1
|
Qi N, Wang B, Xing W, Ge F, Liu J. The protective role of quercetin against copper-induced female reproductive toxicity: Insights from transcriptome analysis. Food Chem Toxicol 2024; 192:114934. [PMID: 39151877 DOI: 10.1016/j.fct.2024.114934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Quercetin has been shown to mitigate the cytotoxic effects of heavy metals. While copper is an essential trace element for bodily functions, excessive intake has been linked to impaired female reproductive function. Transcriptome analysis was employed to identify genes that are differentially expressed in response to high copper and were validated through qRT-PCR and western blotting. ATP content and Tunel were used to identify the damage of mitochondrial and cell apoptosis. PPI analysis revealed that MKI67, TOPII, ASPM, CASP3, PLK1, and TTK are central proteins within the network. Additionally, exposure to elevated levels of copper resulted in the dysregulation of 86 genes associated with mitochondria. Conversely, treatment with quercetin (QUE) in combination with high copper led to the normalization of 42 mitochondria-related genes previously affected by high copper levels. Furthermore, CuSO4 decreases ATP content and induces cell apoptosis, which can be reversed by QUE. Results suggest that elevated copper levels could lead to oxidative stress and apoptosis by inducing mitochondrial damage, while QUE has the potential to mitigate these effects, ultimately safeguarding granulosa cells and halting the progression of cell death. This study provides novel insights into the molecular pathways involved in female reproductive toxicity caused by excessive copper exposure.
Collapse
Affiliation(s)
- Nannan Qi
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Binbin Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Wenwen Xing
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Fangcai Ge
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| | - Jiying Liu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
2
|
Qi N, Wang B, Xing W, Li M, Liu J. Impact of quercetin on autophagy and apoptosis induced by a high concentration of CuSO 4 in porcine ovarian granulosa cells. Domest Anim Endocrinol 2024; 90:106881. [PMID: 39213807 DOI: 10.1016/j.domaniend.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Copper is a vital micronutrient necessary for the maintenance of physiological functions. However, excessive amounts can lead to organ damage. Porcine ovarian granulosa cells are damaged by a high concentration of CuSO4, which can reduce the reproductive capacity of sows. Quercetin has shown remarkable efficacy in mitigating the harmful effects of heavy metals. Therefore, the aim of this study was to investigate the effects of a high concentration of CuSO4 on autophagy and apoptosis in porcine ovarian granulosa cells and to explore whether quercetin can counteract these toxic effect. Cell morphology, and the mRNA expression levels of autophagy-related genes (LC3-Ⅰ, ATG5, ATG7, ATG12, Beclin1, mTOR, LC3-Ⅱ and P62) were significantly changed upon treatment with 200 and 400 µM CuSO4. Treatment with 200 µM CuSO4 increased expression of P62 protein (P<0.05), promoted LC3-Ⅰ to LC3-Ⅱ conversion (P<0.05), and reduced PINK1 protein expression and the ATP content (P<0.05). In addition, expression of Caspase3 protein was increased and TUNEL staining indicated that the number of apoptotic cells was increased. However, co-treatment with 10 µM quercetin significantly decreased expression of P62 and conversion of LC3-Ⅰ to LC3-Ⅱ. Furthermore, flow cytometric analysis revealed that addition of 10 µM quercetin significantly reduced apoptosis induced by a high concentration of CuSO4. In summary, the results indicate that a high concentration of CuSO4 can trigger mitochondrial and autophagy dysfunction, activate mitochondrial apoptosis pathway, and exert cytotoxic effects. Quercetin can mitigate autophagy dysfunction, enhance autophagic processes, and alleviate apoptosis.
Collapse
Affiliation(s)
- Nannan Qi
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Binbin Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Wenwen Xing
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Mengxuan Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jiying Liu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
3
|
Zhang L, Xu LY, Tang F, Liu D, Zhao XL, Zhang JN, Xia J, Wu JJ, Yang Y, Peng C, Ao H. New perspectives on the therapeutic potential of quercetin in non-communicable diseases: Targeting Nrf2 to counteract oxidative stress and inflammation. J Pharm Anal 2024; 14:100930. [PMID: 39005843 PMCID: PMC11245930 DOI: 10.1016/j.jpha.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 07/16/2024] Open
Abstract
Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases (NDDs), cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
4
|
Rajiv C, Sanjita Devi H, Devi AK, Tamreihao K, Kshetri P, Tania C, Singh TS, Sonia C, Singh MN, Sen A, Sharma SK, Roy SS. Pharmacological potential of Jussiaea repens L. against CuSO 4 and bacterial lipopolysaccharide O55:B5 induced inflammation using in-vivo zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116932. [PMID: 37473823 DOI: 10.1016/j.jep.2023.116932] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Northeastern state of India is known for its remarkable biodiversity and untapped medicinal resources. Jussiaea repens L., commonly known as water primrose, is a plant found in this region that has been traditionally used by indigenous communities for various purposes. It has been employed to treat skin ulcerations, bone fractures, rheumatism, stomach pain, and intestinal worms. Despite its long-standing ethnopharmacological usage, there is limited scientific research on the bioactivity of Jussiaea repens L. However, preliminary studies have shown its potential antioxidant properties and cytotoxicity against cancer cells. Further exploration of its medicinal properties, particularly its potential as an anti-inflammatory agent, is warranted. AIM OF THE STUDY This study aimed to investigate the anti-inflammatory properties of Jussiaea repens L., a plant species found in the biodiverse Northeastern region of India. The plant has been traditionally used by indigenous communities for various ailments. By utilizing zebrafish as an animal model and evaluating its effects in different inflammation models, the study aimed to uncover the plant's potential as an anti-inflammatory agent. The research contributes to the scientific understanding of this traditional remedy and its potential therapeutic applications. METHODS Jussiaea repens L. extract was obtained from the stem and leaves using methanol as the solvent. Zebrafish embryos were used for in vivo assays. The anti-inflammatory study included two models: CuSO4-induced inflammation and tail wounding followed by bacterial lipopolysaccharide-induced inflammation. The activities of catalase (CAT) and superoxide dismutase (SOD) were measured in CuSO4-induced inflammation. Leukocyte migration at the injury site was observed in the tail wounding model. The extract's inhibition of the 15-LOX enzyme was assessed. All procedures followed established protocols and ethical guidelines. RESULTS AND CONCLUSION Jussiaea repens L. extract exhibited anti-inflammatory activity in two in vivo zebrafish models: CuSO4-induced inflammation and tail wounding combined with bacterial lipopolysaccharide-induced inflammation. The extract reduced mortality rates and showed antioxidant effects by increasing catalase (CAT) and superoxide dismutase (SOD) activities in the CuSO4 model. In the tail wounding model, the extract reduced leukocyte migration in a concentration-dependent manner. Additionally, the extract demonstrated dose-dependent inhibition of the 15-LOX enzyme in the in vitro assay. These results suggest that Jussiaea repens L. extract possesses anti-inflammatory properties and inhibits the 15-LOX enzyme.
Collapse
Affiliation(s)
- Chongtham Rajiv
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | | | - Asem Kajal Devi
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - K Tamreihao
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; St. Joseph College, Ukhrul, 795142, Manipur, India
| | - Pintubala Kshetri
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; Yairipok Universal College, Yairipok, 795138, Manipur, India
| | - Chongtham Tania
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - Thangjam Surchandra Singh
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; TS Paul Women's College, Mongsangei, 795003, Manipur, India
| | - Chongtham Sonia
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | | | - Arnab Sen
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India
| | - Susheel Kumar Sharma
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Subhra Saikat Roy
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, 795004, India; ICAR-Central Citrus Research Institute, Nagpur, 440033, Maharashtra, India.
| |
Collapse
|
5
|
Ali M, Farhat SM, Haleem A. Metabolic Carcinogenesis. Cancer Treat Res 2024; 191:33-55. [PMID: 39133403 DOI: 10.1007/978-3-031-55622-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Several types of environmental, chemical and metabolic carcinogens exist both exogenously and endogenously. Humans are daily exposed to aforementioned carcinogens through various sources such as through water, air and food or through metabolic and inflammatory products. This chapter will summarize the links between exogenous and endogenous carcinogen exposure and their metabolism with the cancer pathogenesis and associated risks. This chapter will also cover the carcinogens acquired through lifestyle factors like tobacco use and occupational exposures to different chemicals like asbestos, arsenic, chloroform, vinyl chloride, etc. Moreover, environmental carcinogens such as radiation, sunlight, diet, smoke, etc. will also be discussed in this chapter. Furthermore, there are certain carcinogens that require bio-activation and various human enzymes that play a vital role in the metabolic carcinogenesis will also be recapitulated. Necessary preventive measures against carcinogenic exposure from the exogenous environment are significant to be taken into account to reduce the risks associated with the carcinogens.
Collapse
Affiliation(s)
- Mahwish Ali
- National University of Medical Sciences, Rawalpindi, Pakistan.
| | | | | |
Collapse
|
6
|
Zeng YF, Li JY, Wei XY, Ma SQ, Wang QG, Qi Z, Duan ZC, Tan L, Tang H. Preclinical evidence of reno-protective effect of quercetin on acute kidney injury: a meta-analysis of animal studies. Front Pharmacol 2023; 14:1310023. [PMID: 38186644 PMCID: PMC10770850 DOI: 10.3389/fphar.2023.1310023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Objective: This study evaluated the reno-protective effects of quercetin in animal models of acute kidney injury (AKI). Methods: We conducted a systematic search of literature published before April 2023 in PubMed, Web of Science, and EMBASE databases. Methodological quality was assessed by SYRCLE's RoB tool. Funnel plot, Egger's test, and Begg's test were used to determine publication bias. Results: A total of 19 studies with 288 animals were included in this meta-analysis. The methodology quality scores of the included studies ranged from 4 to 7. The results indicated that quercetin reduced blood urea nitrogen (SMD = -4.78; 95% CI: 6.45, -3.12; p < 0.01; I2 = 84%) and serum creatinine (SMD: 2.73, 95% CI: 3.66, -1.80; p < 0.01; I2 = 80%) in AKI models. The result of sensitivity analysis was stable, while the results of funnel plot indicated asymmetric. In addition, we further analyzed inflammatory cytokines, oxidative stress levels, and kidney injury scores, and found that quercetin treatment had antioxidant and anti-inflammatory effects and improved kidney injury scores in animal models of AKI. Conclusion: Quercetin exhibited a promising reno-protective effect in AKI animal models. Systematic Review Registration: PROSPERO (CRD42023433333).
Collapse
Affiliation(s)
- Yi-Fan Zeng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing-Yu Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin-Yu Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Si-Qing Ma
- Department of Pharmacy, Hunan Chest Hospital, Changsha Medical University, Changsha, China
| | - Qiu-Guo Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Qi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Cheng Duan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Jaber FA. Quercetin Mitigates Oxidative Stress, Inflammation, Apoptosis, and Histopathological Alterations Induced by Chronic Titanium Dioxide Nanoparticle Exposure in the Rat Spleen. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1718-1729. [PMID: 37584520 DOI: 10.1093/micmic/ozad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2) have become widespread but are accompanied by various health concerns. Quercetin (QT), a naturally occurring flavonoid in fruits and vegetables, exhibits potent antioxidant properties. This research examined the toxic impacts of nano-TiO2 on the structure and function of the spleen in adult male rats and assessed the possible protective effects of QT. A set of randomly grouped rats was established, consisting of a control group, a QT group (50 mg/kg/day), a nano-TiO2 group (300 mg/kg/day), and a QT-nano-TiO2 group. These substances were orally administered to the respective groups for 90 days. Nano-TiO2 significantly induced oxidative stress in the spleen, leading to reduced levels of serum immunoglobulins. Additionally, there was a notable increase in the expression of apoptotic markers and proinflammatory cytokines. These biochemical disturbances were accompanied by morphological changes in the spleens of rats exposed to nano-TiO2. However, coadministration of QT and nano-TiO2 effectively mitigated most nano-TiO2-induced alterations in the spleen, including apoptotic and proinflammatory responses, antioxidant imbalance, serum immunoglobulin levels, and histopathological changes. It can be concluded that QT has the potential to function as a protective agent against the detrimental impacts of nano-TiO2 on the spleen by improving the antioxidant defense mechanism and modulating the apoptotic and inflammatory responses.
Collapse
Affiliation(s)
- Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Ryabova YV, Minigalieva IA, Sutunkova MP, Klinova SV, Tsaplina AK, Valamina IE, Petrunina EM, Tsatsakis AM, Mamoulakis C, Stylianou K, Kuzmin SV, Privalova LI, Katsnelson BA. Toxic Kidney Damage in Rats Following Subchronic Intraperitoneal Exposure to Element Oxide Nanoparticles. TOXICS 2023; 11:791. [PMID: 37755801 PMCID: PMC10537166 DOI: 10.3390/toxics11090791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Chronic diseases of the urogenital tract, such as bladder cancer, prostate cancer, reproductive disorders, and nephropathies, can develop under the effects of chemical hazards in the working environment. In this respect, nanosized particles generated as by-products in many industrial processes seem to be particularly dangerous to organs such as the testes and the kidneys. Nephrotoxicity of element oxide particles has been studied in animal experiments with repeated intraperitoneal injections of Al2O3, TiO2, SiO2, PbO, CdO, CuO, and SeO nanoparticles (NPs) in total doses ranging from 4.5 to 45 mg/kg body weight of rats. NPs were synthesized by laser ablation. After cessation of exposure, we measured kidney weight and analyzed selected biochemical parameters in blood and urine, characterizing the state of the excretory system. We also examined histological sections of kidneys and estimated proportions of different cells in imprint smears of this organ. All element oxide NPs under investigation demonstrated a nephrotoxic effect following subchronic exposure. Following the exposure to SeO and SiO2 NPs, we observed a decrease in serum creatinine and urea, respectively. Exposure to Al2O3 NPs caused an increase in urinary creatinine and urea, while changes in total protein were controversial, as it increased under the effect of Al2O3 NPs and was reduced after exposure to CuO NPs. Histomorphological changes in kidneys are associated with desquamation of the epithelium (following the exposure to all NPs except those of Al2O3 and SiO2) and loss of the brush border (following the exposure to all NPs, except those of Al2O3, TiO2, and SiO2). The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. Compared to the controls, we observed statistically significant alterations in 42.1% (8 of 19) of parameters following the exposure to PbO, CuO, and SeO NPs in 21.1% (4 of 19)-following that, to CdO and Al2O3 NPs-and in 15.8% (3 of 19) and 10.5% (2 of 19) of indicators, following the exposure to TiO2 and SiO2 nanoparticles, respectively. Histomorphological changes in kidneys are associated with desquamation of epithelium and loss of the brush border. The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. The severity of cyto- and histological structural changes in kidneys depends on the chemical nature of NPs. These alterations are not always consistent with biochemical ones, thus impeding early clinical diagnosis of renal damage. Unambiguous ranking of the NPs examined by the degree of their nephrotoxicity is difficult. Additional studies are necessary to establish key indicators of the nephrotoxic effect, which can facilitate early diagnosis of occupational and nonoccupational nephropathies.
Collapse
Affiliation(s)
- Yuliya V. Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Ilzira A. Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Marina P. Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Svetlana V. Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Alexandra K. Tsaplina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Irene E. Valamina
- Department of Pathology, Ural State Medical University, 620028 Yekaterinburg, Russia
| | - Ekaterina M. Petrunina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Aristides M. Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Human Ecology and Environmental Hygiene, IM Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Kostas Stylianou
- Department of Nephrology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sergey V. Kuzmin
- Federal Budgetary Establishment of Science “F.F. Erisman Scientific Centre of Hygiene” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 141014 Mytishchi, Russia
| | - Larisa I. Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Boris A. Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| |
Collapse
|
9
|
Yin Z, Wang Q, Cheng H. Synergistic Protective Effect of Interactions of Quercetin with Lycopene Against Ochratoxin A-Induced Ulcerative Colitis. Appl Biochem Biotechnol 2023; 195:5253-5266. [PMID: 36625989 DOI: 10.1007/s12010-022-04287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Ulcerative colitis is a type of inflammatory bowel disease responsible for the inflammation of the innermost lining of the colon and rectum. The present study's objective is to determine the potential synergistic impact of quercetin (QR) and lycopene (LP) in ulcerative colitis (UC) induced in rats by ochratoxin A (OTA) by biochemical and morphological alterations. QR and LP were administered alone and in combination with the OTA for 7 days. OTA administration caused UC generation, resulting in significant changes in body weight percentage, disease activity index (DAI), macroscopic evaluation, colon weight/length ratio, and histological score. In addition to the above parameters, it also leads to elevated oxidative stress, i.e. increased malondialdehyde (MDA), nitric oxide (NO), myeloperoxidase (MPO), and hydroxyproline levels and decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels. Histological changes in the colon architecture were also observed suggestive of extensive mucosal damage. In addition, a high level of matrix metalloproteinase 7 (MMP7) was observed in immunohistochemistry, and a high level of gene expression of osteopontin (OPN), runt-related transcription factor 2 (RUNX2), MMP-7, and interleukin-6 (IL-6) was observed in OTA administered animals. The combination of QR and LP significantly restored the per cent body weight loss and DAI score and improved macroscopic and histological changes, colon weight/length ratio, and macroscopic damages. It also improved the biochemical parameters to near-normal levels, i.e. reduced MDA, NO, MPO, and hydroxyproline levels and increased SOD and GSH levels. In addition, OPN, Runx2, MMP-7, and IL-6 gene expression decreased compared to the OTA-induced UC group. Outcomes of the present study indicate the potential of QR + LP as anti-inflammatory and immunomodulatory agents against OTA-induced UC in rats.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China
| | - Qian Wang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China
| | - Hui Cheng
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong, China.
| |
Collapse
|
10
|
Qi N, Xing W, Li M, Liu J. Quercetin Alleviates Toxicity Induced by High Levels of Copper in Porcine Follicular Granulosa Cells by Scavenging Reactive Oxygen Species and Improving Mitochondrial Function. Animals (Basel) 2023; 13:2745. [PMID: 37685009 PMCID: PMC10486440 DOI: 10.3390/ani13172745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
CuSO4 is the most commonly used feed additive in pig production at present, but long-term ingestion of excessive copper would lead to chronic copper toxicity. High copper could reduce the reproductive efficiency of sows and seriously affect the development of the pig industry. Quercetin (QUE), a powerful antioxidant, reduces toxicity of a number of heavy metals. Porcine granulosa cells (pGCs) are crucial to the fate of follicle development. The present study found that high concentrations of CuSO4 induced ROS production, which resulted in decreased mRNA expression of antioxidant-related genes GPX4, CAT, and SOD2 and increased mRNA expression of SOD1, TRX, and HO-1. The protein expression of antioxidant enzymes SOD2 and HO-1 decreased. Moreover, the concentration of MDA increased, the activity of CAT decreased, and the content of GSH decreased. After high copper treatment, the mitochondrial membrane potential (MMP) was decreased and the morphological structure was changed. However, the combined treatment with Quercetin (QUE) reversed these changes, and the level of cellular oxidative stress decreased. Therefore, we conclude that high copper has oxidative toxicity to pGCs, and QUE could remove the ROS induced by high copper, protect mitochondria from oxidative stress damage, and improve the function of pGCs.
Collapse
Affiliation(s)
| | | | | | - Jiying Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, China; (N.Q.); (W.X.); (M.L.)
| |
Collapse
|
11
|
Naz S, Hussain R, Guangbin Z, Chatha AMM, Rehman ZU, Jahan S, Liaquat M, Khan A. Copper sulfate induces clinico-hematological, oxidative stress, serum biochemical and histopathological changes in freshwater fish rohu ( Labeo rohita). Front Vet Sci 2023; 10:1142042. [PMID: 36968466 PMCID: PMC10034017 DOI: 10.3389/fvets.2023.1142042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Despite being an essential trace element for numerous metabolic processes and micronutrients, copper (Cu) has induced adverse effects on the environment and public health due to its continuous and widespread use for the last several decades. The current study assessed the hematological and histopathological alterations in the freshwater fish (Labeo rohita) exposed to graded concentrations of copper sulfate. For this purpose, L. rohita fish (n = 72), weighing ~200-215 g, were randomly divided into four experimental groups and then exposed to acute doses of CuSO4, i.e., control, 0.28, 0.42, and 0.56 μgL-1. For comparative analysis of hematological and biochemical changes, blood/serum samples were obtained on 12, 24, and 36 days. Overall, the body weight of fish decreased with the time and dose of CuSO4; as the dose increases, body weight decreases. Dose and time-dependent results were observed in other parameters also. Results showed a significant increase in leukocytes, whereas red blood cells count, Hb, and Hct were significantly reduced in treated groups compared to the control. The mean corpuscular hemoglobin (MHC) and mean corpuscular hemoglobin concentration (MCHC) showed a non-significant decrease in treated groups compared to the control group. Serum biochemical parameters, including total proteins, albumin, and globulin, decreased significantly (p < 0.05). At the same time, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), glucose, and cholesterol were significantly (p < 0.05) increased in the treated groups compared to the control group. Significantly (p < 0.05) increased levels of lipid peroxidation while decreased values of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (RGSH) in the blood of fish were recorded. Histopathological examination of fish gills, liver, and kidneys showed inflammation and degenerative changes due to CuSO4 exposure. In the brain tissue, degenerative changes like neuron necrosis, intracellular edema, cytoplasmic vacuolization, and congestion were observed. In conclusion, the study indicates that exposure to copper sulfate, even in smaller concentrations, can cause adverse hematological and histopathological changes in L. rohita fish.
Collapse
Affiliation(s)
- Saima Naz
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zhang Guangbin
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Ahmad Manan Mustafa Chatha
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zia Ur Rehman
- Department of Physiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shfaq Jahan
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | - Momil Liaquat
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Punjab, Pakistan
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
- Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
12
|
Chen B, Chen L, Yang Z, Fu Q, Li X, Cao C. Acute Aluminum Sulfate Triggers Inflammation and Oxidative Stress, Inducing Tissue Damage in the Kidney of the Chick. Biol Trace Elem Res 2023; 201:1442-1450. [PMID: 35551605 DOI: 10.1007/s12011-022-03260-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
In this study, a total of 20 7-day-old chicks were randomly divided into an experimental group and a control group. The experimental group was administered aluminum sulfate (Al2(SO4)3) once by gavage, and the control group was sacrificed after 24 h of fasting with distilled water. Serum and kidney tissue samples from both groups were collected and compared using hematoxylin-eosin staining (H&E) and microscopy. The Paller scores increased (p < 0.01) for biochemical kidney function, redox-related indicators, and mRNA expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) downstream related genes. The results showed that in the kidneys of the experimental group, renal tubular epithelial cells appeared to swell, and there was necrosis and shedding; the blood urea nitrogen (BUN) and uric acid (UA) decreased, serum creatinine (CREA) increased; nitric oxide (NO), glutathione (GSH), and malondialdehyde (MDA) contents increased; NO synthase (NOS), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) enzyme activities increased; tumor necrosis factor alpha (TNF-α), tumor necrosis factor receptor 1 (TNF-R1), tumor necrosis factor receptor 2 (TNF -R2), cyclooxygenase-2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and heme oxygenase-1 (HO-1) mRNA expression levels increased (p < 0.05 or p < 0.01); Nrf2, glutathione S-transferase A3 (GSTA3), glutathione-S-transferase mu-1 (GSTM1), glutathione synthetase (GSS), glutamate cysteine ligase (GCLC and GCLM), quinone oxidoreductase 1 (NQO1), and Kelch-like ECH-associated protein 1 (Keap1) mRNA expression levels decreased (p < 0.05 or p < 0.01) compared to the control group. Acute aluminum poisoning can cause obvious pathological changes in the structure of the kidney tissue of the chick, resulting in damage to the kidney function, as well as triggering inflammation and oxidative stress in the kidney.
Collapse
Affiliation(s)
- Bo Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Lina Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Zhiqing Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Xinran Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
- Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, 528231, People's Republic of China.
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
| |
Collapse
|
13
|
The Combined Administration of Vitamin C and Copper Induces a Systemic Oxidative Stress and Kidney Injury. Biomolecules 2023; 13:biom13010143. [PMID: 36671529 PMCID: PMC9856059 DOI: 10.3390/biom13010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Vitamin C (ascorbic acid; AA) and copper (Cu2+) are well used supplements with many health-promoting actions. However, when they are used in combination, the Fenton reaction occurs, leading to the formation of highly reactive hydroxyl radicals. Given that kidney is vulnerable to many toxicants including free radicals, we speculated that the in vivo administration of AA plus Cu2+ may cause oxidative kidney injury. The purpose of this study was to address this possibility. Mice were administered with AA and Cu2+, alone or in combination, via oral gavage once a day for various periods. Changes in the systemic oxidative status, as well renal structure and functions, were examined. The administration of AA plus Cu2+ elevated protein oxidation in serum, intestine, bladder, and kidney, as evidenced by the increased sulfenic acid formation and decreased level of free sulfhydryl groups (-SH). The systemic oxidative stress induced by AA plus Cu2+ was associated with a significant loss of renal function and structure, as indicated by the increased blood urea nitrogen (BUN), creatinine and urinary proteins, as well as glomerular and tubular cell injury. These effects of AA and Cu2+ were only observed when used in combination, and could be entirely prevented by thiol antioxidant NAC. Further analysis using cultured renal tubular epithelial cells revealed that AA plus Cu2+ caused cellular protein oxidation and cell death, which could be abolished by NAC and catalase. Moreover, coincubation of AA and Cu2+ led to H2O2 production. Collectively, our study revealed that a combined administration of AA and Cu2+ resulted in systemic oxidative stress and renal cell injury. As health-promoting supplements, AA and Cu2+ should not be used together.
Collapse
|
14
|
Alsawaf S, Alnuaimi F, Afzal S, Thomas RM, Chelakkot AL, Ramadan WS, Hodeify R, Matar R, Merheb M, Siddiqui SS, Vazhappilly CG. Plant Flavonoids on Oxidative Stress-Mediated Kidney Inflammation. BIOLOGY 2022; 11:biology11121717. [PMID: 36552226 PMCID: PMC9774981 DOI: 10.3390/biology11121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of various renal injuries and diseases. Recently, flavonoids' role in alleviating kidney diseases has been reported with an inverse correlation between dietary flavonoids and kidney injuries. Flavonoids are plant polyphenols possessing several health benefits and are distributed in plants from roots to leaves, flowers, and fruits. Dietary flavonoids have potent antioxidant and free-radical scavenging properties and play essential roles in disease prevention. Flavonoids exert a nephroprotective effect by improving antioxidant status, ameliorating excessive reactive oxygen species (ROS) levels, and reducing oxidative stress, by acting as Nrf2 antioxidant response mediators. Moreover, flavonoids play essential roles in reducing chemical toxicity. Several studies have demonstrated the effects of flavonoids in reducing oxidative stress, preventing DNA damage, reducing inflammatory cytokines, and inhibiting apoptosis-mediated cell death, thereby preventing or improving kidney injuries/diseases. This review covers the recent nephroprotective effects of flavonoids against oxidative stress-mediated inflammation in the kidney and their clinical advancements in renal therapy.
Collapse
Affiliation(s)
- Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Fatema Alnuaimi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Saba Afzal
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Rinku Mariam Thomas
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | | | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
- Correspondence: ; Tel.: +971-7-246-8842
| |
Collapse
|
15
|
Nan Y, Bai Y. Sex-Based Differences in the Association between Serum Copper and Kidney Function: Evidence from NHANES 2011-2016. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14086. [PMID: 36360964 PMCID: PMC9655743 DOI: 10.3390/ijerph192114086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Epidemiological evidence on the relationship between copper (Cu) and kidney function is rare, and few studies examine the sex differences in this association. We aimed to explore the overall and sex-based relationship between exposure to Cu and biomarkers of kidney function among 4331 participants of the 2011-2016 National Health and Nutrition Examination Survey. Multiple linear regression models were fitted to examine the overall and sex-specific associations between serum Cu and the kidney function indicator-estimated glomerular filtration rate (eGFR) and urinary albumin-creatinine ratio (UACR). Restricted cubic spline models (RCS) stratified by sex were performed to explore the sex-based dose-response associations. Serum Cu in the highest quartile was associated with higher levels of UACR (β = 0.203, 95% CI: 0.100 to 0.306) among overall participants. In males, there was an association of the highest Cu quartile with decreased eGFR (β = -0.023, 95% CI: -0.042 to -0.003) and increased UACR (β = 0.349, 95% CI: 0.171 to 0.527); serum Cu levels also demonstrated a negative nonlinear dose-response association with eGFR and a positive linear dose-response association with UACR in males, whereas females showed a marginally significant nonlinear positive association of eGFR with serum Cu levels. In conclusion, there were sex-specific and dose-response relationships between serum Cu and kidney function indicators. Further prospective and mechanistic studies are warranted.
Collapse
Affiliation(s)
- Yaxing Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- School of Economics and Management, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yana Bai
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Chen YQ, Chen HY, Tang QQ, Li YF, Liu XS, Lu FH, Gu YY. Protective effect of quercetin on kidney diseases: From chemistry to herbal medicines. Front Pharmacol 2022; 13:968226. [PMID: 36120321 PMCID: PMC9478191 DOI: 10.3389/fphar.2022.968226] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney injuries may trigger renal fibrosis and lead to chronic kidney disease (CKD), but effective therapeutic strategies are still limited. Quercetin is a natural flavonoid widely distributed in herbal medicines. A large number of studies have demonstrated that quercetin may protect kidneys by alleviating renal toxicity, apoptosis, fibrosis and inflammation in a variety of kidney diseases. Therefore, quercetin could be one of the promising drugs in the treatment of renal disorders. In the present study, we review the latest progress and highlight the beneficial role of quercetin in kidney diseases and its underlying mechanisms. The pharmacokinetics and bioavailability of quercetin and its proportion in herbal medicine will also be discussed.
Collapse
Affiliation(s)
- Yi-Qin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao-Yin Chen
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin-Qi Tang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Fan Li
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu-Sheng Liu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fu-Hua Lu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fu-Hua Lu, ; Yue-Yu Gu,
| | - Yue-Yu Gu
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Fu-Hua Lu, ; Yue-Yu Gu,
| |
Collapse
|
17
|
Mehmood A, Althobaiti F, Zhao L, Usman M, Chen X, Alharthi F, Soliman MM, Shah AA, Murtaza MA, Nadeem M, Ranjha MMAN, Wang C. Anti-inflammatory potential of stevia residue extract against uric acid-associated renal injury in mice. J Food Biochem 2022; 46:e14286. [PMID: 35929489 DOI: 10.1111/jfbc.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
Abnormal uric acid level result in the development of hyperuricemia and hallmark of various diseases, including renal injury, gout, cardiovascular disorders, and non-alcoholic fatty liver. This study was designed to explore the anti-inflammatory potential of stevia residue extract (STR) against hyperuricemia-associated renal injury in mice. The results revealed that STR at dosages of 150 and 300 mg/kg bw and allopurinol markedly modulated serum uric acid, blood urea nitrogen, and creatinine in hyperuricemic mice. Serum and renal cytokine levels (IL-18, IL-6, IL-1Β, and TNF-α) were also restored by STR treatments. Furthermore, mRNA and immunohistochemistry (IHC) analysis revealed that STR ameliorates UA (uric acid)-associated renal inflammation, fibrosis, and EMT (epithelial-mesenchymal transition) via MMPS (matrix metalloproteinases), inhibiting NF-κB/NLRP3 activation by the AMPK/SIRT1 pathway and modulating the JAK2-STAT3 and Nrf2 signaling pathways. In summary, the present study provided experimental evidence that STR is an ideal candidate for the treatment of hyperuricemia-mediated renal inflammation. PRACTICAL APPLICATIONS: The higher uric acid results in hyperuricemia and gout. The available options for the treatment of hyperuricemia and gout are the use of allopurinol, and colchicine drugs, etc. These drugs possess several undesirable side effect. The polyphenolic compounds are abundantly present in plants, for example, stevia residue extract (STR) exert a positive effect on human health. From this study results, we can recommend that polyphenolic compounds enrich STR could be applied to develop treatment options for the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Food Science and Technology, University of Haripur, Haripur, Pakistan
| | - Fayez Althobaiti
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China.,Department of Food Science and Technology, Riphah International University Faisalabad, Punjab, Pakistan
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fahad Alharthi
- Biological Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Amjad Abbas Shah
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | | | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
18
|
Xu B, Zheng J, Tian X, Yuan F, Liu Z, Zhou Y, Yang Z, Ding X. Protective mechanism of traditional Chinese medicine guizhi fuling pills against carbon tetrachloride-induced kidney damage is through inhibiting oxidative stress, inflammation and regulating the intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154129. [PMID: 35490491 DOI: 10.1016/j.phymed.2022.154129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chemical or drug-induced kidney damage has been recognized as a critical cause of kidney failure. The oxidative stress, inflammation, and imbalance of intestinal flora caused by carbon tetrachloride (CCl4) play a fundamental role in chronic kidney damage. Guizhi Fuling pills (GZFL) is a traditional formula consisting of five traditional Chinese medicinal herbs, which can promote blood circulation and improve kidney function. The underlying mechanisms of GZFL improving kidney damage are not fully understood yet. AIM The current study aimed to explore the effects of GZFL on CCl4-induced kidney damage and intestinal microbiota in mice. METHODS Male ICR mice were intraperitoneally administered with 20% CCl4 (mixed in a ratio of 1:4 in soybean oil) twice a week, for 4 weeks to induce kidney damage. Creatinine (CRE), urea nitrogen, antioxidant enzymes, and inflammatory cytokines were measured and the histology of the kidney, jejunum, and colon examination to assess kidney and intestinal damage. The expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2) family members, nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome in kidney tissues, and the tight junction proteins in colonic tissues were detected by Western blot. The gut microbiota was analyzed through 16S rRNA gene sequencing. RESULTS GZFL treatment decreased the serum CRE and urea nitrogen levels. Moreover, GZFL reduced the levels of pro-inflammatory cytokines and increased antioxidant enzyme activities in kidney and colonic tissues. GZFL improved the kidney, jejunum, and colon histology. Furthermore, GZFL inhibited the expressions of NLRP3, ASC, and cleaved-Caspase-1, while Nrf2, HO-1, NQO1, GCLM, and tight junction proteins were increased. The dysbiosis of intestinal microbiota improved after GZFL treatment. CONCLUSIONS This study showed that GZFL could improve kidney damage, which might be mainly via the integrated regulations of the Nrf2 pathway, NLRP3 inflammasome, and composition of intestinal microbiota.
Collapse
Affiliation(s)
- Baogui Xu
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Jiawen Zheng
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Xiaoxiao Tian
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Falei Yuan
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Zhongliang Liu
- Zhoushan Hospital of Traditional Chinese Medicine, Zhoushan 316000, China
| | - Yafeng Zhou
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Zuisu Yang
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China.
| | - Xianjun Ding
- Zhoushan Hospital of Traditional Chinese Medicine, Zhoushan 316000, China.
| |
Collapse
|
19
|
Zhang J, Li H, Wang W, Li H. Assessing the anti‑inflammatory effects of quercetin using network pharmacology and in vitro experiments. Exp Ther Med 2022; 23:301. [PMID: 35340883 PMCID: PMC8931623 DOI: 10.3892/etm.2022.11230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022] Open
Abstract
The present study aimed to investigate the anti-inflammatory effects of quercetin and the associated mechanisms involved. ELISA, reverse transcription-quantitative PCR and western blot analysis were performed to determine the anti-inflammatory effects of quercetin in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The molecular mechanisms of quercetin were investigated using network pharmacology, molecular docking technology and in vitro experiments. The results revealed that quercetin reduced the LPS-induced production of TNF-α, IL-6 and IL-1β in RAW264.7 macrophages. Protein-protein interaction network topology analysis indicated that Akt was the target of quercetin. Kyoto Encyclopedia of Genes and Genomes analysis indicated that quercetin may regulate the PI3K/Akt signaling pathway to exert its anti-inflammatory effects. Furthermore, the molecular docking results indicated that quercetin had a good affinity for the active sites of Akt. Western blot analysis confirmed that quercetin inhibited the phosphorylation of Akt, with an efficacy stronger than that of an Akt inhibitor. Taken together, Akt served as a target as part of the mechanism of the anti-inflammatory effect of quercetin. This result lays a foundation for the clinical application of quercetin in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P.R. China
| | - Hongyan Li
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P.R. China
| | - Wei Wang
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P.R. China
| | - Hong Li
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, P.R. China
| |
Collapse
|
20
|
Farag MR, Moselhy AAA, El-Mleeh A, Aljuaydi SH, Ismail TA, Di Cerbo A, Crescenzo G, Abou-Zeid SM. Quercetin Alleviates the Immunotoxic Impact Mediated by Oxidative Stress and Inflammation Induced by Doxorubicin Exposure in Rats. Antioxidants (Basel) 2021; 10:antiox10121906. [PMID: 34943009 PMCID: PMC8750303 DOI: 10.3390/antiox10121906] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent against hematogenous and solid tumors with undesirable side effects including immunosuppression. Quercetin (QUR), a natural flavonoid abundant in fruits and vegetables, has a potent antioxidant activity. The aim of the current study was to assess the impact of QUR on DOX-induced hematological and immunological dysfunctions in a rodent model. Randomly grouped rats were treated as follows: control, QUR alone (50 mg/kg for 15 days per os), DOX alone (2.5 mg/kg I/P, three times a week, for two weeks), and co-treated rats with QUR for 15 days prior to and concomitantly with DOX (for two weeks), at the doses intended for groups two and three. DOX alone significantly disrupted the erythrogram and leukogram variables. Serum immunoglobulin (IgG, IgM, and IgE) levels and the activities of catalase (CAT) and superoxide dismutase (SOD) in spleen were declined. The DNA damage traits in spleen were elevated with an upregulation of the expression of the apoptotic markers (p53 and Caspase-3 genes) and the proinflammatory cytokines (IL-6 and TNF-α genes), while the expression of CAT gene was downregulated. These biochemical changes were accompanied by morphological changes in the spleen of DOX-treated rats. Co-treatment with QUR abated most of the DOX-mediated alterations in hematological variables, serum immunoglobulins, and spleen antioxidant status, pro-inflammatory and apoptotic responses, and histopathological alterations. In essence, these data suggest that QUR alleviated DOX-induced toxicities on the bone marrow, spleen, and antibody-producing cells. Supplementation of chemotherapy patients with QUR could circumvent the DOX-induced inflammation and immunotoxicity, and thus prevent chemotherapy failure.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.R.F.); (A.D.C.)
| | - Attia A. A. Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum 32511, Egypt;
| | - Samira H. Aljuaydi
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
- Correspondence: (M.R.F.); (A.D.C.)
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari ‘Aldo Moro’, 70121 Bari, Italy;
| | - Shimaa M. Abou-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 6012201, Egypt;
| |
Collapse
|