1
|
Wang K, Miao Y, Liu W, Muhammad I, Bao J, Jin X, Wu Z, Li R, Chen C, Li J. Lactobacillus salivarius ameliorates Mycoplasma gallisepticum-induced inflammation via the JAK/STAT signaling pathway involving respiratory microbiota and metabolites. Poult Sci 2024; 103:103942. [PMID: 38908119 PMCID: PMC11246048 DOI: 10.1016/j.psj.2024.103942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024] Open
Abstract
Mycoplasma gallisepticum (MG) can cause chronic respiratory disease (CRD) in chickens, which has a significant negative economic impact on the global poultry sector. Respiratory flora is the guardian of respiratory health, and its disorder is closely related to respiratory immunity and respiratory diseases. As a common probiotic in the chicken respiratory tract, Lactobacillus salivarius (L. salivarius) has potential antioxidant, growth performance enhancing, and anti-immunosuppressive properties. However, the specific mechanism through which L. salivarius protects against MG infection has not yet been thoroughly examined. This study intends to investigate whether L. salivarius could reduce MG-induced tracheal inflammation by modulating the respiratory microbiota and metabolites. The results indicated that L. salivarius reduced MG colonization significantly and alleviated the anomalous morphological changes by using the MG-infection model. L. salivarius also reduced the level of Th1 cell cytokines, increased the level of Th2 cell cytokines, and ameliorated immune imbalance during MG infection. In addition, L. salivarius improved the mucosal barrier, heightened immune function, and suppressed the Janus kinase/Signal transducer, and activator of transcription (JAK/STAT) signaling pathway. Notably, MG infection changed the composition of the respiratory microbiota and metabolites, and L. salivarius therapy partially reversed the aberrant respiratory microbiota and metabolite composition. Our results highlighted that these findings demonstrated that L. salivarius played a role in MG-mediated inflammatory damage and demonstrated that L. salivarius, by altering the respiratory microbiota and metabolites, could successfully prevent MG-induced inflammatory injury in chicken trachea.
Collapse
Affiliation(s)
- Kexin Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Yusong Miao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China; Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, P. R. China
| | - Weiqi Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Ishfaq Muhammad
- College of Computer Science, Huanggang Normal University, Huanggang, 438000, P. R. China
| | - Jiaxin Bao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Xiaodi Jin
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Rui Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China; Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 50931, Germany
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China.
| |
Collapse
|
2
|
Zhang D, Ding J, Yu X, Li J, Chen K, Fu Y, Ding Z, Xu X. Effect of co-infection with Newcastle disease virus on Mycoplasma gallisepticum pathogenesis in vivo and in vitro. Vet Microbiol 2024; 295:110126. [PMID: 38896939 DOI: 10.1016/j.vetmic.2024.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
The co-infection of Newcastle disease virus (NDV) and Mycoplasma gallisepticum (MG) has a detrimental effect on chicken production performance, exerts a deleterious impact on poultry production performance, resulting in substantial economic losses. However, the exact impact and underlying mechanisms remain ambiguous. In this study, co-infection models were established both in vivo and in vitro. Through these models, it was found that the co-infection facilitated the replication of MG and NDV, as well as MG induced pathogenesis. The administration of lentogenic NDV resulted in the suppression of the innate immune response in vivo. At cellular level, co-infection promoted MG induced apoptosis through caspase-dependent mitochondrial endogenous pathway and suppressed the inflammatory secretion. This research contributes novel insights in co-infection.
Collapse
Affiliation(s)
- Di Zhang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiaxin Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Xibing Yu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jindou Li
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Kainan Chen
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yongheng Fu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Xiaohong Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Zhang L, Bai Y, Tao J, Yang S, Tu C, Liu L, Huang X, Li L, Qin Z. Effects of feeding chicken egg yolk antibodies on intestinal cell apoptosis, oxidative stress and microbial flora of tilapia (Oreochromis niloticus) infected with Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109596. [PMID: 38692380 DOI: 10.1016/j.fsi.2024.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Streptococcosis, the most common bacterial disease of fish in recent years, is highly infectious and lethal, and has become an important factor hindering the healthy and sustainable development of aquaculture. Chicken egg yolk antibody (IgY) has the advantages of high antigen specificity, inexpensive and easy to obtain, simple preparation, no toxic side effects, and in line with animal welfare, which is a green and safe alternative to antibiotics. In this study, the potential of specific IgY in the treatment of gastrointestinal pathogens was explored by observing the effects of specific IgY on intestinal flora, pathological tissue, apoptosis, oxidative stress, and inflammatory response of tilapia. We used the specific IgY prepared in the early stage to feed tilapia for 10 days, and then the tilapia was challenged with Streptococcus agalactiae. The results showed that feeding IgY before challenge had a small effect on the intestinal flora, and after challenge specific IgY decreased the proportion of Streptococcus and increased the diversity of the intestinal flora; in histopathology, specific IgY decreased tissue damage and maintained the integrity of tissue structure. Further study found that specific IgY can reduce intestinal epithelial cell apoptosis and reduce caspase activity; at the same time, the content of MDA was decreased, and the activities of SOD, CAT, GSH-Px and GR were increased. In addition, specific IgY can down-regulate the expression levels of IL-8 and TNF-α genes and up-regulate the expression levels of IL-10 and TGF-β. The results of this study showed that specific IgY could improve the intestinal flora of tilapia infected with Streptococcus agalactiae, reduce intestinal cell apoptosis, oxidative stress injury and inflammatory response, thereby reducing tissue damage and protecting the health of tilapia. Overall, specific IgY can be further explored as a potential antibiotic alternative for gastrointestinal pathogen infections.
Collapse
Affiliation(s)
- Linpeng Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yanhan Bai
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Junjie Tao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Chengming Tu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lihan Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xiaoman Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lin Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
4
|
Pan Q, Zhang Y, Liu T, Xu Q, Wu Q, Xin J. Mycoplasma glycine cleavage system key subunit GcvH is an apoptosis inhibitor targeting host endoplasmic reticulum. PLoS Pathog 2024; 20:e1012266. [PMID: 38787906 PMCID: PMC11156438 DOI: 10.1371/journal.ppat.1012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Mycoplasmas are minimal but notorious bacteria that infect humans and animals. These genome-reduced organisms have evolved strategies to overcome host apoptotic defense and establish persistent infection. Here, using Mycoplasma bovis as a model, we demonstrate that mycoplasma glycine cleavage system (GCS) H protein (GcvH) targets the endoplasmic reticulum (ER) to hijack host apoptosis facilitating bacterial infection. Mechanically, GcvH interacts with the ER-resident kinase Brsk2 and stabilizes it by blocking its autophagic degradation. Brsk2 subsequently disturbs unfolded protein response (UPR) signaling, thereby inhibiting the key apoptotic molecule CHOP expression and ER-mediated intrinsic apoptotic pathway. CHOP mediates a cross-talk between ER- and mitochondria-mediated intrinsic apoptosis. The GcvH N-terminal amino acid 31-35 region is necessary for GcvH interaction with Brsk2, as well as for GcvH to exert anti-apoptotic and potentially pro-infective functions. Notably, targeting Brsk2 to dampen apoptosis may be a conserved strategy for GCS-containing mycoplasmas. Our study reveals a novel role for the conserved metabolic route protein GcvH in Mycoplasma species. It also sheds light on how genome-reduced bacteria exploit a limited number of genomic proteins to resist host cell apoptosis thereby facilitating pathogenesis.
Collapse
Affiliation(s)
- Qiao Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yujuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qingyuan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Xinjiang, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Liu Y, Wang Y, Zheng SJ. Immune Evasion of Mycoplasma gallisepticum: An Overview. Int J Mol Sci 2024; 25:2824. [PMID: 38474071 DOI: 10.3390/ijms25052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 03/14/2024] Open
Abstract
Mycoplasma gallisepticum is one of the smallest self-replicating organisms. It causes chronic respiratory disease, leading to significant economic losses in poultry industry. Following M. gallisepticum invasion, the pathogen can persist in the host owing to its immune evasion, resulting in long-term chronic infection. The strategies of immune evasion by mycoplasmas are very complex and recent research has unraveled these sophisticated mechanisms. The antigens of M. gallisepticum exhibit high-frequency changes in size and expression cycle, allowing them to evade the activation of the host humoral immune response. M. gallisepticum can invade non-phagocytic chicken cells and also regulate microRNAs to modulate cell proliferation, inflammation, and apoptosis in tracheal epithelial cells during the disease process. M. gallisepticum has been shown to transiently activate the inflammatory response and then inhibit it by suppressing key inflammatory mediators, avoiding being cleared. The regulation and activation of immune cells are important for host response against mycoplasma infection. However, M. gallisepticum has been shown to interfere with the functions of macrophages and lymphocytes, compromising their defense capabilities. In addition, the pathogen can cause immunological damage to organs by inducing an inflammatory response, cell apoptosis, and oxidative stress, leading to immunosuppression in the host. This review comprehensively summarizes these evasion tactics employed by M. gallisepticum, providing valuable insights into better prevention and control of mycoplasma infection.
Collapse
Affiliation(s)
- Yang Liu
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- National Key Laboratory of Veterinary Public Health Security, Beijing 100193, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Population Pharmacokinetics of Doxycycline, Administered Alone or with N-Acetylcysteine, in Chickens with Experimental Mycoplasma gallisepticum Infection. Pharmaceutics 2022; 14:pharmaceutics14112440. [PMID: 36432632 PMCID: PMC9693581 DOI: 10.3390/pharmaceutics14112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasmosis is a bacterial infection that significantly affects poultry production, and it is often controlled with antibiotics, including doxycycline. The conducted study aimed to determine population pharmacokinetic (PopPk) parameters of doxycycline in healthy (n = 12) and in Mycoplasma gallisepticum-challenged (n = 20) chickens after its oral administration via drinking water at the registered dose rate of 20 mg/kg b.w./24 h for five days, without or with co-administration of N-acetylcysteine (NAC, a dose of 100 mg/kg b.w./24 h) via the feed. Doxycycline concentrations in plasma were analyzed with the LC-MS/MS method. The values of tvV/F and tvke were 4.73 L × kg−1 and 0.154 h−1, respectively, and they showed low BSV. A high BSV of 93.17% was calculated for the value of tlag of 0.8 h, which reflects the inter-individual differences in the water consumption. PTA was computed after Monte Carlo simulation with the registered dose for doxycycline. The target of %fT > MIC ≥ 80% and 100% can be achieved in 90% of the broiler population, after a correction for protein binding, for bacteria with MIC ≤ 0.5 mg × L−1 and 0.25 mg × L−1, respectively. The applied PopPk model did not reveal significant effect of M. gallisepticum infection and co-administration of NAC on pharmacokinetic parameters of doxycycline.
Collapse
|
7
|
Luo R, Fan C, Jiang G, Hu F, Wang L, Guo Q, Zou M, Wang Y, Wang T, Sun Y, Peng X. Andrographolide restored production performances and serum biochemical indexes and attenuated organs damage in Mycoplasma gallisepticum-infected broilers. Br Poult Sci 2022; 64:164-175. [PMID: 36222587 DOI: 10.1080/00071668.2022.2128987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study aimed to study the preventive and therapeutic effects of andrographolide (Andro) during Mycoplasma gallisepticum HS strain (MG) infection in ArborAcres (AA) broilers.2. The minimum inhibitory concentration (MIC) of Andro against MG was measured. Broiler body weight, feed efficiency, morbidity, cure rate and mortality were recorded during the experiment. Air sac lesion scores and immune organ index were calculated. Expression of pMGA1.2 in lung tissue and serum biochemical indices were examined. Histopathological examinations of immune organs, liver, trachea and lung tissue were conducted by Haematoxylin and Eosin stain.3. MIC was 3.75 μg/mL and Andro significantly inhibited the expression of pMGA1.2 (P ≤ 0.05). Compared with control MG-infected group, Andro low-dose and high-dose prevention reduced the morbidity of chronic respiratory disease in 40.00% and 50.00%, respectively. Mortality of C, D and E group was 16.67%, 10.00% and 6.67%, respectively. Cure rate of E, F, G and H group was 92.00%, 92.86%, 93.33% and 100.0%, respectively. Compared with control MG-infected group, Andro treatment significantly increased average weight gain (AWG), relative weight gain rate (RWG) and feed conversion rate (FCR) at 18 to 24 days (P ≤ 0.05). Compared with control group, Andro alone treatment significantly increased AWG in broilers (P ≤ 0.05).4. Compared with control MG-infected group, Andro significantly attenuated MG-induced air sac lesion, immune organs, liver, trachea and lung damage in broilers. Andro alone treatment did not induce abnormal morphological changes in these organs in healthy broilers. Serum biochemical analysis results showed, comparing with control MG-infected group, Andro significantly decreased the content of total protein, albumin, globulin, alanine aminotransferase, aspartate aminotransferase, total bilirubin, urea, creatinine, uric acid, total cholesterol, and increased the albumin/globulin ratio and content of alkaline phosphatase, apolipoprotein B and apolipoprotein A-I in a dose-dependent manner (P ≤ 0.05).5. Andro could act as a potential agent against MG infection in broilers.
Collapse
Affiliation(s)
- R Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - C Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - G Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - F Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - L Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Q Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - M Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Y Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - T Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Y Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - X Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Bao J, Wang Y, Wang S, Niu D, Wang Z, Li R, Zheng Y, Ishfaq M, Wu Z, Li J. Polypharmacology-based approach for screening TCM against coinfection of Mycoplasma gallisepticum and Escherichia coli. Front Vet Sci 2022; 9:972245. [PMID: 36225794 PMCID: PMC9549337 DOI: 10.3389/fvets.2022.972245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products and their unique polypharmacology offer significant advantages for finding novel therapeutics particularly for the treatment of complex diseases. Meanwhile, Traditional Chinese Medicine exerts overall clinical benefits through a multi-component and multi-target approach. In this study, we used the previously established co-infection model of Mycoplasma gallisepticum and Escherichia coli as a representative of complex diseases. A new combination consisting of 6 herbs were obtained by using network pharmacology combined with transcriptomic analysis to reverse screen TCMs from the Chinese medicine database, containing Isatdis Radix, Forsythia Fructus, Ginkgo Folium, Mori Cortex, Licorice, and Radix Salviae. The results of therapeutic trials showed that the Chinese herbal compounds screened by the target network played a good therapeutic effect in the case of co-infection. In summary, these data suggested a new method to validate target combinations of natural products that can be used to optimize their multiple structure-activity relationships to obtain drug-like natural product derivatives.
Collapse
Affiliation(s)
- Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ze Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yadan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang, China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
9
|
Hu F, Luo R, Duan S, Guo Q, Wang L, Jiang G, Fan C, Zou M, Wang T, Wang Y, Sun Y, Peng X. Evaluation of Glycyrrhizic Acid Therapeutic Effect and Safety in Mycoplasma gallisepticum (HS Strain)-Infected Arbor Acres Broilers. Animals (Basel) 2022; 12:1285. [PMID: 35625131 PMCID: PMC9137610 DOI: 10.3390/ani12101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
This study was conducted to evaluate the therapeutic effects and safety of GA in MG-infected broilers. Our results showed that the minimum inhibitory concentration of GA was 31.25 μg/mL. Moreover, GA inhibited the expression of MG adhesion protein (pMGA1.2) in the broilers' lungs. GA treatment clearly decreased the morbidity of CRD and mortality in the MG-infected broilers. Compared with the model group, GA treatment significantly decreased gross air sac lesion scores and increased average weight gain and feed conversion rate in the MG-infected broilers. Histopathological examination showed GA treatment attenuated MG-induced trachea, immune organ and liver damage in the broilers. Moreover, GA treatment alone did not induce abnormal morphological changes in these organs in the healthy broilers. Compared with the model group, serum biochemical results showed GA treatment significantly decreased the content of total protein, albumin, globulin, alanine aminotransferase, aspartate aminotransferase, total bilirubin, creatinine, uric acid, total cholesterol, and increased the content of albumin/globulin, alkaline phosphatase, apolipoprotein B and apolipoprotein A-I. In conclusion, GA displayed a significant therapeutic efficacy regarding MG infection and had no adverse effects on the broilers (100 mg/kg/d).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.H.); (R.L.); (S.D.); (Q.G.); (L.W.); (G.J.); (C.F.); (M.Z.); (T.W.); (Y.W.); (Y.S.)
| |
Collapse
|
10
|
Wu C, Zhong L, Li W, Liu B, Huang B, Luo Z, Wu Y. Study on the mechanism of Mycoplasma gallisepticum infection on chicken tracheal mucosa injury. Avian Pathol 2022; 51:361-373. [PMID: 35503522 DOI: 10.1080/03079457.2022.2068997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ABSTRACTMycoplasma gallisepticum (MG) is a pathogenic microorganism that causes serious harm to the poultry industry. It is mainly adsorbed on the cilia and mucosa of respiratory epithelial cells, causing tracheal mucosal damage or cilia loss, causing chronic respiratory disease (CRD). In order to study the effect of MG infection on chicken tracheal mucosa injury and explore its possible mechanism, specific-pathogen-free (SPF) chickens were challenged with Mycoplasma gallisepticum wild-type strain MG-HY. Then, transcriptome sequencing analysis was performed to study the mechanism of MG tracheal mucosal damage. During infection, MG localizes and proliferates in the chicken trachea, and induces mucosal damage. A total of 3112 significantly (P < 0.01) differentially expressed genes (DEGs) were selected by RNA-seq, including 1646 up-regulated genes and 1466 down-regulated genes. Functional analysis showed increased expression levels of genes involved in immune defense response and mechanical barrier of tracheal mucosa in infected chicks. The expression level of pro-inflammatory cytokines (TNF-α) increased, activating the upstream protein Ras of the ERK-MLCK signaling pathway, Ras causing ERK phosphorylation levels to rise and MLCK activation, thus causing phosphationalization of MLC, and further regulating the expression and mucous distribution of tight junction protein (TJ), leading to tracheal mucosal injury in chicks. The results of qRT-PCR assay and immunohistochemical analysis were consistent with the results of transcriptome analysis. Overall, Our findings provide a basis for further research on the underlying mechanism of chick tracheal mucosal damage caused by MG infection, and help to understand how MG induces respiratory immune damage in birds.
Collapse
Affiliation(s)
- Chunlin Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China
| | - Lemiao Zhong
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China
| | - Wenji Li
- ZooKo biochec technology Co. Ltd, Nanping 354200, People's Republic of China
| | - Binhui Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China.,Fujian Vocational College of Agriculture, Fuzhou 350002, People's Republic of China
| | - Baoqin Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China.,Fujian Sunner Development Co. Ltd, Nanping 354100, People's Republic of China
| | - Zhongbao Luo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China.,Fujian Sunner Development Co. Ltd, Nanping 354100, People's Republic of China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 8 350002, People's Republic of China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal 10 Health (Fujian Agricultural and Forestry University), Fuzhou 350002, People's 11 Republic of China
| |
Collapse
|
11
|
Miao Y, Niu D, Wang Z, Wang J, Wu Z, Bao J, Jin X, Li R, Ishfaq M, Li J. Methylsulfonylmethane ameliorates inflammation via NF-κB and ERK/JNK-MAPK signaling pathway in chicken trachea and HD11 cells during Mycoplasma gallisepticum infection. Poult Sci 2022; 101:101706. [PMID: 35121233 PMCID: PMC9024008 DOI: 10.1016/j.psj.2022.101706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 01/01/2023] Open
Abstract
Mycoplasma gallisepticum (MG) is an avian pathogen that commonly causes respiratory diseases in poultry. Methylsulfonylmethane (MSM) is a sulfur-containing natural compound that could alleviate inflammatory injury through its excellent anti-inflammatory and antioxidant properties. However, it is still unclear whether MSM prevents MG infection. The purpose of this study is to determine whether MSM has mitigative effects on MG-induced inflammatory injury in chicken and chicken like macrophages (HD11 cells). In this research, White Leghorn chickens and HD11 cells were used to build the MG-infection model. Besides, the protective effects of MSM against MG infection were evaluated by detecting MG colonization, histopathological changes, oxidative stress and inflammatory injury of trachea, and HD11 cells. The results revealed that MG infection induced inflammatory injury and oxidative stress in trachea and HD11 cells. However, MSM treatment significantly ameliorated oxidative stress, partially alleviated the abnormal morphological changes and reduced MG colonization under MG infection. Moreover, MSM reduced the mRNA expression of proinflammatory cytokines-related genes and decreased the number of death cells under MG infection. Importantly, the protective effects of MSM were associated with suppression of nuclear factor-kappa B (NF-κB) and extracellular signal-related kinases (ERK)/Jun amino terminal kinases (JNK)-mitogen-activated protein kinases (MAPK) pathway in trachea and HD11 cells. These results proved that MSM has protective effects on MG-induced inflammation in chicken, and supplied a better strategy for the protective intervention of this disease.
Collapse
Affiliation(s)
- Yusong Miao
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Ze Wang
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Jian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Xiangfang District, Harbin 150030, P. R. China
| | - Muhammad Ishfaq
- College of Computer Science, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Xiangfang District, Harbin 150030, P. R. China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Xiangfang District, Harbin 150030, P. R. China.
| |
Collapse
|
12
|
Miao Y, Niu D, Wang Z, Wang J, Wu Z, Bao J, Hu W, Guo Y, Li R, Ishfaq M, Li J. Mycoplasma gallisepticum induced inflammation-mediated Th1/Th2 immune imbalance via JAK/STAT signaling pathway in chicken trachea: Involvement of respiratory microbiota. Vet Microbiol 2022; 265:109330. [PMID: 34995932 DOI: 10.1016/j.vetmic.2021.109330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 01/09/2023]
Abstract
The respiratory microbiota plays a significant role in the host defense against Mycoplasma gallisepticum (MG) infection. The results showed that MG infection changed respiratory microbiota composition, which lead to the tracheal inflammation injury and oxidative stress. MG infection significantly induced immunosuppression in chickens at day 3 and 5 post-infection. In addition, MG infection increased the expressions of pro-inflammatory cytokines in tracheal tissues and activated TLR4 mediated JAK/STAT signaling pathway at day 3 post-infection compared to the control group. Meanwhile, the expressions of pro-inflammatory cytokines were decreased and the expressions of JAK/STAT signaling pathway were decreased at day 5 and day 7 post-infection. On the contrary, the expressions of anti-inflammatory cytokines were significantly decreased at day 3 post-infection and were increased at day 5 and day 7 post-infection in the MG infection group. The antibiotic cocktail group received the respiratory microbiota from the MG infection group, which induced inflammatory injury and oxidative stress, induced mucosal barrier damage by down regulating tight junction-related genes and altered the expressions of mucin, which could be the possible causes of dysregulated immune responses. Importantly, the expressions of pro-inflammatory cytokines were significantly decreased and TLR4 mediated JAK/STAT signaling pathway was downregulated at day 1 and 3 post-transplantation. While, respiratory microbiota transplanted from MG infection significantly increased the expressions of pro-inflammatory cytokines and activated JAK/STAT signaling at day 7 post-transplantation. These results highlighted the role of respiratory microbiota in MG-induced tracheal inflammation injury, and offered a new strategy for the preventive intervention of this disease.
Collapse
Affiliation(s)
- Yusong Miao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Ze Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Jian Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Wanying Hu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Yuquan Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; College of Computer Science, Huanggang Normal University, Huanggang 438000, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China.
| |
Collapse
|
13
|
Petkova T, Milanova A. Absorption of N-acetylcysteine in Healthy and Mycoplasma gallisepticum-Infected Chickens. Vet Sci 2021; 8:vetsci8110244. [PMID: 34822616 PMCID: PMC8621408 DOI: 10.3390/vetsci8110244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022] Open
Abstract
N-acetylcysteine (NAC) is widely used as a mucolytic agent in cases with inflammation of the lungs. NAC is applied in poultry with aflatoxin B1 intoxication as an antioxidant, but its pharmacokinetics are not known. The present study was conducted to characterize the population pharmacokinetics of orally administered NAC in broilers. It included 32 chickens, divided into four groups, treated with NAC at a dose rate of 100 mg/kg/day mixed with the feed: healthy broilers (n = 6); chickens infected with Mycoplasma gallisepticum (n = 10); healthy broilers (n = 6); and diseased chickens (n = 10) treated with NAC and doxycycline (via drinking water, 20 mg/kg body weight (b.w.)). Plasma concentrations were analyzed by Liquid Chromatography –Mass Spectrometry (MS)/MS. NAC was absorbed after oral administration in all four groups of chickens. In healthy chickens treated solely with NAC, maximum plasma concentrations of 2.26 ± 0.91 µg mL−1 were achieved at 2.47 ± 0.45 h after dosing. The value of absorption half-life was 1.04 ± 0.53 h. The population pharmacokinetic analysis showed that dose adjustment of NAC is not required in M. gallisepticum-infected broilers or when it is combined with doxycycline.
Collapse
|
14
|
Baicalin alleviates Mycoplasma gallisepticum-induced oxidative stress and inflammation via modulating NLRP3 inflammasome-autophagy pathway. Int Immunopharmacol 2021; 101:108250. [PMID: 34656906 DOI: 10.1016/j.intimp.2021.108250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
Baicalin is a well-known flavonoid compound, possess therapeutic potential against inflammatory diseases. Previous studies reported that Mycoplasma gallisepticum (MG) induced inflammatory response and immune dysregulation inside the host body. However, the underlying molecular mechanisms of baicalin against MG-infected chicken-like macrophages (HD11 cells) are still illusive. Oxidant status and total reactive oxygen species (ROS) were detected by ELISA assays and flow cytometry respectively. Mitochondrial membrane potential (ΔΨM) was evaluated by immunofluorescence microscopy. Transmission electron microscopy was used for ultrastructural analysis. The hallmarks of inflammation and autophagy were determined by western blotting. Oxidative stress and reactive oxygen species (ROS) were significantly enhanced in the MG-infected HD11 cells. MG infection caused disruption in the mitochondrial membrane potential (ΔΨM) compared to the control conditions. Meanwhile, baicalin treatment reduced MG-induced reactive oxygen species (ROS), oxidative stress and alleviated the disruption in ΔΨM. The activities of inflammatory markers were significantly enhanced in the MG-infected HD11 cells. Increased protein expressions of TLR-2-NF-κB pathway, NLRP3-inflammasome and autophagy-related proteins were detected in the MG-infected HD11 cells. Besides, baicalin treatment significantly reduced the protein expressions of TLR-2-NF-κB pathway and NLRP3 inflammasome. While, the autophagy-related proteins were significantly enhanced with baicalin treatment in a dose-dependent manner in the MG-infected HD11 cells. The results showed that baicalin prevented HD11 cells from MG-induced oxidative stress and inflammation via the opposite modulation of TLR-2-NF-κB-mediated NLRP3-inflammasome pathway and autophagy, and baicalin could be a promising candidate for the prevention of inflammatory effects caused by MG-infection in macrophages.
Collapse
|
15
|
Bao J, Wu Z, Ishfaq M, Wang J, Miao Y, Niu D, Li R, Li J, Chen C. Pharmacokinetic/pharmacodynamic profiles of baicalin against Mycoplasma gallisepticum in an in vivo infection model. Poult Sci 2021; 100:101437. [PMID: 34547622 PMCID: PMC8463782 DOI: 10.1016/j.psj.2021.101437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma gallisepticum (M. gallisepticum), a devastating avian pathogen that commonly causes chronic respiratory disease in chicken, is responsible for tremendous economic losses to the poultry industry. Baicalin is the main constituent of Scutellaria baicalensis that shows potential therapeutic effects against M. gallisepticum. However, the pharmacokinetic/pharmacodynamics (PK/PD) profiles of baicalin against M. gallisepticum are not well understood. The main objective of the present study was to determine the relationship between the PK/PD index and efficacy of baicalin in the M. gallisepticum infection model in chickens. The experiments were carried out on 10-day-old chickens that were challenged with M. gallisepticum in the bilateral air sacs. While, baicalin was orally administrated once in a day for 3 consecutive days, started from d 3 postinfection. Ultra-performance liquid chromatography (UPLC) was used to evaluate the PK parameters of baicalin at doses of 200, 400, and 600 mg/kg in M. gallisepticum-infected chickens. Real-time PCR (RT-PCR) was used for the quantitative detection of M. gallisepticum in lungs. The PK and PD data were fitted to WinNonlin software to evaluate the PK/PD profiles of baicalin against M. gallisepticum. The minimum inhibitory concentration (MIC) of baicalin against M. gallisepticum strain Rlow was 31.25 µg/mL. The in vivo data suggested that baicalin concentration in the lung tissues was higher than plasma (1.21–1.73 times higher). The ratios of AUC24h/MIC of baicalin against bacteriostatic, bactericidal, and eradication were 0.62, 1.33, and 1.49 h, respectively. In conclusion, these results provided potential reference for future clinical dose selection of baicalin and evaluation of susceptibility breakpoints.
Collapse
Affiliation(s)
- Jiaxin Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; College of Computer Science, Huanggang Normal University, Huanggang, 438000, P. R. China
| | - Jian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yusong Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Dong Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, P. R. China..
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, P. R. China
| |
Collapse
|
16
|
Kulappu Arachchige SN, Wawegama NK, Coppo MJC, Derseh HB, Vaz PK, Kanci Condello A, Omotainse OS, Noormohammadi AH, Browning GF. Mucosal immune responses in the trachea after chronic infection with Mycoplasma gallisepticum in unvaccinated and vaccinated mature chickens. Cell Microbiol 2021; 23:e13383. [PMID: 34343404 DOI: 10.1111/cmi.13383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022]
Abstract
Tracheitis associated with the chronic respiratory disease in chickens caused by Mycoplasma gallisepticum is marked by infiltration of leukocytes into the mucosa. Although cytokines/chemokines are known to play a key role in the recruitment, differentiation, and proliferation of leukocytes, those that are produced and secreted into the trachea during the chronic stages of infection with M. gallisepticum have not been described previously. In this study, the levels of transcription in the trachea of genes encoding a panel of 13 cytokines/chemokines were quantified after experimental infection with the M. gallisepticum wild-type strain Ap3AS in unvaccinated chickens and chickens vaccinated 40-, 48- or 57-weeks previously with the novel attenuated strain ts-304. These transcriptional levels in unvaccinated/infected and vaccinated/infected chickens were compared with those of unvaccinated/uninfected and vaccinated/uninfected chickens. Pathological changes and subsets of leukocytes infiltrating the tracheal mucosa were concurrently assessed by histopathological examination and indirect immunofluorescent staining. After infection, unvaccinated birds had a significant increase in tracheal mucosal thickness and in transcription of genes for cytokines/chemokines, including those for IFN-γ, IL-17, RANTES (CCLi4), and CXCL-14, and significant downregulation of IL-2 gene transcription. B cells, CD3+ or CD4+ cells and macrophages (KUL01+ ) accumulated in the mucosa but CD8+ cells were not detected. In vaccinated birds, the levels of transcription of the genes for IL-6, IL-2, RANTES and CXCL-14 were significantly lower after infection than in the unvaccinated/infected and/or unvaccinated/uninfected birds, while the transcription of the IFN-γ gene was significantly upregulated, and there were aggregations of B cells in the tracheal mucosa. These observations indicated that M. gallisepticum may have suppressed Th2 responses by upregulating secretion of IFN-γ and IL-17 by CD4+ cells and induced immune dysregulation characterized by depletion of CD8+ cells and downregulation of IL-2 in the tracheas of unvaccinated birds. The ts-304 vaccine appeared to induce long-term protection against this immune dysregulation. TAKE AWAY: The ts-304 vaccine-induced long-term protection against immune dysregulation caused by M. gallisepticum Detection of B cells and plasma cells in the tracheal mucosa suggested that long-term protection is mediated by mucosal B cell memory Infection of unvaccinated birds with M. gallisepticum resulted in CD8+ cell depletion and downregulation of IL-2 in the tracheal mucosa, suggestive of immune dysregulation Infection of unvaccinated birds with M. gallisepticum resulted in upregulation of IFN-γ and infiltration of CD4+ cells and antigen presenting cells (B and KUL01+ cells) into the tracheal mucosa, suggesting enhanced antigen processing and presentation during chronic infection Th2 responses to infection with M. gallisepticum may be dampened by CD4+ cells through upregulation of IFN-γ and IL-17 during chronic infection.
Collapse
Affiliation(s)
- Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Mauricio J C Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Habtamu B Derseh
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Anna Kanci Condello
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Oluwadamilola S Omotainse
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Ishfaq M, Zhang W, Liu Y, Wang J, Wu Z, Shah SW, Li R, Miao Y, Chen C, Li J. Baicalin attenuated Mycoplasma gallisepticum-induced immune impairment in chicken bursa of fabricius through modulation of autophagy and inhibited inflammation and apoptosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:880-890. [PMID: 32729138 DOI: 10.1002/jsfa.10695] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mycoplasma gallisepticum (MG) is the primary etiologic agent of chronic respiratory disease in poultry. However, the mechanism underlying MG-induced immune dysregulation in chicken is still elusive. Baicalin shows excellent anti-bacterial, anti-inflammatory, anti-carcinogenic and anti-viral properties. In the present study, the preventive effects of baicalin against immune impairment in chicken bursa of fabricius (BF) were studied in an MG infection model. RESULTS Histopathological examination showed increased inflammatory cell infiltrations and fragmented nuclei in the model group. Ultrastructural analysis revealed the phenomenon of apoptosis in bursal cells, along with the deformation of mitochondrial membrane and swollen mitochondria in the model group. However, these abnormal morphological changes were partially alleviated by baicalin. Meanwhile, baicalin treatment attenuated the level of proinflammatory cytokines, and suppressed nuclear factor-kappa B expression at both protein and mRNA level. Terminal deoxynucleotidyl transferase-mediated dUTP nick endlabeling assay showed extensive apoptosis in BF in the model group. The mRNA and protein expression levels of apoptosis-related genes were upregulated in BF, while baicalin treatment significantly alleviated apoptosis in BF. In addition, alterations in mRNA and protein expression levels of autophagy-related genes and mitochondrial dynamics proteins were significantly alleviated by baicalin. Moreover, baicalin treatment significantly attenuated MG-induced decrease in CD8+ cells and reduced bacterial load in chicken BF compared to the model group. CONCLUSIONS These results suggested that baicalin could effectively inhibit MG-induced immune impairment and alleviate inflammatory responses and apoptosis in chicken BF. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wei Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuhao Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jian Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhiyong Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Syed Wa Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yusong Miao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Chen
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichang Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Kuang J, Xu P, Shi Y, Yang Y, Liu P, Chen S, Zhou C, Li G, Zhuang Y, Hu R, Hu G, Guo X. Nephropathogenic Infectious Bronchitis Virus Infection Altered the Metabolome Profile and Immune Function of the Bursa of Fabricius in Chicken. Front Vet Sci 2021; 7:628270. [PMID: 33553290 PMCID: PMC7858655 DOI: 10.3389/fvets.2020.628270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Infectious bronchitis is a highly contagious, acute viral respiratory disease of chickens, regardless of the strain, and its infection may lead to considerable economic losses to the poultry industry. New nephropathogenic infectious bronchitis virus (NIBV) strains have increasingly emerged in recent years; hence, evaluating their infection-influenced immune function changes and the alteration of metabolite profiling is important. Initially, chickens were randomly distributed into two groups: the control group (Con) and the disease group (Dis). Here, the partial cytokines were examined, and the metabolome alterations of the bursa of Fabricius (BF) in NIBV infections in chickens were profiled by gas chromatography time-of-flight/mass spectrometry (GC-TOF/MS). The results revealed that the NIBV infection promotes the mRNA expression of inflammatory cytokines. Metabolic profile analysis indicated that clustering differed between the two groups and there were 75 significantly different metabolites detected between the two groups, suggesting that the host metabolism was significantly changed by NIBV infection. Notably, the following 12 metabolites were identified as the potential biomarkers: 3-phenyllactic acid, 2-deoxytetronic acid, aminomalonic acid, malonamide 5, uric acid, arachidonic acid, 2-methylglutaric acid, linoleic acid, ethanolamine, stearic acid, N-alpha-acetyl-l-ornithine, and O-acetylserine. Furthermore, the results of the correlation analysis showed that a strong correlation existed between metabolic biomarkers and inflammatory cytokines. Our results describe an immune and metabolic profile for the BF of chickens when infected with NIBV and provide new biomarkers of NIBV infection as potential targets and indicators of indicating therapeutic efficacy.
Collapse
Affiliation(s)
- Jun Kuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Puzhi Xu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yitian Yang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shupeng Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
19
|
Miao Y, Ishfaq M, Liu Y, Wu Z, Wang J, Li R, Qian F, Ding L, Li J. Baicalin attenuates endometritis in a rabbit model induced by infection with Escherichia coli and Staphylococcus aureus via NF-κB and JNK signaling pathways. Domest Anim Endocrinol 2021; 74:106508. [PMID: 32861957 DOI: 10.1016/j.domaniend.2020.106508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
In this study, a rabbit endometritis model was developed to study cow endometritis. In addition, the protective effects of baicalin (a flavonoid) against endometritis were investigated. Clinical symptoms, differential leukocyte counting, uterine secretion smear microscopy and chemical examination, urine testing, and signs of necropsy showed abnormal changes and inflammatory responses in the uterus of rabbits. Histopathological results revealed visible inflammatory exudates and blood spots between intercellular spaces which confirmed that the rabbit endometritis model was successfully developed. Most importantly, these inflammatory signs were partially attenuated with baicalin treatment. The data revealed that the increased body temperature and leukocyte cells, pus, and the detachment of epithelial cells were alleviated with baicalin administration in a dose-dependent manner. Histopathological tissue changes such as inflammatory cells infiltrates, hyperemia, hemorrhages, and shedding of epithelial cells were partially attenuated with baicalin treatment. In addition, the mRNA expression of inflammation-related genes (iNOS, IL-1β, TNF-α, IL-10, IL-4, and IL-6) was significantly altered in RAW264.7 cells after LPS treatment. Further, the phosphorylated protein expression of JNK, p65, and IκBα were significantly reduced with LPS treatment. Intriguingly, baicalin pretreatment reversed the alteration in mRNA expression of inflammation-related genes and significantly reduced the phosphorylation of JNK, p65, and IκBα. In summary, our results suggest that baicalin has protective effects on bacterial-induced endometritis in rabbits that involve the suppression of NF-κB and JNK signaling pathways and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Y Miao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - M Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Y Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Z Wu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - J Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - R Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - F Qian
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - L Ding
- College of Life Science, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| | - J Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
20
|
Shah SWA, Chen D, Zhang J, Liu Y, Ishfaq M, Tang Y, Teng X. The effect of ammonia exposure on energy metabolism and mitochondrial dynamic proteins in chicken thymus: Through oxidative stress, apoptosis, and autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111413. [PMID: 33022443 DOI: 10.1016/j.ecoenv.2020.111413] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3) gas is an atmospheric pollutant, produced from different sources. In poultry houses NH3 is produced from the biological process of liter, manure, and protein composition. It has been well documented that NH3 adversely effects the health of chickens. However, the underlying mechanism of NH3 toxicity on chicken thymus is still unknown. Thymus is an important immune organ, which play a critical role in eliciting protective immune responses to ensure healing process and elimination of harmful stimuli. The results showed that NH3 exposure reduced antioxidant activities and induced oxidative stress in thymus tissues. Histological observation showed normal morphology of chicken thymus in control group. In contrast, increased number of nuclear debris, vacuoles, and cristae break were seen in NH3 affected chickens. Ultrastructural analysis indicated mitochondrial breakdown, disappearance, vacuoles, and chromatin condensation in NH3 treated groups. The mRNA and protein expression of apoptosis related genes were significantly enhanced in the chicken thymus of NH3 affected chickens compared to control group. Moreover, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay results suggested that NH3 exposure increased positive stained nuclei in the chicken thymus. Meanwhile, NH3 exposure reduced the number of CD8+ T-lymphocytes, decreased the adenosine triphosphate (ATPase) activities. The mRNA and protein expression of autophagy, energy metabolism, and mitochondrial dynamics proteins were altered by NH3 exposure. In summary, these results showed that NH3 induced oxidative stress, apoptosis and autophagic cell death (ACD), which could be the possible causes of immune damage and structural impairment in chicken thymus.
Collapse
Affiliation(s)
- Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China.
| | - Jingyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Yuanlong Liu
- Heilongjiang Animal Husbandry Station, Harbin 150069, China.
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Chang jiang Road, Xiang Fang District, Harbin 150030, China.
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin 132101, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Ali Shah SW, Zhang S, Ishfaq M, Tang Y, Teng X. PTEN/AKT/mTOR pathway involvement in autophagy, mediated by miR-99a-3p and energy metabolism in ammonia-exposed chicken bursal lymphocytes. Poult Sci 2020; 100:553-564. [PMID: 33518108 PMCID: PMC7858094 DOI: 10.1016/j.psj.2020.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Emission of atmospheric ammonia (NH3) is an environmental challenge because of its harmful effects on humans and animals including birds. Among all organisms, NH3 is highly sensitive to birds. Autophagy plays a critical role in Bursa of fabricius (BF)-mediated immune responses against various hazardous substances. Therefore, we designed our work to demonstrate whether NH3 can induce autophagy in broiler chicken BF. In this study, the downregulated levels of mammalian target of rapamycin and light chain-3 (LC-Ⅰ), as well as the upregulated levels of phosphate and tensin homology (PTEN), protein kinase B (AKT), autophagy related-5, light chain-3 (LC3-Ⅱ), Becline-1, and Dynein, were found. Our results of transmission electron microscopy displayed signs of autophagosomes/autophagic lysosomes, and immunofluorescence assay displayed that NH3 exposure reduced the relative amount of CD8+ B-lymphocyte in chicken BF. Exposure of NH3 led to energy metabolism disturbance by decreasing mRNA levels of glucose metabolism factors aconitase-2, hexokinase-1, hexokinase-2, lactate dehydrogenase-A, lactate dehydrogenase-B, pyruvate kinase, phosphofructokinase and succinate dehydrogenase complex unit-B, and adenosine triphosphates (ATPase) activities (Na+/K+ ATPase, Ca2+ ATPase, Mg2+ ATPase, and Ca/Mg2+ ATPase). Moreover, phosphate and tensin homology was found as target gene of microRNA-99a-3p which confirmed that high concentration of NH3 caused autophagy in chicken BF. In summary, these findings suggested that ammonia induced autophagy via miR-99a-3p, the reduction of ATPase activity, and the alteration of autophagy-related factors, and energy metabolism mediation in BF. Our findings provide information to assess the harmful effects of NH3 on chicken and clues for human health pathophysiology.
Collapse
Affiliation(s)
- Syed Waqas Ali Shah
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - You Tang
- Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin, 132101, People's Republic of China.
| |
Collapse
|
22
|
Redweik GAJ, Jochum J, Mellata M. Live Bacterial Prophylactics in Modern Poultry. Front Vet Sci 2020; 7:592312. [PMID: 33195630 PMCID: PMC7655978 DOI: 10.3389/fvets.2020.592312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022] Open
Abstract
Commercial poultry farms frequently use live bacterial prophylactics like vaccines and probiotics to prevent bacterial infections. Due to the emergence of antibiotic-resistant bacteria in poultry animals, a closer examination into the health benefits and limitations of commercial, live prophylactics as an alternative to antibiotics is urgently needed. In this review, we summarize the peer-reviewed literature of several commercial live bacterial vaccines and probiotics. Per our estimation, there is a paucity of peer-reviewed published research regarding these products, making repeatability, product-comparison, and understanding biological mechanisms difficult. Furthermore, we briefly-outline significant issues such as probiotic-label accuracy, lack of commercially available live bacterial vaccines for major poultry-related bacteria such as Campylobacter and Clostridium perfringens, as well research gaps (i.e., probiotic-mediated vaccine adjuvancy, gut-brain-microbiota axis). Increased emphasis on these areas would open several avenues for research, ranging from improving protection against bacterial pathogens to using these prophylactics to modulate animal behavior.
Collapse
Affiliation(s)
- Graham A. J. Redweik
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Jared Jochum
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
23
|
Qin L, Zhang Y, Wan C, Wang Z, Cong Y, Li S. MiR-196-5p involvement in selenium deficiency-induced immune damage via targeting of NFκBIA in the chicken trachea. Metallomics 2020; 12:1679-1692. [PMID: 32910126 DOI: 10.1039/d0mt00164c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dietary selenium (Se) deficiency can induce multifarious immune injury in tissues, accompanied by inflammation and a decreased expression of selenoproteins. The results of previous studies indicated that these issues are associated with Se-mediated microRNAs involved in immune regulation, although the specific mechanisms associated with these interactions have not been reported in the trachea of chickens. To explore the effects of Se deficiency in the trachea of chickens and the role of miR-196-5p, we established correlational models of tracheal injury in chickens. One hundred broilers were divided into four groups, including a control group (C group), a Se deficient group (L group), a lipopolysaccharide (LPS)-induced control group (C + LPS group) and a LPS-induced Se deficient group (L + LPS group). Light microscopy observations indicated that the infiltration of inflammatory cells was the major histopathological change caused by Se deficiency. Furthermore, ultrastructural observation of the tracheal epithelium and ciliary showed typical inflammatory signs owing to Se deficiency. We determined the targeting relationship between miR-196-5p and NFκBIA by bioinformatics analysis. In the case of Se deficiency, the changes were detected as follows: 19 selenoproteins showed different degrees of decrease (p < 0.05). Significant inhibition of both antimicrobial peptides and immunoglobulin production were observed (p < 0.05). IκB-α (NFκBIA) expression degraded with the increasing miR-196-5p (p < 0.05), and the NF-κB pathway was activated. Thereafter, we can see a significant increase in the mRNA levels of inflammatory cytokines-related genes (tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E (PTGE), interleukin (IL)-1β, IL-6) and protein expression of NF-κB/iNOS pathway-related genes (NF-κB, iNOS, TNF-α, COX-2) (p < 0.05). The release of IL-2, interferon (IFN)-γ inhibited (p < 0.05) and the secretion of IL-4, IL-6 increased, suggesting the imbalance of Th1/Th2 (Th, helper T cell) cytokines. Compared to the control, the mRNA and protein expression levels of the anti-inflammatory system components with antioxidant activity (PPAR-γ/HO-1) were in an inhibitory state (p < 0.05). Antioxidases (SOD, CAT, GSH-Px) activities were suppressed. The activities of the peroxide markers (MDA, H2O2) were enhanced (p < 0.05). In addition, Se deficiency had a positive effect on the pathological changes of inflammation and the exceptional immunity in LPS-treated groups (p < 0.05). The results confirmed the relationship between miR-196-5p and NFκBIA in chickens, revealing that Se deficiency causes respiratory mucosal immune dysfunction via the miR-196-5p-NFκBIA axis, oxidative stress and inflammation. Moreover, Se deficiency exacerbates the inflammatory damage stimulated by LPS. Our work provides a theoretical basis for the prevention of tracheal injury owing to Se deficiency and can be used as a reference for comparative medicine. Furthermore, the targeted regulation of miR-196-5p and NFκBIA may contribute to the protection of the tracheal mucosa in chickens.
Collapse
Affiliation(s)
- Linqian Qin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Current status of vaccine research, development, and challenges of vaccines for Mycoplasma gallisepticum. Poult Sci 2020; 99:4195-4202. [PMID: 32867963 PMCID: PMC7598112 DOI: 10.1016/j.psj.2020.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is an important avian pathogen that causes significant economic losses in the poultry industry. Surprisingly, the limited protection and adverse reactions caused by the vaccines, including live vaccines, bacterin-based (killed) vaccines, and recombinant viral vaccines is still a major concern. Mycoplasma gallisepticum strains vary in infectivity and virulence and infection may sometimes unapparent and goes undetected. Although extensive research has been carried out on the biology of this pathogen, information is lacking about the type of immune response that confers protection and selection of appropriate protective antigens and adjuvants. Regardless of numerous efforts focused on the development of safe and effective vaccine for the control of MG, the use of modern DNA vaccine technology selected in silico approaches for the use of conserved recombinant proteins may be a better choice for the preparation of novel effective vaccines. More research is needed to characterize and elucidate MG products modulating MG-host interactions. These products could be used as a reference for the preparation and development of vaccines to control MG infections in poultry flocks.
Collapse
|