1
|
Meinen-Jochum J, Skow CJ, Mellata M. Layer segmented filamentous bacteria colonize and impact gut health of broiler chickens. mSphere 2024; 9:e0049224. [PMID: 39422489 PMCID: PMC11580430 DOI: 10.1128/msphere.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
In commercial poultry farms, chicks hatch away from their progenitors from which they acquire key host-specific microbiota, like segmented filamentous bacteria (SFB) involved in gut maturation in early life. This study investigated whether providing chicken SFB to newly hatched broilers would increase their gut maturation and resistance to bacteria relevant to broiler and human health. One-day-old Ross308 broilers were orally treated with either phosphate-buffered saline (CON) or layer-derived SFB (D-SFB). On days 5, 10, 17, and 24, feces were collected to detect and enumerate SFB and Enterobacteriaceae. On days 8, 15, 22, and 29, birds were euthanized, intestinal samples were collected to detect and enumerate SFB through quantitative PCR (qPCR) and microscopy and expression of genes associated with gut immune function through reverse transcription-qPCR. This study showed that, despite their host specificity, layer SFB can colonize their genetically distinct relative broilers. Ileal SFB colonization was accelerated by a week with the SFB treatment and covered the proximal, medial, and distal sections of the ileum. Colonization of the ileum by SFB in early life highly activated gene expression of intestinal barrier proteins and cytokines, e.g., IL-10 and IFNγ but not IL-17. SFB treatment reduced the level of Enterobacteriaceae in the gut and provided superior resistance to intestinal and extraintestinal pathogens as tested in vitro. Overall, early gut colonization of SFB is imperative for the maturation of the gut immune system and the establishment of a homeostatic gut environment. Improving our understanding of gut immune maturation in food-producing animals is crucial for both human and animal health.IMPORTANCEIn commercial farms, newly hatched chicks may lack host-specific microbiota that help mature their gut immune system for lifelong health benefits. Here, introducing an avian segmented filamentous bacteria (SFB) to commercially sourced chickens orally at hatch accelerated SFB colonization of the ileum. Remarkably, SFB from layers were able to colonize broilers and enhance gut immune maturation, and this immunomodulation impacted the ability to increase intestinal and extraintestinal resistance to bacteria relevant to poultry and human health. With the antibiotic restrictions in animal production, strategies that will help mitigate infections are urgently needed. In summary, we developed a live prophylactic for newly hatched chicks to improve animal health and food safety. Due to the host specificity of SFB, our data highlight the importance of investigating the molecular mechanism of SFB interaction in their own host.
Collapse
Affiliation(s)
- Jared Meinen-Jochum
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Caleb J. Skow
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, Iowa, USA
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
2
|
Marková K, Kreisinger J, Vinkler M. Are there consistent effects of gut microbiota composition on performance, productivity and condition in poultry? Poult Sci 2024; 103:103752. [PMID: 38701628 PMCID: PMC11078699 DOI: 10.1016/j.psj.2024.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Microbiome of the gastrointestinal tract (GIT) has been identified as one of the crucial factors influencing the health and condition of domestic animals. The global poultry industry faces the challenge of understanding the complex relationship between gut microbiota composition and performance-related traits in birds. Considerable variation exists in the results of correlational studies using either 16S rRNA profiling or metagenomics to identify bacterial taxa associated with performance, productivity, or condition in poultry (e.g., body weight, growth rate, feeding efficiency, or egg yield). In this review, we survey the existing reports, discuss variation in research approaches, and identify bacterial taxa consistently linked to improved or deteriorated performance across individual poultry-focused studies. Our survey revealed high methodological heterogeneity, which was in contrast with vastly uniform focus of the research mainly on the domestic chicken (Gallus gallus) as a model. We also show that the bacterial taxa most frequently used in manipulative experiments and commercial probiotics intended for use in poultry (e.g., species of Lactobacillus, Bacillus, Enterococcus, or Bifidobacterium) do not overlap with the bacteria consistently correlated with their improved performance (Candidatus Arthromitus, Methanobrevibacter). Our conclusions urge for increased methodological standardization of the veterinary research in this field. We highlight the need to bridge the gap between correlational results and experimental applications in animal science. To better understand causality in the observed relationships, future research should involve a broader range of host species that includes both agricultural and wild models, as well as a broader range of age groups.
Collapse
Affiliation(s)
- Kateřina Marková
- Charles University, Faculty of Science, Department of Zoology, 128 43 Prague, Czech Republic.
| | - Jakub Kreisinger
- Charles University, Faculty of Science, Department of Zoology, 128 43 Prague, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, 128 43 Prague, Czech Republic
| |
Collapse
|
3
|
Meinen-Jochum J, Ott LC, Mellata M. Segmented filamentous bacteria-based treatment to elicit protection against Enterobacteriaceae in Layer chickens. Front Microbiol 2023; 14:1231837. [PMID: 37583515 PMCID: PMC10423809 DOI: 10.3389/fmicb.2023.1231837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Gut microbes like segmented filamentous bacteria (SFB) play a key role in gut maturation during early life, as demonstrated in humans and mice. Our previous study demonstrated oral inoculation of ileum-spores containing SFB to chickens after hatch increases early SFB gut colonization, which increases immune maturation and resistance to bacteria, like Salmonella, as tested in vitro; however, more studies are needed for treatment optimization and in vivo testing. The objectives of this study were to (1) test a treatment that includes both spores and filamentous SFB, (2) validate antimicrobial ability of the treatment in layer hens in vivo, and (3) elucidate its molecular mechanism. Methods One-day-old specific pathogen-free layers (n = 12 per group) were orally treated with either PBS (CON) or SFB-based treatment (SFB). At 4 days post-inoculation (DPI), both CON and SFB groups were orally challenged with Salmonella Typhimurium. Total Enterobacteriaceae and Salmonella were examined by plating and enumeration in feces at 7,10 and 14 dpi; and in the ileum, cecum, and spleen at 16 dpi in euthanized birds. The presence and levels of SFB were determined from ilea scrapings via microscopy and qPCR, respectively. Relative gene expression of host-derived antimicrobial peptides and cytokines in the distal ileum was determined by RT-qPCR. Results At 10 and 14 dpi, a significant decrease in total Enterobacteriaceae was observed in the feces of the SFB group. At necropsy, the level of SFB was significantly higher in the SFB group than in the CON group, while a significant decrease in total Enterobacteriaceae and Salmonella was observed in the ceca of the SFB group. RT-qPCR revealed increased expression of β-defensin 14, and cytokines IL-10 and IFNγ. Discussion The introduction of SFB at hatch as a prophylactic treatment may benefit commercial partners as well as consumers by reducing the incidence of Enterobacteriaceae in food animals. Reduction of these bacteria in animals would, in turn, increase animal health, productivity, and safety for consumers. Studies to optimize the treatment for poultry industry applications are ongoing in our lab.
Collapse
Affiliation(s)
- Jared Meinen-Jochum
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Logan C. Ott
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Ducatelle R, Goossens E, Eeckhaut V, Van Immerseel F. Poultry gut health and beyond. ANIMAL NUTRITION 2023; 13:240-248. [PMID: 37168453 PMCID: PMC10164775 DOI: 10.1016/j.aninu.2023.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Intestinal health is critically important for the digestion and absorption of nutrients and thus is a key factor in determining performance. Intestinal health issues are very common in high performing poultry lines due to the high feed intake, which puts pressure on the physiology of the digestive system. Excess nutrients which are not digested and absorbed in the small intestine may trigger dysbiosis, i.e. a shift in the microbiota composition in the intestinal tract. Dysbiosis as well as other stressors elicit an inflammatory response and loss of integrity of the tight junctions between the epithelial cells, leading to gut leakage. In this paper, key factors determining intestinal health and the most important nutritional tools which are available to support intestinal health are reviewed.
Collapse
|
5
|
Tu D, Ke J, Luo Y, Hong T, Sun S, Han J, Chen S. Microbial community structure and shift pattern of industry brine after a long-term static storage in closed tank. Front Microbiol 2022; 13:975271. [PMID: 36118215 PMCID: PMC9478951 DOI: 10.3389/fmicb.2022.975271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Brine from Dingyuan Salt Mine (Anhui, China), an athalassohaline hypersaline environment formed in the early tertiary Oligocene, is used to produce table salt for hundreds of millions of people. However, halophiles preserved in this niche during deposition are still unknown. Here, we employed cultivation and high-throughput sequencing strategies to uncover the microbial community and its shift after a long-term storage in the brine collected from Dingyuan Salt Mine. High-throughput sequencing showed (1) in the fresh brine (2021), Cyanobium_stocktickerPCC-6307 spp. (8.46%), Aeromonas spp. (6.91%) and Pseudomonas spp. (4.71%) are the dominant species in bacteria while Natronomonas spp. (18.89%), Halapricum spp. (13.73%), and Halomicrobium spp. (12.35%) in archaea; (2) after a 3-year-storage, Salinibacter spp. (30.01%) and Alcanivorax spp. (14.96%) surpassed Cyanobium_stocktickerPCC-6307 spp. (8.46%) becoming the dominant species in bacteria; Natronomonas spp. are still the dominant species, while Halorientalis spp. (14.80%) outnumbered Halapricum spp. becoming the dominant species in archaea; (3) Alcanivorax spp. and Halorientalis spp. two hydrocarbons degrading microorganisms were enriched in the brine containing hydrocarbons. Cultivation using hypersaline nutrient medium (20% NaCl) combined with high-throughput 16S rRNA gene sequencing showed that (1) the biomass significantly increased while the species diversity sharply declined after a 3-year-storage; (2) Halorubrum spp. scarcely detected from the environment total stocktickerDNA were flourishing after cultivation using AS-168 or NOM medium; (3) twelve possible new species were revealed based on almost full-length 16S rRNA gene sequence similarity search. This study generally uncovered the microbial community and the dominant halophiles in this inland athalassohaline salt mine, and provided a new insight on the shift pattern of dominant halophiles during a long-term storage, which illustrated the shaping of microorganisms in the unique environment, and the adaptation of microbe to the specific environment.
Collapse
Affiliation(s)
- Demei Tu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Juntao Ke
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Siqi Sun
- Anhui Jiaotianxiang Biological Technology Co., Ltd., Xuancheng, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Fu Z, Yang H, Xiao Y, Wang X, Yang C, Lu L, Wang W, Lyu W. Ileal Microbiota Alters the Immunity Statues to Affect Body Weight in Muscovy Ducks. Front Immunol 2022; 13:844102. [PMID: 35222437 PMCID: PMC8866836 DOI: 10.3389/fimmu.2022.844102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
The ileum is mainly responsible for food absorption and nutrients transportation. The microbes in its intestinal lumen play an essential role in the growth and health of the host. However, it is still unknown how the ileal microbes affect the body weight of the host. In this study, we used Muscovy ducks as an animal model to investigate the relationship between the ileal microbes and body weight and further explore the potential mechanism. The ileum tissue and ileal contents of 200 Muscovy ducks were collected for mRNA extraction and real-time quantitative PCR, as well as DNA separation and 16S rRNA gene sequencing. With body weight being ranked, the bottom 20% (n = 40) and top 20% (n = 40) were set as the low and high groups, respectively. Our results showed that in the ileum of Muscovy ducks, the Bacteroides, Firmicutes, and Proteobacteria were the predominant phyla with the 10 most abundant genera, namely Candidatus Arthromitus, Bacteroides, Streptococcus, Vibrio, Romboutsia, Cetobacterium, Clostridium sensu stricto 1, Terrisporobacter, Escherichia-Shigella, and Lactobacillus. We identified Streptococcus, Escherichia-Shigella, Candidatus Arthromitus, Bacteroides, Faecalibacterium, and Oscillospira were closely correlated to the growth of Muscovy ducks. Streptococcus and Escherichia-Shigella were negatively related to body weight (BW), while Candidatus Arthromitus, Bacteroides, Faecalibacterium, and Oscillospira were positively associated with BW. In addition, we found that the relative expression levels of tight junction proteins (Claudin 1, Claudin 2, ZO-1 and ZO-2) in the high group showed an upward trend, although this trend was not significant (P > 0.05). The expression of pro-inflammatory factors (IL-1β, IL-2 and TNF-α) decreased in the high group, while the anti-inflammatory factor IL-10 increased. Of course, except IL-2, these differences were not significant (P > 0.05). Finally, the correlation analysis showed that Escherichia-Shigella was significantly positively correlated with IL-1β (P < 0.05). These findings may provide fundamental data for the development of next-generation probiotics and assist the development of strategies for changing the gut microbiota to promote the growth performance in the duck industry.
Collapse
Affiliation(s)
- Zixian Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Caimei Yang
- College of Animal Science, Zhejiang A&F University, Hangzhou, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Kogut MH. Role of diet-microbiota interactions in precision nutrition of the chicken: facts, gaps, and new concepts. Poult Sci 2022; 101:101673. [PMID: 35104729 PMCID: PMC8814386 DOI: 10.1016/j.psj.2021.101673] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In the intestine, host-derived factors are genetically hardwired and difficult to modulate. However, the intestinal microbiome is more plastic and can be readily modulated by dietary factors. Further, it is becoming more apparent that the microbiome can potentially impact poultry physiology by participating in digestion, the absorption of nutrients, shaping of the mucosal immune response, energy homeostasis, and the synthesis or modulation of several potential bioactive metabolites. These activities are dependent on the quantity and quality of the microbiota alongside its metabolic potential, which are dictated in large part by diet. Thus, diet-induced microbiota alterations may be harnessed to induce changes in host physiology, including disease development and progression. In this regard, the gut microbiome is malleable and renders the gut microbiome a candidate 'organ' for the possibility of precision nutrition to induce precision microbiomics-the use of the gut microbiome as a biomarker to predict responsiveness to specific dietary constituents to generate precision diets and interventions for optimal poultry performance and health. However, it is vital to identify the causal relationships and mechanisms by which dietary components and additives affect the gut microbiome which then ultimately influence avian physiology. Further, an improved understanding of the spatial and functional relationships between the different sections of the avian gut and their regional microbiota will provide a better understanding of the role of the diet in regulating the intestinal microbiome.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA.
| |
Collapse
|