1
|
Liu XY, Chi YF, Wu YS, Chai JK. Research progress and considerations on oral rehydration therapy for the prevention and treatment of severe burn shock: A narrative review. Burns 2024; 50:107160. [PMID: 39322503 DOI: 10.1016/j.burns.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 09/27/2024]
Abstract
Severe burns are a significant cause of life-threatening conditions in both peacetime and wartime. Shock is a critical complication during the early stages of burn injury, contributing substantially to mortality and long-term disability. Effective fluid resuscitation is crucial for preventing and treating shock, with prompt administration being vital. However, timely intravenous fluid resuscitation is often challenging, and errors in resuscitation significantly contribute to mortality. Therefore, exploring a more rapid and effective non-invasive method of fluid resuscitation is necessary. Oral rehydration therapy (ORT) has shown considerable potential in this regard. This paper reviews ORT's historical development and current research progress, discussing its application in early anti-shock treatment for burns. While ORT is generally safe, potential complications like diarrhoea, vomiting, and abdominal discomfort must be noted, particularly if the rehydration rate is too rapid or if gastrointestinal issues exist. Careful patient assessment and monitoring are essential during ORT administration. Based on a comprehensive review of relevant research, we present provisional guidelines for ORT in burn patients. These guidelines aim to inform clinical practice but should be applied cautiously due to limited clinical evidence. Implementation must be tailored to the patient's condition under healthcare supervision, with adjustments according to evolving circumstances: ① Initiation timing: Start as soon as possible, and the ideal start time is usually within 6 h after injury. ② Rate of application: Employing a fractional administration approach, wherein small quantities of approximately 150-250 millilitres are provided for each instance and the initial fluid rate of oral rehydration can be simplified to 100 mL/kg/24 h. ③ Composition combination: In addition to essential salts and glucose, the oral rehydration solution can incorporate various anti-inflammatory and cellular protection constituents.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- Graduate School, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China; Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Fucheng Road 51, Haidian District, Beijing 100048, China
| | - Yun-Fei Chi
- Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Fucheng Road 51, Haidian District, Beijing 100048, China
| | - Yu-Shou Wu
- Graduate School, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China; Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Fucheng Road 51, Haidian District, Beijing 100048, China
| | - Jia-Ke Chai
- Senior Department of Burns & Plastic Surgery, Institute of Burn in the Fourth Medical Centre, Chinese PLA General Hospital, Fucheng Road 51, Haidian District, Beijing 100048, China.
| |
Collapse
|
2
|
Sobral GG, Gomes Neto OC, Lima TC, Carneiro GF. Lyophilization as an alternative for conservation of equine plasma as a source of immunoglobulin G for neonatal foals. J Equine Vet Sci 2024; 141:105139. [PMID: 38964562 DOI: 10.1016/j.jevs.2024.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Providing plasma with immunoglobulins is essential for the health of foals with failure of passive transfer of immunity. The use of lyophilized plasma (LP) offers a simple and affordable option in terms of transportation and storage. This study aimed to measure the concentrations of immunoglobulin G (IgG), total protein (TP), and total solids (TS) in fresh equine plasma before and after lyophilization. Plasma was collected from six healthy male horses. The samples underwent freeze-drying and were reconstituted in deionized water to their original volume. The concentrations of IgG in both fresh and reconstituted LP were determined by simple radial immunodiffusion and TS and TP concentrations measured using refractometry. Results indicated that the IgG concentration in fresh plasma (8.9 ± 3.2 g/L) was not different from LP (7.1 ± 2.2 g/L; P > 0.05). The TP concentration in fresh plasma was 6.6 ± 0.5 g/dL, which decreased to 5.7 ± 0.2 g/dL after lyophilization (P < 0.05). The TS of fresh plasma were 7.5 ± 0.8 %, and also lower in LP 6.3 ± 0.5 % (P < 0.05). The findings revealed that the lyophilization process preserves IgG concentration with small losses in TS and TP upon reconstitution. The research supports the potential of lyophilized equine plasma as a promising treatment option, with future efforts focused on optimizing the product, validating its efficacy and stability through clinical trials, and developing practical packaging solutions for use in the equine industry.
Collapse
Affiliation(s)
- G G Sobral
- Department of Veterinary Medicine, School of Veterinary Medicine, Federal Rural University of Pernambuco, Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil.
| | - O C Gomes Neto
- Central Monte Verde de Reprodução Equina, Fazenda Japecanga, s/n, Bezerros, PE, 55660-000, Brazil
| | - T C Lima
- Department of Veterinary Medicine, School of Veterinary Medicine, Federal Rural University of Pernambuco, Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - G F Carneiro
- Department of Veterinary Medicine, School of Veterinary Medicine, Federal Rural University of Pernambuco, Dom Manuel de Medeiros, s/n - Dois Irmãos, Recife, PE, 52171-900, Brazil
| |
Collapse
|
3
|
Muller CR, Williams AT, Walser C, Eaker AM, Sandoval JL, Cuddington CT, Wolfe SR, Palmer AF, Cabrales P. Safety and efficacy of human polymerized hemoglobin on guinea pig resuscitation from hemorrhagic shock. Sci Rep 2022; 12:20480. [PMID: 36443351 PMCID: PMC9703428 DOI: 10.1038/s41598-022-23926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
For the past thirty years, hemoglobin-based oxygen carriers (HBOCs) have been under development as a red blood cell substitute. Side-effects such as vasoconstriction, oxidative injury, and cardiac toxicity have prevented clinical approval of HBOCs. Recently, high molecular weight (MW) polymerized human hemoglobin (PolyhHb) has shown positive results in rats. Studies have demonstrated that high MW PolyhHb increased O2 delivery, with minimal effects on blood pressure, without vasoconstriction, and devoid of toxicity. In this study, we used guinea pigs to evaluate the efficacy and safety of high MW PolyhHb, since like humans guinea pigs cannot produce endogenous ascorbic acid, which limits the capacity of both species to deal with oxidative stress. Hence, this study evaluated the efficacy and safety of resuscitation from severe hemorrhagic shock with high MW PolyhHb, fresh blood, and blood stored for 2 weeks. Animals were randomly assigned to each experimental group, and hemorrhage was induced by the withdrawal of 40% of the blood volume (BV, estimated as 7.5% of body weight) from the carotid artery catheter. Hypovolemic shock was maintained for 50 min. Resuscitation was implemented by infusing 25% of the animal's BV with the different treatments. Hemodynamics, blood gases, total hemoglobin, and lactate were not different before hemorrhage and during shock between groups. The hematocrit was lower for the PolyhHb group compared to the fresh and stored blood groups after resuscitation. Resuscitation with stored blood had lower blood pressure compared to fresh blood at 2 h. There was no difference in mean arterial pressure between groups at 24 h. Resuscitation with PolyhHb was not different from fresh blood for most parameters. Resuscitation with PolyhHb did not show any remarkable change in liver injury, inflammation, or cardiac damage. Resuscitation with stored blood showed changes in liver function and inflammation, but no kidney injury or systemic inflammation. Resuscitation with stored blood after 24 h displayed sympathetic hyper-activation and signs of cardiac injury. These results suggest that PolyhHb is an effective resuscitation alternative to blood. The decreased toxicities in terms of cardiac injury markers, vital organ function, and inflammation following PolyhHb resuscitation in guinea pigs indicate a favorable safety profile. These results are promising and support future studies with this new generation of PolyhHb as alternative to blood when blood is unavailable.
Collapse
Affiliation(s)
- Cynthia R Muller
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Cynthia Walser
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Allyn M Eaker
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Jose Luis Sandoval
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA
| | - Clayton T Cuddington
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Savannah R Wolfe
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, 0412, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0412, USA.
| |
Collapse
|
4
|
Zhou FQ. Advantages of pyruvate-based fluids in preclinical shock resuscitation-A narrative review. Front Physiol 2022; 13:1027440. [PMID: 36505043 PMCID: PMC9732738 DOI: 10.3389/fphys.2022.1027440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the innate beneficial effects of sodium pyruvate-based fluids, including pyruvate in intravenous solutions, oral rehydration solutions, and peritoneal dialysis solutions, on shock resuscitation with various animal models relative to current commercial fluids over the last two decades. Due to its superior pharmacological properties, pyruvate effectively sustains cytosolic glycolytic pathways and mitochondrial oxidative phosphorylation by restoration of redox potentials and reactivation of pyruvate dehydrogenase in hypoxia, even anoxia, and diabetes, reversing the Warburg effect and diabetic glucometabolic aberration. Pyruvate has been demonstrated to protect against multiorgan dysfunction and metabolic disturbance in numerous preclinical studies with various pathogenic injuries. The unique features of pyruvate potential clinical benefits encompass to efficiently correct lethal lactic acidosis via metabolically rapid consumption of intracellular [H+] and robustly protect multiorgan metabolism and function, particularly visceral organs in addition to the heart and brain, significantly prolonging survival in various animal models. Pyruvate protection of red blood cell function and preservation of the partial pressure of arterial oxygen should be highly concerned in further studies. Pyruvate is much advantageous over existing anions such as acetate, bicarbonate, chloride, and lactate in commercial fluids. Pyruvate-based fluids act as a therapeutic agent without causing iatrogenic resuscitation injury in addition to being a volume expander, indicating a potential novel generation of resuscitation fluids, including crystalloids and colloids. Pyruvate-based fluids have an enormous potential appeal for clinicians who face the ongoing fluid debate to readily select as the first resuscitation fluid. Clinical trials with pyruvate-based fluids in shock resuscitation are urgently warranted.
Collapse
Affiliation(s)
- Fang-Qiang Zhou
- Independent Researcher, Las Vegas, NV, United States,Fresenius Medical Care, Chicago, IL, United States,*Correspondence: Fang-Qiang Zhou,
| |
Collapse
|