1
|
Mazocco CC, de Castro Júnior SL, Silveira RMF, Poletto R, da Silva IJO. Laying Hens: Why Smothering and Not Surviving?-A Literature Review. Animals (Basel) 2024; 14:1518. [PMID: 38891565 PMCID: PMC11171085 DOI: 10.3390/ani14111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 06/21/2024] Open
Abstract
The proliferation of rearing systems providing opportunities for birds to engage in natural behaviors can trigger behavioral repertoires that when not manageable compromise animal welfare and the economic viability of the flock. Smothering in laying hens has long been perceived as "natural" or the result of hysteria among birds in the flock. However, the current literature has recognized smothering as an abnormal outcome with the potential to result in significant losses in cage-free poultry systems. Recent studies have specifically aimed to categorize the organization of smothering behavior and highlight its potential causes and consequences. In this study, literature review and bibliographic mapping, drawing on published articles and engagement with poultry farmers through extension and rural technical assistance, were employed. The findings indicate that smothering is a behavior triggered by factors related to the environment in which the laying hens are kept. This study concludes that there is a critical need for more rigorous and detailed research to elucidate the nuances of avian behavioral physiology and assess the impact of production systems on animal welfare and the economic impacts on the flock. This research contributes to a deeper understanding of bird behavior in high-production environments and provides practical insights for the poultry industry.
Collapse
Affiliation(s)
- Caroline Citta Mazocco
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| | - Sérgio Luís de Castro Júnior
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| | - Robson Mateus Freitas Silveira
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| | - Rosangela Poletto
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS)-Campus Sertão, Sertão 99170-000, RS, Brazil;
| | - Iran José Oliveira da Silva
- Núcleo de Pesquisa em Ambiência (NUPEA), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’ (ESALQ), Universidade de São Paulo (USP), Piracicaba 13418-900, SP, Brazil; (S.L.d.C.J.); (R.M.F.S.); (I.J.O.d.S.)
| |
Collapse
|
2
|
Pulcini D, Mattioli S, Angelucci E, Chenggang W, Cartoni Mancinelli A, Napolitano R, Sirri F, Piscitelli R, Mugnai C, Castellini C. Shape and fractures of carina sterni in chicken genotypes with different egg deposition rates reared indoor or free-range. Sci Rep 2023; 13:22495. [PMID: 38110659 PMCID: PMC10728074 DOI: 10.1038/s41598-023-49909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023] Open
Abstract
Commercial laying hens have high frequency of damage to the keel bone (KB), which causes negative effects on health and welfare. KB damage may consist in fractures (KBF) and deviations (KBD). The aim of the present study was to compare the KB shape, by means of Geometric Morphometric, and the occurrence of fractures in different chicken genotypes reared either free-range (FR) or in enriched cages. Moreover, the relationship between KB shape, genotype and rearing system was analysed. Sixty birds/genotype (2 Italian local breeds, Bionda Piemontese and Robusta Maculata, their crossbreeds with Sasso and Lohmann Brown) were used. All the hens fed the same commercial feed throughout the trial. Body weight, egg production, feed intake and mortality were recorded from 25 to 66 weeks of age. Ca intake (IN) and output (OUT) were estimated and Ca OUT/IN was calculated. FR affected the occurrence of KB deviations but not the shape, whereas the fractures were mainly affected by genotype. Local breeds had a lower prevalence of KBF with similar level of KBD but with different shapes. Crossbreeds seemed to be a suitable compromise between egg deposition rate and occurrence of KB damages.
Collapse
Affiliation(s)
- Domitilla Pulcini
- Council for Agricultural Research and Economics, Animal Production and Aquaculture, 00015, Monterotondo, Rome, Italy
| | - Simona Mattioli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100, Perugia, Italy.
| | - Elisa Angelucci
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100, Perugia, Italy
| | - Wei Chenggang
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100, Perugia, Italy
| | - Alice Cartoni Mancinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100, Perugia, Italy
| | - Riccardo Napolitano
- Council for Agricultural Research and Economics, Animal Production and Aquaculture, 00015, Monterotondo, Rome, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, 40064, Ozzano dell'Emilia, Italy
| | - Raffaela Piscitelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, 40064, Ozzano dell'Emilia, Italy
| | - Cecilia Mugnai
- Department of Veterinary Sciences, University of Turin, 10095, Turin, Italy
| | - Cesare Castellini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06100, Perugia, Italy
| |
Collapse
|
3
|
Wei H, Bi Y, Wang Y, Zhao Q, Zhang R, Li J, Bao J. Serum bone remodeling parameters and transcriptome profiling reveal abnormal bone metabolism associated with keel bone fractures in laying hens. Poult Sci 2022; 102:102438. [PMID: 36780704 PMCID: PMC9947423 DOI: 10.1016/j.psj.2022.102438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Keel bone fractures affect welfare, health, and production performance in laying hens. A total of one hundred and twenty 35-wk-old Hy-line Brown laying hens with normal keel (NK) bone were housed in furnished cages and studied for ten weeks to investigate the underlying mechanism of keel bone fractures. At 45 wk of age, the keel bone state of birds was assessed by palpation and X-ray, and laying hens were recognized as NK and fractured keel (FK) birds according to the presence or absence of fractures in keel bone. The serum samples of 10 NK and 10 FK birds were collected to determine bone metabolism-related indexes and slaughtered to collect keel bones for RNA-sequencing (RNA-seq), Micro-CT, and histopathological staining analyses. The results showed that the concentrations of Ca, phosphorus, calcitonin, 25-hydroxyvitamin D3, and osteocalcin and activities of alkaline phosphatase and tartrate-resistant acid phosphatase (TRAP) in serum samples of FK birds were lower than those of NK birds (P < 0.05), but the concentrations of parathyroid hormone, osteoprotegerin, and corticosterone in serum samples of FK birds were higher than those of NK birds (P < 0.05). TRAP staining displayed that FK bone increased the number of osteoclasts (P < 0.05). Micro-CT analysis indicated that FK bone decreased bone mineral density (P < 0.05). Transcriptome sequencing analysis of NK and FK bones identified 214 differentially expressed genes (DEGs) (|log2FoldChange| > 1, P < 0.05), among which 88 were upregulated and 126 downregulated. Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) analysis indicated that 14 DEGs related to skeletal muscle movement and bone Ca transport (COL6A1, COL6A2, COL6A3, PDGFA, MYLK2, EGF, CAV3, ADRA1D, BDKRB1, CACNA1S, TNN, TNNC1, TNNC2, and RYR3) were enriched in focal adhesion and Ca signaling pathway, regulating bone quality. This study suggests that abnormal bone metabolism related to keel bone fractures is possibly responded to fracture healing in laying hens.
Collapse
Affiliation(s)
- Haidong Wei
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Yanju Bi
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, 150030 Harbin, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, 150030 Harbin, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
4
|
Tompkins YH, Teng P, Pazdro R, Kim WK. Long Bone Mineral Loss, Bone Microstructural Changes and Oxidative Stress After Eimeria Challenge in Broilers. Front Physiol 2022; 13:945740. [PMID: 35923236 PMCID: PMC9340159 DOI: 10.3389/fphys.2022.945740] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to evaluate the impact of coccidiosis on bone quality and antioxidant status in the liver and bone marrow of broiler chickens. A total of 360 13-day old male broilers (Cobb 500) were randomly assigned to different groups (negative control, low, medium-low, medium-high, and highest dose groups) and orally gavaged with different concentrations of Eimeria oocysts solution. Broiler tibia and tibia bone marrow were collected at 6 days post-infection (6 dpi) for bone 3-D structural analyses and the gene expression related to osteogenesis, oxidative stress, and adipogenesis using micro-computed tomography (micro-CT) and real-time qPCR analysis, respectively. Metaphyseal bone mineral density and content were reduced in response to the increase of Eimeria challenge dose, and poor trabecular bone traits were observed in the high inoculation group. However, there were no significant structural changes in metaphyseal cortical bone. Medium-high Eimeria challenge dose significantly increased level of peroxisome proliferator-activated receptor gamma (PPARG, p < 0.05) and decreased levels of bone gamma-carboxyglutamate protein coding gene (BGLAP, p < 0.05) and fatty acid synthase coding gene (FASN, p < 0.05) in bone marrow. An increased mRNA level of superoxide dismutase type 1 (SOD1, p < 0.05) and heme oxygenase 1 (HMOX1, p < 0.05), and increased enzyme activity of superoxide dismutase (SOD, p < 0.05) were found in bone marrow of Eimeria challenged groups compared with that of non-infected control. Similarly, enzyme activity of SOD and the mRNA level of SOD1, HMOX1 and aflatoxin aldehyde reductase (AKE7A2) were increased in the liver of infected broilers (p < 0.05), whereas glutathione (GSH) content was lower in the medium-high challenge group (p < 0.05) compared with non-challenged control. Moreover, the mRNA expression of catalase (CAT) and nuclear factor kappa B1 (NFKB1) showed dose-depend response in the liver, where expression of CAT and NFKB1 was upregulated in the low challenge group but decreased with the higher Eimeria challenge dosage (p < 0.05). In conclusion, high challenge dose of Eimeria infection negatively affected the long bone development. The structural changes of tibia and decreased mineral content were mainly located at the trabecular bone of metaphyseal area. The change of redox and impaired antioxidant status following the Eimeria infection were observed in the liver and bone marrow of broilers.
Collapse
Affiliation(s)
- Y. H. Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - P. Teng
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - R. Pazdro
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - W. K. Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States
- *Correspondence: W. K. Kim,
| |
Collapse
|
5
|
Wei H, Feng Y, Ding S, Nian H, Yu H, Zhao Q, Bao J, Zhang R. Keel bone damage affects behavioral and physiological responses related to stress and fear in two strains of laying hens. J Anim Sci 2022; 100:6547233. [PMID: 35275597 PMCID: PMC9030218 DOI: 10.1093/jas/skac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Keel bone damage (KBD) is more prevalent in alternative laying hen housing systems than in conventional cages, and its incidence differs from strain to strain. However, the information of KBD in Lindian chickens, a native Chinese strain, is limited. To investigate the effect of KBD on fearfulness and physiological indicators of stress in Lindian chickens and commercial laying hens, a total of two hundred 25-wk-old chickens (100 Hy-line Brown and 100 Lindian chickens) were studied for 7 wk. The birds were housed in furnished cages with 10 birds per cage for each strain. At 32-wk of age, the birds in each strain were divided into normal (NK), deviated (DK), and fractured (FK) hens according to the keel bone status. Ten birds in each keel bone status per strain were subsequently selected to collect blood for the determination of stress and fear-related indicators, including corticosterone, serotonin, interleukin-1β, and interleukin-6, and measure fear responses, including novel object test (NOT), human approach test (HAT), and tonic immobility (TI) test. The results showed that egg production was lower and the incidence of keel bone fractures was higher in Lindian chickens than in Hy-line Brown hens (P < 0.05). Lindian chickens showed a significantly increased whole blood serotonin content, NOT-latency, HAT-score, and TI induction times (P < 0.05) and decreased serum interleukin-6 content and TI-duration (P < 0.05) compared with Hy-line Brown hens. Additionally, FK hens had significantly elevated whole blood corticosterone, serum interleukin-1β and interleukin-6 levels, TI-duration, and NOT-latency (P < 0.05), and a reduced whole blood serotonin content (P < 0.05) compared with NK and DK hens. Our results indicated that KBD affected stress and fear responses, and this impact was mainly reflected by FK hens compared with NK and DK hens. We suggest that keel bone fractures are the main factor impairing hen welfare. Besides, the incidence of keel bone fractures and stress and fear responses of Lindian chickens are more severe than Hy-line Brown laying hens, indicating that the strain type can affect the health and welfare of laying hens.
Collapse
Affiliation(s)
- Haidong Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanru Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Susu Ding
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haoyang Nian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hanlin Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
6
|
Wei H, Chen Y, Nian H, Wang J, Liu Y, Wang J, Yang K, Zhao Q, Zhang R, Bao J. Abnormal Bone Metabolism May Be a Primary Causative Factor of Keel Bone Fractures in Laying Hens. Animals (Basel) 2021; 11:ani11113133. [PMID: 34827866 PMCID: PMC8614394 DOI: 10.3390/ani11113133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Keel is an essential structural bone, providing anchorage for the attachment of large breast muscles in birds, allowing them to flap wings and provide proper ventilation for their lungs during flight. Previous studies reported that keel bone damage (especially fractures) negatively affects the welfare, health, production performance, eggshell quality, and mobility of laying hens contained in different housing systems. Furthermore, various factors affect keel bone damage, including nutrition, age, housing systems, and strains of laying hens. However, studies on the effects of abnormal bone metabolism and development on keel bone damage in laying hens are limited. Therefore, this study aimed to investigate the impacts of bone metabolism and development status on keel bone damage by determining the levels of serum bone turnover markers in laying hens. The results showed that laying hens with impaired keel bone had significantly altered levels of serum Ca and P metabolism-related and osteoblast and osteoclast activity-related markers compared to those in laying hens with normal keel bone. Thus, these results indicated that abnormal bone metabolism before keel bone damage reflected by varying levels of serum bone turnover markers might be a pivotal factor causing keel bone damage in laying hens. Our results also provide new insights into the occurrence of keel bone damage in laying hens. Abstract Keel bone damage negatively affects the welfare, production performance, egg quality, and mobility of laying hens. This study aimed to investigate whether abnormal bone metabolism causes keel bone damage in laying hens. Eighty Hy-line Brown laying hens were housed in eight furnished cages with 10 birds per cage and studied from 18 to 29 weeks of age (WOA). Accordingly, keel bone status was assessed at 18, 22, 25, and 29 WOA using the X-ray method, and the serum samples of laying hens with normal keel (NK), deviated keel (DK), and fractured keel (FK) that occurred at 29 WOA were collected across all the time-points. Subsequently, the serum samples were used to measure markers related to the metabolism of Ca and P and activities of osteoblast and osteoclast. The results showed that FK laying hens had lighter bodyweight than NK and DK birds throughout the trial (p < 0.05), while the keel bone length and weight were not different in NK, DK, and FK hens at 29 WOA (p > 0.05). Moreover, bone hematoxylin and eosin (H&E) staining and tartrate-resistant acid phosphatase (TRAP) staining indicated that damaged keel bone had evident pathological changes. In the FK hens, serum P level was reduced but serum 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and 25-hydroxyvitamin D3 (25-OHD3) levels were elevated compared to NK hens (p < 0.05). Additionally, DK hens had higher levels of serum 1,25-(OH)2D3, parathyroid hormone (PTH) and calcitonin (CT), and lower level of serum 25-OHD3 than the NK birds (p < 0.05). Furthermore, serum alkaline phosphatase (ALP), osteocalcin (OC), osteoprotegerin (OPG), TRAP, and corticosterone (CORT) levels were elevated in DK and FK hens compared to NK hens (p < 0.05). The levels of serum Ca, P, PTH, ALP, TRAP, OPG, OC, and CORT in laying hens fluctuated with the age of the birds. Generally, the results of this study indicate that keel bone damage, especially fractures, could be associated with abnormal bone metabolism in laying hens.
Collapse
Affiliation(s)
- Haidong Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Yanqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Haoyang Nian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Jing Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.W.)
| | - Yilin Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Jianxing Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (J.W.); (J.W.)
| | - Kaiqi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Qian Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Correspondence: (R.Z.); (J.B.)
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (H.W.); (Y.C.); (H.N.); (Y.L.); (K.Y.); (Q.Z.)
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Correspondence: (R.Z.); (J.B.)
| |
Collapse
|
7
|
Shi L, Lin CL, Su CH, Lin KC, Leong KH, Wang YTT, Kuo CF, Tsai SY. The Risk of Developing Osteoporosis in Hemolytic Anemia-What Aggravates the Bone Loss? J Clin Med 2021; 10:jcm10153364. [PMID: 34362147 PMCID: PMC8348015 DOI: 10.3390/jcm10153364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023] Open
Abstract
Hemolytic anemia (HA) renders erythropoietic stress on the bone marrow and has been linked to osteoporosis. In this nationwide retrospective cohort study, we examined this correlation by utilizing the Taiwan National Health Insurance Research Database (NHIRD). We identified two cohorts, matching population with and without HA in a 1:4 ratio. A total of 2242 HA patients and 8968 non-HA patients were enrolled. Patients with HA had a significantly higher cumulative incidence (log-rank test p = 0.0073), higher incidence density (5.11 vs. 3.76 per 1000 persons-years), and a 1.31-fold risk of developing osteoporosis than non-HA patients (aHR = 1.31, 95% C.I. 1.04-1.63, p = 0.01). After adjusting for age, sex, and comorbidities, patients with factors including female (aHR = 2.57, 95% C.I. 2.05-3.22, p < 0.001), age > 65 (aHR = 9.25, 95% C.I. 7.46-11.50, p < 0.001), diagnosis of cholelithiasis (aHR = 1.76, 95% C.I. 1.20-2.58, p = 0.003) and peptic ulcer disease (aHR = 1.87, 95% C.I. 1.52-2.29, p < 0.001) had significantly higher risk of osteoporosis. We propose that this correlation may be related to increased hematopoietic stress, increased consumption of nitric oxide (NO) by hemolysis, and the inhibitory effects of iron supplements on osteogenesis through the receptor activator of nuclear factor κB ligand (RANKL)/Osteoprotegerin pathway and the Runt-related transcription factor 2 (RUNX2) factor. Our findings suggest that patients with hemolytic anemia are at a higher risk of developing osteoporosis, and it would be in the patient's best interest for physicians to be aware of this potential complication and offer preventative measures.
Collapse
Affiliation(s)
- Leiyu Shi
- Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung City 404, Taiwan;
| | - Ching-Huang Su
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City 104, Taiwan; (C.-H.S.); (K.-C.L.); (K.-H.L.); (Y.-T.T.W.)
| | - Keng-Chian Lin
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City 104, Taiwan; (C.-H.S.); (K.-C.L.); (K.-H.L.); (Y.-T.T.W.)
| | - Kam-Hang Leong
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City 104, Taiwan; (C.-H.S.); (K.-C.L.); (K.-H.L.); (Y.-T.T.W.)
| | - Yu-Ting Tina Wang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City 104, Taiwan; (C.-H.S.); (K.-C.L.); (K.-H.L.); (Y.-T.T.W.)
| | - Chien-Feng Kuo
- Division of Infectious Diseases, Department of Internal Medicine, Mackay Memorial Hospital, Taipei City 104, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Department of Cosmetic Applications and Management, MacKay Junior College of Medicine, Nursing and Management, New Taipei City 25245, Taiwan
| | - Shin-Yi Tsai
- Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA;
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei City 104, Taiwan; (C.-H.S.); (K.-C.L.); (K.-H.L.); (Y.-T.T.W.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
- Graduate Institute of Long-Term Care, Mackay Medical College, New Taipei City 25245, Taiwan
- Graduate Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan
- Correspondence: ; Tel.: +886-975-835-797 or +886-915-309-666
| |
Collapse
|