Vismarra A, Genchi M, Pelosi G, Bisceglie F, Heller M, Uldry AC, Braga-Lagache S, Hemphill A. Transient Adaptation of Toxoplasma gondii to Exposure by Thiosemicarbazone Drugs That Target Ribosomal Proteins Is Associated with the Upregulated Expression of Tachyzoite Transmembrane Proteins and Transporters. Int J Mol Sci 2024; 25:9067. [PMID: 39201756 PMCID: PMC11354806 DOI: 10.3390/ijms25169067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Thiosemicarbazones and their metal complexes have been studied for their biological activities against bacteria, cancer cells and protozoa. Short-term in vitro treatment with one gold (III) complex (C3) and its salicyl-thiosemicarbazone ligand (C4) selectively inhibited proliferation of T. gondii. Transmission Electron Microscopy (TEM) detected transient structural alterations in the parasitophorous vacuole membrane and the tachyzoite cytoplasm, but the mitochondrial membrane potential appeared unaffected by these compounds. Proteins potentially interacting with C3 and C4 were identified using differential affinity chromatography coupled with mass spectrometry (DAC-MS). Moreover, long-term in vitro treatment was performed to investigate parasitostatic or parasiticidal activity of the compounds. DAC-MS identified 50 ribosomal proteins binding both compounds, and continuous drug treatments for up to 6 days caused the loss of efficacy. Parasite tolerance to both compounds was, however, rapidly lost in their absence and regained shortly after re-exposure. Proteome analyses of six T. gondii ME49 clones adapted to C3 and C4 compared to the non-adapted wildtype revealed overexpression of ribosomal proteins, of two transmembrane proteins involved in exocytosis and of an alpha/beta hydrolase fold domain-containing protein. Results suggest that C3 and C4 may interfere with protein biosynthesis and that adaptation may be associated with the upregulated expression of tachyzoite transmembrane proteins and transporters, suggesting that the in vitro drug tolerance in T. gondii might be due to reversible, non-drug specific stress-responses mediated by phenotypic plasticity.
Collapse
Affiliation(s)
- Manuela Semeraro
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (M.S.); (G.P.); (F.B.)
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| | - Laura Helen Kramer
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Alice Vismarra
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Marco Genchi
- Department of Veterinary Medicine Sciences, University of Parma, Strada del Taglio 10, 43126 Parma, Italy; (M.S.); (L.H.K.); (A.V.); (M.G.)
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (M.S.); (G.P.); (F.B.)
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, Italy; (M.S.); (G.P.); (F.B.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (M.H.); (A.-C.U.); (S.B.-L.)
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland; (J.M.); (A.V.); (K.P.A.H.); (Y.A.)
| |
Collapse
|
3
|
Pou S, Winter RW, Liebman KM, Dodean RA, Nilsen A, DeBarber A, Doggett JS, Riscoe MK. Synthesis of Deuterated Endochin-Like Quinolones. J Labelled Comp Radiopharm 2024; 67:186-196. [PMID: 38661253 PMCID: PMC11081819 DOI: 10.1002/jlcr.4092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
Malaria continues to be a serious and debilitating disease. The emergence and spread of high-level resistance to multiple antimalarial drugs by Plasmodium falciparum has brought about an urgent need for new treatments that will be active against multidrug resistant malaria infections. One such treatment, ELQ-331 (MMV-167), an alkoxy carbonate prodrug of 4(1H)-quinolone ELQ-300, is currently in preclinical development with the Medicines for Malaria Venture. Clinical development of ELQ-331 or similar compounds will require the availability of isotopically labeled analogs. Unfortunately, a suitable method for the deuteration of these important compounds was not found in the literature. Here, we describe a facile and scalable method for the deuteration of 4(1H)-quinolone ELQ-300, its alkoxycarbonate prodrug ELQ-331, and their respective N-oxides using deuterated acetic acid.
Collapse
Affiliation(s)
- Sovitj Pou
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | - Rolf W Winter
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | | | - Rosie A Dodean
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
| | - Aaron Nilsen
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Andrea DeBarber
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - J Stone Doggett
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Division of Infectious Diseases, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael K Riscoe
- Medical Research Service, VA Healthcare System, Portland, Oregon, USA
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Müller J, Hemphill A. In vitro screening technologies for the discovery and development of novel drugs against Toxoplasma gondii. Expert Opin Drug Discov 2024; 19:97-109. [PMID: 37921660 DOI: 10.1080/17460441.2023.2276349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production and welfare. Since more than 60 years, only a limited panel of drugs has been in use for clinical applications. AREAS COVERED Herein, the authors describe the methodology and the results of library screening approaches to identify inhibitors of Toxoplasma gondii and related strains. The authors then provide the reader with their expert perspectives for the future. EXPERT OPINION Various library screening projects, in particular those using reporter strains, have led to the identification of numerous compounds with good efficacy and specificity in vitro. However, only few compounds are effective in suitable animal models such as rodents. Whereas no novel compound has cleared the hurdle to applications in humans, the few compounds with known indication and application profiles in human patients are of interest for further investigations. Taken together, drug repurposing as well as high-throughput screening of novel compound libraries may shorten the way to novel drugs against toxoplasmosis.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Schlange C, Müller J, Imhof D, Hänggeli KPA, Boubaker G, Ortega-Mora LM, Wong HN, Haynes RK, Van Voorhis WC, Hemphill A. Single and combination treatment of Toxoplasma gondii infections with a bumped kinase inhibitor and artemisone in vitro and with artemiside in experimentally infected mice. Exp Parasitol 2023; 255:108655. [PMID: 37981259 PMCID: PMC11585351 DOI: 10.1016/j.exppara.2023.108655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
In previous studies, the artemisinin derivatives artemisone, its pro-drug artemiside and the bumped-kinase inhibitor BKI-1748 were effective against T. gondii via different modes of action. This suggests that they may act synergistically resulting in improved efficacies in vitro and in vivo. To test this hypothesis, the compounds were applied alone and in combination to T. gondii infected human fibroblast host cells in order to determine their inhibition constants and effects on cellular ultrastructure. In addition, the efficacy of either single- or combined treatments were assessed in an acute TgShSp1-oocyst infection model based on CD1 outbred mice. Whereas the IC50 of the compounds in combination (42 nM) was close to the IC50 of BKI-1748 alone (46 nM) and half of the IC50 of artemisone alone (92 nM), the IC90 of the combination was half of the values found with the single compounds (138 nM vs. ca. 270 nM). Another indication for synergistic effects in vitro were distinct alterations of the cellular ultrastructure of tachyzoites observed in combination, but not with the single compounds. These promising results could not be reproduced in vivo. There was no decrease in number of T. gondii positive brains by either treatment. However, the levels of infection in these brains, i. e. the number of tachyzoites, was significantly decreased upon BKI-1748 treatment alone, and the combination with artemiside did not produce any further decrease. The treatment with artemiside alone had no significant effects. A vertical transmission model could not be established since artemiside strongly interfered with pregnancy and caused abortion. These results show that is difficult to extrapolate from promising in vitro results to the situation in vivo.
Collapse
Affiliation(s)
- Carling Schlange
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria S/n, 28040, Madrid, Spain
| | - Ho Ning Wong
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, 2800, Australia
| | - Richard K Haynes
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, 2800, Australia; Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012, Bern, Switzerland.
| |
Collapse
|
7
|
Müller J, Hemphill A. Toxoplasma gondii infection: novel emerging therapeutic targets. Expert Opin Ther Targets 2023; 27:293-304. [PMID: 37212443 PMCID: PMC10330558 DOI: 10.1080/14728222.2023.2217353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Toxoplasmosis constitutes a challenge for public health, animal production, and welfare. So far, only a limited panel of drugs has been marketed for clinical applications. In addition to classical screening, the investigation of unique targets of the parasite may lead to the identification of novel drugs. AREAS COVERED Herein, the authors describe the methodology to identify novel drug targets in Toxoplasma gondii and review the literature with a focus on the last two decades. EXPERT OPINION Over the last two decades, the investigation of essential proteins of T. gondii as potential drug targets has fostered the hope of identifying novel compounds for the treatment of toxoplasmosis. Despite good efficacies in vitro, only a few classes of these compounds are effective in suitable rodent models, and none has cleared the hurdle to applications in humans. This shows that target-based drug discovery is in no way better than classical screening approaches. In both cases, off-target effects and adverse side effects in the hosts must be considered. Proteomics-driven analyses of parasite- and host-derived proteins that physically bind drug candidates may constitute a suitable tool to characterize drug targets, irrespectively of the drug discovery methods.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Ramseier J, Imhof D, Hänggeli KPA, Anghel N, Boubaker G, Beteck RM, Ortega-Mora LM, Haynes RK, Hemphill A. In Vitro versus in Mice: Efficacy and Safety of Decoquinate and Quinoline-O-Carbamate Derivatives against Experimental Infection with Neospora caninum Tachyzoites. Pathogens 2023; 12:pathogens12030447. [PMID: 36986369 PMCID: PMC10055983 DOI: 10.3390/pathogens12030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The effects of decoquinate (DCQ) and three O-quinoline-carbamate-derivatives were investigated using human foreskin fibroblasts (HFF) infected with Neospora caninum tachyzoites. These compounds exhibited half-maximal proliferation inhibition (IC50s) from 1.7 (RMB060) to 60 nM (RMB055). Conversely, when applied at 5 (DCQ, RMB054) or 10µM (RMB055, RMB060), HFF viability was not affected. Treatments of infected cell cultures at 0.5µM altered the ultrastructure of the parasite mitochondrion and cytoplasm within 24 h, most pronounced for RMB060, and DCQ, RMB054 and RMB060 did not impair the viability of splenocytes from naïve mice. Long-term treatments of N. caninum-infected HFF monolayers with 0.5µM of each compound showed that only exposure to RMB060 over a period of six consecutive days had a parasiticidal effect, while the other compounds were not able to kill all tachyzoites in vitro. Thus, DCQ and RMB060 were comparatively assessed in the pregnant neosporosis mouse model. The oral application of these compounds suspended in corn oil at 10 mg/kg/day for 5 d resulted in a decreased fertility rate and litter size in the DCQ group, whereas reproductive parameters were not altered by RMB060 treatment. However, both compounds failed to protect mice from cerebral infection and did not prevent vertical transmission/pup mortality. Thus, despite the promising in vitro efficacy and safety characteristics of DCQ and DCQ-derivatives, proof of concept for activity against neosporosis could not be demonstrated in the murine model.
Collapse
Affiliation(s)
- Jessica Ramseier
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Correspondence: (J.R.); (A.H.)
| | - Dennis Imhof
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3013 Bern, Switzerland
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3013 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3013 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Andrew Hemphill
- Institute of Parasitology, University of Bern, Länggass-Strasse 122, 30132 Bern, Switzerland
- Correspondence: (J.R.); (A.H.)
| |
Collapse
|
9
|
Alday PH, Nilsen A, Doggett JS. Structure-activity relationships of Toxoplasma gondii cytochrome bc1 inhibitors. Expert Opin Drug Discov 2022; 17:997-1011. [PMID: 35772172 PMCID: PMC9561756 DOI: 10.1080/17460441.2022.2096588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.
Collapse
Affiliation(s)
- Phil Holland Alday
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
10
|
Chaudhry S, Zurbriggen R, Preza M, Kämpfer T, Kaethner M, Memedovski R, Scorrano N, Hemphill A, Doggett JS, Lundström-Stadelmann B. Dual inhibition of the Echinococcus multilocularis energy metabolism. Front Vet Sci 2022; 9:981664. [PMID: 35990276 PMCID: PMC9388906 DOI: 10.3389/fvets.2022.981664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Alveolar echinococcosis is caused by the metacestode stage of the zoonotic parasite Echinococcus multilocularis. Current chemotherapeutic treatment options rely on benzimidazoles, which have limited curative capabilities and can cause severe side effects. Thus, novel treatment options are urgently needed. In search for novel targetable pathways we focused on the mitochondrial energy metabolism of E. multilocularis. The parasite relies hereby on two pathways: The classical oxidative phosphorylation including the electron transfer chain (ETC), and the anaerobic malate dismutation (MD). We screened 13 endochin-like quinolones (ELQs) in vitro for their activities against two isolates of E. multilocularis metacestodes and isolated germinal layer cells by the phosphoglucose isomerase (PGI) assay and the CellTiter Glo assay. For the five most active ELQs (ELQ-121, ELQ-136, ELQ-271, ELQ-400, and ELQ-437), EC50 values against metacestodes were assessed by PGI assay, and IC50 values against mammalian cells were measured by Alamar Blue assay. Further, the gene sequence of the proposed target, the mitochondrial cytochrome b, was analyzed. This allowed for a limited structure activity relationship study of ELQs against E. multilocularis, including analyses of the inhibition of the two functional sites of the cytochrome b. By applying the Seahorse XFp Extracellular Flux Analyzer, oxygen consumption assays showed that ELQ-400 inhibits the E. multilocularis cytochrome bc1 complex under normoxic conditions. When tested under anaerobic conditions, ELQ-400 was hardly active against E. multilocularis metacestodes. These results were confirmed by transmission electron microscopy. ELQ-400 treatment increased levels of parasite-released succinate, the final electron acceptor of the MD. This suggests that the parasite switched to MD for energy generation. Therefore, MD was inhibited with quinazoline, which did not induce damage to metacestodes under anaerobic conditions. However, it reduced the production of succinate compared to control treated parasites (i.e., inhibited the MD). The combination treatment with quinazoline strongly improved the activity of the bc1 inhibitor ELQ-400 against E. multilocularis metacestodes under anaerobic conditions. We conclude that simultaneous targeting of the ETC and the MD of E. multilocularis is a possible novel treatment approach for alveolar echinococcosis, and possibly also other foodborne diseases inflicted by platyhelminths, which cause substantial economic losses in livestock industry.
Collapse
Affiliation(s)
- Sheena Chaudhry
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Raphael Zurbriggen
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matías Preza
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tobias Kämpfer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marc Kaethner
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roman Memedovski
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nathalie Scorrano
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joseph Stone Doggett
- Department of Infectious Diseases and Pathobiology, Oregon Health and Science University, Portland, OR, United States
- Department of Infectious Diseases and Pathobiology, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Britta Lundström-Stadelmann
| |
Collapse
|
11
|
Anghel N, Müller J, Serricchio M, Jelk J, Bütikofer P, Boubaker G, Imhof D, Ramseier J, Desiatkina O, Păunescu E, Braga-Lagache S, Heller M, Furrer J, Hemphill A. Cellular and Molecular Targets of Nucleotide-Tagged Trithiolato-Bridged Arene Ruthenium Complexes in the Protozoan Parasites Toxoplasma gondii and Trypanosoma brucei. Int J Mol Sci 2021; 22:ijms221910787. [PMID: 34639127 PMCID: PMC8509533 DOI: 10.3390/ijms221910787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10−7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
- Correspondence: (J.M.); (A.H.)
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Jennifer Jelk
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Jessica Ramseier
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland; (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland; (S.B.-L.); (M.H.)
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
- Correspondence: (J.M.); (A.H.)
| |
Collapse
|
12
|
Anghel N, Imhof D, Winzer P, Balmer V, Ramseier J, Haenggeli K, Choi R, Hulverson MA, Whitman GR, Arnold SL, Ojo KK, Van Voorhis WC, Doggett JS, Ortega-Mora LM, Hemphill A. Endochin-like quinolones (ELQs) and bumped kinase inhibitors (BKIs): Synergistic and additive effects of combined treatments against Neospora caninum infection in vitro and in vivo. Int J Parasitol Drugs Drug Resist 2021; 17:92-106. [PMID: 34482255 PMCID: PMC8416643 DOI: 10.1016/j.ijpddr.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022]
Abstract
The apicomplexan parasite Neospora caninum is an important causative agent of congenital neosporosis, resulting in abortion, birth of weak offspring and neuromuscular disorders in cattle, sheep, and many other species. Among several compound classes that are currently being developed, two have been reported to limit the effects of congenital neosporosis: (i) bumped kinase inhibitors (BKIs) target calcium dependent protein kinase 1 (CDPK1), an enzyme that is encoded by an apicoplast-derived gene and found only in apicomplexans and plants. CDPK1 is essential for host cell invasion and egress; (ii) endochin-like quinolones (ELQs) are inhibitors of the cytochrome bc1 complex of the mitochondrial electron transport chain and thus inhibit oxidative phosphorylation. We here report on the in vitro and in vivo activities of BKI-1748, and of ELQ-316 and its respective prodrugs ELQ-334 and ELQ-422, applied either as single-compounds or ELQ-BKI-combinations. In vitro, BKI-1748 and ELQ-316, as well as BKI-1748 and ELQ-334, acted synergistically, while this was not observed for the BKI-1748/ELQ-422 combination treatment. In a N. caninum-infected pregnant BALB/c mouse model, the synergistic effects observed in vitro were not entirely reproduced, but 100% postnatal survival and 100% inhibition of vertical transmission was noted in the group treated with the BKI-1748/ELQ-334 combination. In addition, the combined drug applications resulted in lower neonatal mortality compared to treatments with single drugs.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland,Corresponding author. Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland.
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Pablo Winzer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Vreni Balmer
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jessica Ramseier
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Kai Haenggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew A. Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Grant R. Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Samuel L.M. Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA,Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kayode K. Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Wesley C. Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA,Departments of Global Health and Microbiology, University of Washington, Seattle, WA, USA
| | - J. Stone Doggett
- VA Portland Health Care System, Research and Development Service, Portland, OR, USA
| | - Luis M. Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Switzerland,Corresponding author.
| |
Collapse
|
13
|
Pou S, Dodean RA, Frueh L, Liebman KM, Gallagher RT, Jin H, Jacobs RT, Nilsen A, Stuart DR, Doggett JS, Riscoe MK, Winter RW. A New Scalable Synthesis of ELQ-300, ELQ-316, and other Antiparasitic Quinolones. Org Process Res Dev 2021; 25:1841-1852. [PMID: 35110959 DOI: 10.1021/acs.oprd.1c00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Endochin-Like Quinolone (ELQ) compound class may yield effective, safe treatments for a range of important human and animal afflictions. However, to access the public health potential of this compound series, a synthetic route needed to be devised that lowers costs and is amenable to large scale production. In the new synthetic route described here, a substituted β-keto ester, formed by an Ullmann reaction and subsequent acylation, is reacted with an aniline via a Conrad-Limpach reaction to produce 3-substituted 4(1H)-quinolones such as ELQ-300 and ELQ-316. This synthetic route, the first described to be truly amenable to industrial scale production, is relatively short (5 reaction steps), does not require palladium, chromatographic separation or protecting group chemistry, and may be performed without high vacuum distillation.
Collapse
Affiliation(s)
- Sovitj Pou
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rozalia A Dodean
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Lisa Frueh
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Katherine M Liebman
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rory T Gallagher
- Department of Chemistry, Portland State University, 1719 SW 10 Avenue, Portland, Oregon 97201, United States
| | - Haihong Jin
- Medicinal Chemistry Core, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Robert T Jacobs
- Medicines for Malaria Venture, ICC, route de Pré-Bois 20, P.O. Box 1826, 1215 Geneva 15, Switzerland
| | - Aaron Nilsen
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States.,Medicinal Chemistry Core, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, 1719 SW 10 Avenue, Portland, Oregon 97201, United States
| | - J Stone Doggett
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States.,School of Medicine Division of Infectious Diseases, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Michael K Riscoe
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States.,Department of Microbiology and Molecular Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Rolf W Winter
- VA Portland Healthcare System, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| |
Collapse
|
14
|
Pereira LM, de Luca G, Abichabki NDLM, Brochi JCV, Baroni L, Abreu-Filho PG, Yatsuda AP. Atovaquone, chloroquine, primaquine, quinine and tetracycline: antiproliferative effects of relevant antimalarials on Neospora caninum. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2021; 30:e022120. [PMID: 33787719 DOI: 10.1590/s1984-29612021006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 01/21/2023]
Abstract
Neospora caninum is an apicomplexan parasite that causes abortion in cattle, resulting in significant economic losses. There is no commercial treatment for neosporosis, and drug repositioning is a fast strategy to test possible candidates against N. caninum. In this article, we describe the effects of atovaquone, chloroquine, quinine, primaquine and tetracycline on N. caninum proliferation. The IC50 concentrations in N. caninum were compared to the current information based on previous studies for Plasmodium and Toxoplasma gondii, correlating to the described mechanisms of action of each tested drug. The inhibitory patterns indicate similarities and differences among N. caninum, Plasmodium and T. gondii. For example, atovaquone demonstrates high antiparasitic activity in all the analyzed models, while chloroquine does not inhibit N. caninum. On the other hand, tetracycline is effective against Plasmodium and N. caninum, despite its low activity in T. gondii models. The repurposing of antimalarial drugs in N. caninum is a fast and inexpensive way to develop novel formulations using well-established compounds.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Gabriela de Luca
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Nathália de Lima Martins Abichabki
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Jade Cabestre Venancio Brochi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Luciana Baroni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Péricles Gama Abreu-Filho
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| | - Ana Patrícia Yatsuda
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brasil
| |
Collapse
|
15
|
Doggett JS, Schultz T, Miller AJ, Bruzual I, Pou S, Winter R, Dodean R, Zakharov LN, Nilsen A, Riscoe MK, Carruthers VB. Orally Bioavailable Endochin-Like Quinolone Carbonate Ester Prodrug Reduces Toxoplasma gondii Brain Cysts. Antimicrob Agents Chemother 2020; 64:e00535-20. [PMID: 32540978 PMCID: PMC7449172 DOI: 10.1128/aac.00535-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasmosis is a potentially fatal infection for immunocompromised people and the developing fetus. Current medicines for toxoplasmosis have high rates of adverse effects that interfere with therapeutic and prophylactic regimens. Endochin-like quinolones (ELQs) are potent inhibitors of Toxoplasma gondii proliferation in vitro and in animal models of acute and latent infection. ELQ-316, in particular, was found to be effective orally against acute toxoplasmosis in mice and highly selective for T. gondii cytochrome b over human cytochrome b Despite its oral efficacy, the high crystallinity of ELQ-316 limits oral absorption, plasma concentrations, and therapeutic potential. A carbonate ester prodrug of ELQ-316, ELQ-334, was created to decrease crystallinity and increase oral bioavailability, which resulted in a 6-fold increase in both the maximum plasma concentration (Cmax) and the area under the curve (AUC) of ELQ-316. The increased bioavailability of ELQ-316, when administered as ELQ-334, resulted in efficacy against acute toxoplasmosis greater than that of an equivalent dose of ELQ-316 and had efficacy against latent toxoplasmosis similar to that of ELQ-316 administered intraperitoneally. Treatment with carbonate ester prodrugs is a successful strategy to overcome the limited oral bioavailability of ELQs for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- J Stone Doggett
- Division of Infectious Diseases, Oregon Health and Science University School of Medicine, Portland, Oregon, USA
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Tracey Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Igor Bruzual
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Sovitj Pou
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Rolf Winter
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Rozalia Dodean
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Lev N Zakharov
- Department of Chemistry, University of Oregon, Eugene, Oregon, USA
| | - Aaron Nilsen
- Division of Infectious Diseases, Oregon Health and Science University School of Medicine, Portland, Oregon, USA
| | - Michael K Riscoe
- Division of Infectious Diseases, Oregon Health and Science University School of Medicine, Portland, Oregon, USA
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Anghel N, Winzer PA, Imhof D, Müller J, Langa X, Rieder J, Barrett LK, Vidadala RSR, Huang W, Choi R, Hulverson MA, Whitman GR, Arnold SL, Van Voorhis WC, Ojo KK, Maly DJ, Fan E, Hemphill A. Comparative assessment of the effects of bumped kinase inhibitors on early zebrafish embryo development and pregnancy in mice. Int J Antimicrob Agents 2020; 56:106099. [PMID: 32707170 DOI: 10.1016/j.ijantimicag.2020.106099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
Bumped kinase inhibitors (BKIs) are effective against a variety of apicomplexan parasites. Fifteen BKIs with promising in vitro efficacy against Neospora caninum tachyzoites, low cytotoxicity in mammalian cells, and no toxic effects in non-pregnant BALB/c mice were assessed in pregnant mice. Drugs were emulsified in corn oil and were applied by gavage for 5 days. Five BKIs did not affect pregnancy, five BKIs exhibited ~15-35% neonatal mortality and five compounds caused strong effects (infertility, abortion, stillbirth and pup mortality). Additionally, the impact of these compounds on zebrafish (Danio rerio) embryo development was assessed by exposing freshly fertilised eggs to 0.2-50 μM of BKIs and microscopic monitoring of embryo development in a blinded manner for 4 days. We propose an algorithm that includes quantification of malformations and embryo deaths, and established a scoring system that allows the calculation of an impact score (Si) indicating at which concentrations BKIs visibly affect zebrafish embryo development. Comparison of the two models showed that for nine compounds no clear correlation between Si and pregnancy outcome was observed. However, the three BKIs affecting zebrafish embryos only at high concentrations (≥40 μM) did not impair mouse pregnancy at all, and the three compounds that inhibited zebrafish embryo development already at 0.2 μM showed detrimental effects in the pregnancy model. Thus, the zebrafish embryo development test has limited predictive value to foresee pregnancy outcome in BKI-treated mice. We conclude that maternal health-related factors such as cardiovascular, pharmacokinetic and/or bioavailability properties also contribute to BKI-pregnancy effects.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Pablo A Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3000 Bern, Switzerland
| | - Jessica Rieder
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | | | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Mathew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Samuel L Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
17
|
Müller J, Winzer PA, Samby K, Hemphill A. In Vitro Activities of MMV Malaria Box Compounds against the Apicomplexan Parasite Neospora caninum, the Causative Agent of Neosporosis in Animals. Molecules 2020; 25:molecules25061460. [PMID: 32213892 PMCID: PMC7145303 DOI: 10.3390/molecules25061460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Neospora caninum is a major cause of abortion in cattle and represents a veterinary health problem of great economic significance. In order to identify novel chemotherapeutic agents for the treatment of neosporosis, the Medicines for Malaria Venture (MMV) Malaria Box, a unique collection of anti-malarial compounds, were screened against N. caninum tachyzoites, and the most efficient compounds were characterized in more detail. (2) Methods: A N. caninum beta-galactosidase reporter strain grown in human foreskin fibroblasts was treated with 390 compounds from the MMV Malaria Box. The IC50s of nine compounds were determined, all of which had been previously been shown to be active against another apicomplexan parasite, Theileria annulata. The effects of three of these compounds on the ultrastructure of N. caninum tachyzoites were further investigated by transmission electron microscopy at different timepoints after initiation of drug treatment. (3) Results: Five MMV Malaria Box compounds exhibited promising IC50s below 0.2 µM. The compound with the lowest IC50, namely 25 nM, was MMV665941. This compound and two others, MMV665807 and MMV009085, specifically induced distinct alterations in the tachyzoites. More specifically, aberrant structural changes were first observed in the parasite mitochondrion, and subsequently progressed to other cytoplasmic compartments of the tachyzoites. The pharmacokinetic (PK) data obtained in mice suggest that treatment with MMV665941 could be potentially useful for further in vivo studies. (4) Conclusions: We have identified five novel compounds with promising activities against N. caninum, the effects of three of these compounds were studies by transmission electron microscopy (TEM). Their modes of action are unknown and require further investigation.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence: (J.M.); (A.H.); Tel.: 0041-31-631-23-84 (J.M. & A.H.); Fax: 0041-31-631-24-76 (J.M. & A.H.)
| | - Pablo A. Winzer
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland;
| | - Kirandeep Samby
- Medicines for Malaria Venture (MMV), 20, Route de Pré-Bois, 1215 Geneva 15, Switzerland;
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence: (J.M.); (A.H.); Tel.: 0041-31-631-23-84 (J.M. & A.H.); Fax: 0041-31-631-24-76 (J.M. & A.H.)
| |
Collapse
|
18
|
Eberhard N, Balmer V, Müller J, Müller N, Winter R, Pou S, Nilsen A, Riscoe M, Francisco S, Leitao A, Doggett JS, Hemphill A. Activities of Endochin-Like Quinolones Against in vitro Cultured Besnoitia besnoiti Tachyzoites. Front Vet Sci 2020; 7:96. [PMID: 32161765 PMCID: PMC7054222 DOI: 10.3389/fvets.2020.00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Endochin-like quinolones (ELQs) potently inhibit the proliferation of Plasmodium, Toxoplasma, Neospora, and Babesia by targeting the cytochrome b Qo and Qi sites and interfering with oxidative phosphorylation and pyrimidine biosynthesis. The activities of 14 different ELQs were assessed against B. besnoiti tachyzoites grown in human foreskin fibroblasts (HFF) by quantitative real time PCR. The values for 50% proliferation inhibition (IC50) of five ELQs were determined in a 3-days growth assay after an initial screen of 12 ELQs at 0.01, 0.1, and 1 μM. The IC50s of ELQ-121, -136, and -316 were 0.49, 2.36, and 7.97 nM, respectively. The IC50s of ELQs tested against B. besnoiti were higher than IC50s previously observed for P. falciparum and T. gondii. However, the B. besnoiti cytochrome b sequence and the predicted Qo and Qi ELQ binding sites in the Toxoplasma, Neospora, and Besnoitia cytochrome b are virtually identical, suggesting that the differences in ELQ susceptibility are not due to variations in the substrate binding sites. TEM of ELQ-treated parasites primarily demonstrated alterations within the parasite mitochondrion, profound thickening of the nuclear membrane, as well as increased vacuolization within the tachyzoite cytoplasm. Long-term treatment assays of intracellular B. besnoiti with ELQs for up to 20 days followed by the release of drug pressure caused a substantial delay in parasite growth and proliferation while ELQs were present, but parasite proliferation resumed days after ELQs were removed. Interestingly, structural alterations persisted after ELQ removal and parasite proliferation was slowed. These findings provide a basis for further in vivo studies of ELQs as therapeutic options against B. besnoiti infection.
Collapse
Affiliation(s)
- Naja Eberhard
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Vreni Balmer
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Norbert Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| | - Rolf Winter
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Soviti Pou
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Aaron Nilsen
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Mike Riscoe
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Samuel Francisco
- Faculdade de Medicina Veterinária, CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandre Leitao
- Faculdade de Medicina Veterinária, CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - J. Stone Doggett
- VA Portland Health Care System Research and Development Service, Portland, OR, United States
| | - Andrew Hemphill
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Bern, Switzerland
| |
Collapse
|