1
|
Chirullo B, Fruscione F, Del Zotto G, Dell'Anno F, Tarantino M, Porcellato I, Petrucci P, De Ciucis CG, Bufalari A, Guardone L, Cappelli K, Moretti G, Mecocci S, Monti E, De Paolis L, Razzuoli E. Evaluation of attenuated Salmonella Typhimurium (STMΔznuABC) anticancer activity on canine mammary cancer-associated fibroblasts. Res Vet Sci 2024; 180:105438. [PMID: 39447298 DOI: 10.1016/j.rvsc.2024.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Bacteria-mediated treatments gained increasing attention as alternative therapies against tumors. An attenuated mutant strain of Salmonella enterica serovar Typhimurium (STMΔznuABC) has recently been considered as a potential new anti-cancer strategy. However, it is unclear whether this activity is tumor-induced or species-specific, and no data are available regarding STMΔznuABC on canine mammary tumors (CMTs). This study aimed to investigate the ability of STMΔznuABC in modulating the response of CMTs, focusing on cancer-associated fibroblasts. Four CMT cell lines (CF33, TM51, TM52 TM53) were treated with STMΔznuABC. Then, antiproliferative activity (MTT assay), bacterial invasion, and CMT cell lines gene expression analysis (RT-qPCR) of genes involved in immune response and cancer aggressiveness were evaluated. STMΔznuABC penetrated in TM51, TM52, TM53, and CF33 cell lines, causing a significant reduction of cell viability. Moreover, the expression of several genes was significantly modulated in all CMT cell lines: STMΔznuABC infection determined a significant up-regulation of CXCL8, IL18, IL10, TLR4 and RAD51, while CD14, IL6, CXCR4, P53, PTEN, STAT5, TLR5 and TGFB1 were downregulated in TM53. In CF33, CXCL8 and P53 were upregulated, while MYD88, MD2, IL18, TLR4,5, TGFB1 were downregulated. In TM52, CXCL8, CD44 and MD2 were upregulated and PTEN was downregulated, while in TM51 CXCL8, CD44 and ErbB2 were downregulated. We demonstrated the anti-proliferative and immuno-modulatory activity of STMΔznuABC in CMTs, paving the way for potential new anti-cancer treatments.
Collapse
Affiliation(s)
- Barbara Chirullo
- Unit of Emerging Zoonoses, Department of Food Safety, Nutrition and Veterinary Public Health Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy.
| | | | - Filippo Dell'Anno
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy.
| | - Michela Tarantino
- Unit of Emerging Zoonoses, Department of Food Safety, Nutrition and Veterinary Public Health Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Paola Petrucci
- Unit of Emerging Zoonoses, Department of Food Safety, Nutrition and Veterinary Public Health Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy.
| | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Lisa Guardone
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy; Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy.
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Giulia Moretti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Eleonora Monti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy; Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D'Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy.
| |
Collapse
|
2
|
Al-Wahaibi LH, El-Sheref EM, Tawfeek HN, Abou-Zied HA, Rabea SM, Bräse S, Youssif BGM. Design, synthesis, and biological evaluation of novel quinoline-based EGFR/HER-2 dual-target inhibitors as potential anti-tumor agents. RSC Adv 2024; 14:32978-32991. [PMID: 39434991 PMCID: PMC11492426 DOI: 10.1039/d4ra06394e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Dual targeting of EGFR and HER2 is a valid anti-cancer approach for treating solid tumors. We designed and synthesized a new series of EGFR/HER-2 dual-target inhibitors based on quinoline derivatives. The structure of the newly synthesized compounds was verified using 1H NMR, 13C NMR, and elemental analysis. The targeted compounds were tested for antiproliferative efficacy against four cancer cell lines. All the compounds had GI50s ranging from 25 to 82 nM, with breast (MCF-7) and lung (A-549) cancer cell lines being the most sensitive. Compound 5a demonstrated the most significant antiproliferative action. With inhibitory (IC50) values of 71 and 31 nM, respectively, compound 5a proved to be the most effective dual-target inhibitor of EGFR and HER-2, outperforming the reference erlotinib (IC50 = 80 nM) as an EGFR inhibitor but falling short of the clinically used agent lapatinib (IC50 = 26 nM) as a HER2 inhibitor. The apoptotic potential activity of 5a was examined, and the findings demonstrated that 5a promotes apoptosis by activating caspase-3, 8, and Bax while simultaneously reducing the expression of the anti-apoptotic protein Bcl-2. The docking studies provided valuable insights into the binding interactions of compounds 3e and 5a with EGFR, effectively rationalizing the observed SAR trends.
Collapse
Affiliation(s)
- Lamya H Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
| | - Hendawy N Tawfeek
- Chemistry Department, Faculty of Science, Minia University El Minia 61519 Egypt
- Unit of Occupational of Safety and Health, Administration Office of Minia University El-Minia 61519 Egypt
| | - Hesham A Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University Minia Egypt
| | - Safwat M Rabea
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology Karlsruhe 76131 Germany
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt +20-01098294419
| |
Collapse
|
3
|
Beaudu-Lange C, Lange E. Intensive Multimodal Chemotherapy in a Dog Suffering from Grade III/Stage IV Solid Mammary Carcinoma. Animals (Basel) 2024; 14:2618. [PMID: 39272403 PMCID: PMC11394285 DOI: 10.3390/ani14172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Very few studies, often with very small cohorts, have proven chemotherapy efficacy against canine aggressive mammary carcinomas, either in terms of metastasis or median survival, in dogs after surgery and chemotherapy, with such outcomes not being confirmed by other studies. As a result, we lack efficient standardized protocols, which exist in human cases, according to the grade and stage of the tumor in dogs. In this case report, we describe a relapsing grade III solid mammary carcinoma evolving into prominent lymphatic intravascular invasion with multifocal nodal extension (stage IV); we applied an intensive treatment combining radical surgery and intensive adjuvant chemotherapy. The latter combined carboplatin maximal-tolerated-dose chemotherapy, with doses adjusted as necessary, and metronomic chemotherapy with firocoxib, toceranib and chloraminophene, progressively administered and carefully monitored. Adapting the doses prevented adverse events and resulted in 218 days of survival with good quality of life. To our knowledge, this is the first description of such a treatment combination. Our result should be confirmed with a large-scale prospective study.
Collapse
Affiliation(s)
| | - Emmanuel Lange
- Clinique Vétérinaire de la Pierre Bleue, 35550 Pipriac, France
| |
Collapse
|
4
|
Sergent P, Pinto-Cárdenas JC, Carrillo AJA, Dávalos DL, Pérez MDG, Lechuga DAM, Alonso-Miguel D, Schaafsma E, Cuarenta AJ, Muñoz DC, Zarabanda Y, Palisoul SM, Lewis PJ, Kolling FW, Affonso de Oliveira JF, Steinmetz NF, Rothstein JL, Lines L, Noelle RJ, Fiering S, Arias-Pulido H. An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1. Cells 2024; 13:1478. [PMID: 39273048 PMCID: PMC11394642 DOI: 10.3390/cells13171478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Neoadjuvant intratumoral (IT) therapy could amplify the weak responses to checkpoint blockade therapy observed in breast cancer (BC). In this study, we administered neoadjuvant IT anti-canine PD-1 therapy (IT acPD-1) alone or combined with IT cowpea mosaic virus therapy (IT CPMV/acPD-1) to companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. CMC patients treated weekly with acPD-1 (n = 3) or CPMV/acPD-1 (n = 3) for four weeks or with CPMV/acPD-1 (n = 3 patients not candidates for surgery) for up to 11 weeks did not experience immune-related adverse events. We found that acPD-1 and CPMV/acPD-1 injections resulted in tumor control and a reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of treated dogs. In two metastatic CMC patients, CPMV/acPD-1 treatments resulted in the control and reduction of established lung metastases. CPMV/acPD-1 treatments were associated with altered gene expression related to TLR1-4 signaling and complement pathways. These novel therapies could be effective for CMC patients. Owing to the extensive similarities between CMC and human BC, IT CPMV combined with approved anti-PD-1 therapies could be a novel and effective immunotherapy to treat local BC and suppress metastatic BC.
Collapse
Affiliation(s)
- Petra Sergent
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | - Daniel Luna Dávalos
- VETCONNECT Diagnóstico por imagen, Via Toledo, 2952 Mas Palomas, Monterrey 64780, Nuevo León, Mexico
| | | | | | - Daniel Alonso-Miguel
- Department of Animal Medicine and Surgery, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain
| | | | | | | | | | - Scott M Palisoul
- Department of Pathology and Laboratory Medicine at Dartmouth Hitchcock Health, Center for Clinical Genomics and Advanced Technology, Lebanon, NH 03756, USA
| | - Petra J Lewis
- Department of Radiology Dartmouth Health Geisel School of Medicine, Lebanon, NH 03755, USA
| | - Fred W Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Moores Cancer Center, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
- Center for Engineering in Cancer, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Louise Lines
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
5
|
Crespo B, Illera JC, Silvan G, Lopez-Plaza P, Herrera de la Muela M, de la Puente Yague M, Diaz del Arco C, de Andrés PJ, Illera MJ, Caceres S. Bicalutamide Enhances Conventional Chemotherapy in In Vitro and In Vivo Assays Using Human and Canine Inflammatory Mammary Cancer Cell Lines. Int J Mol Sci 2024; 25:7923. [PMID: 39063165 PMCID: PMC11276844 DOI: 10.3390/ijms25147923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Human inflammatory breast cancer (IBC) and canine inflammatory mammary cancer (IMC) are highly aggressive neoplastic diseases that share numerous characteristics. In IBC and IMC, chemotherapy produces a limited pathological response and anti-androgen therapies have been of interest for breast cancer treatment. Therefore, the aim was to evaluate the effect of a therapy based on bicalutamide, a non-steroidal anti-androgen, with doxorubicin and docetaxel chemotherapy on cell proliferation, migration, tumor growth, and steroid-hormone secretion. An IMC-TN cell line, IPC-366, and an IBC-TN cell line, SUM149, were used. In vitro assays revealed that SUM149 exhibited greater sensitivity, reducing cell viability and migration with all tested drugs. In contrast, IPC-366 exhibited only significant in vitro reductions with docetaxel as a single agent or in different combinations. Decreased estrogen levels reduced in vitro tumor growth in both IMC and IBC. Curiously, doxorubicin resulted in low efficacy, especially in IMC. In addition, all drugs reduced the tumor volume in IBC and IMC by increasing intratumoral testosterone (T) levels, which have been related with reduced tumor progression. In conclusion, the addition of bicalutamide to doxorubicin and docetaxel combinations may represent a potential treatment for IMC and IBC.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Paula Lopez-Plaza
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - María Herrera de la Muela
- Obstetrics and Gynecology Department, Hospital Clinico San Carlos, Instituto de Salud de la Mujer, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IsISSC), 28040 Madrid, Spain;
| | - Miriam de la Puente Yague
- Department of Public and Maternal Child Health University, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Paloma Jimena de Andrés
- Department of Animal Medicine, Surgery and Pathology, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (J.C.I.); (P.L.-P.); (M.J.I.); (S.C.)
| |
Collapse
|
6
|
Lisiecka U, Brodzki P, Śmiech A, Michalak K, Winiarczyk S, Żylińska B, Adaszek Ł. The diagnostic value of selected immune parameters in peripheral blood of dogs with malignant mammary tumours - a preliminary study. J Vet Res 2024; 68:271-278. [PMID: 38947156 PMCID: PMC11210351 DOI: 10.2478/jvetres-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The main adaptive immune cells are T and B lymphocytes and they play key roles in the induction of immune responses against canine mammary tumours. Investigating these cell subpopulations may lead to more precise diagnosis of these malignancies. Material and Methods The percentages of CD3+, CD4+ and CD8+ T cells and of CD21+ B cells in the peripheral blood of bitches with malignant mammary tumours were compared with those in the blood of healthy animals. The phenotypic features of peripheral blood leukocytes were evaluated by flow cytometry. Results There was a significant difference in the mean percentages of CD3+ lymphocytes between healthy (66.7%) and metastatic dogs (46.1%), and between tumour-bearing non-metastatic (66.6%) and metastatic dogs. There was also a significant difference in CD4+ T helper cell percentages between healthy dogs (40.4%) and dogs with metastases (23.2%), and between the latter and dogs without them (35.5%). In the case of CD21+ lymphocyte subsets, a significant difference was noted between healthy animals (10.9%) and those with metastases (20.1%), and between the latter and patients without metastases (8.5%). There were also significant differences in CD3+/CD21+ ratios between the group with metastases (3.0), the healthy group (7.8), and the group without metastases (8.5). Similarly, a significant difference was noted in CD4+/CD8+ ratios between animals with metastases (1.4), bitches in the control group (2.2), and dogs without metastases (1.9). Conclusion Peripheral blood leukocyte phenotypic characteristics are putative novel biomarkers. These findings may be useful in future studies improving mammary tumour diagnostic procedures, especially in metastasis detection.
Collapse
Affiliation(s)
- Urszula Lisiecka
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Piotr Brodzki
- Department and Clinic of Animal Reproduction, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Anna Śmiech
- Department of Pathological Anatomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Beata Żylińska
- Department and Clinic of Animal Surgery, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences in Lublin, 20-950Lublin, Poland
| |
Collapse
|
7
|
Zuo R, Kong L, Pang W, Jiang S. Halofuginone-guided nano-local therapy: Nano-thermosensitive hydrogels for postoperative metastatic canine mammary carcinoma with scar removal. Int J Pharm X 2024; 7:100241. [PMID: 38572023 PMCID: PMC10987322 DOI: 10.1016/j.ijpx.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024] Open
Abstract
In female dogs, the highest morbidity and mortality rates cancer are the result of mammary adenocarcinoma, which presents with metastases in the lung. Other than early surgical removal, however, no special methods are available to treat mammary adenocarcinoma. Because human breast cancer and canine mammary carcinoma share clinical characteristics and heterogeneity, the canine model is a suitable spontaneous tumor model for breast cancer in humans. In this study, the physical swelling method was used to prepare halofuginone-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) polymer micelles nano-thermosensitive hydrogels (HTPM-gel). Furthermore, HTPM-gel was investigated via characterization, morphology, properties such as swelling experiment and in vitro release with reflecting its splendid nature. Moreover, HTPM-gel was further examined its capability to anti-proliferation, anti-migration, and anti-invasion. Ultimately, HTPM-gel was investigated for its in vivo anticancer activity in the post-operative metastatic and angiogenic canine mammary carcinoma. HTPM-gel presented spherical under transmission electron microscope (TEM) and represented grid structure under scanning electron microscope (SEM), with hydrodynamic diameter (HD) of 20.25 ± 2.5 nm and zeta potential (ZP) of 15.10 ± 1.82 mV. Additionally, HTPM-gel own excellent properties comprised of pH-dependent swelling behavior, sustained release behavior. To impede the migration, invasion, and proliferation of CMT-U27 cells, we tested the efficacy of HTPM-gel. Evaluation of in vivo anti-tumor efficacy demonstrates HTPM-gel exhibit a splendid anti-metastasis and anti-angiogenic ability, with exhibiting ideal biocompatibility. Notably, HTPM-gel also inhibited the scar formation in the healing process after surgery. In summary, HTPM-gel exhibited anti-metastasis and anti-angiogenic and scar repair features. According to the results of this study, HTPM-gel has encouraging clinical potential to treat tumors with multifunctional hydrogel.
Collapse
Affiliation(s)
- Runan Zuo
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Lingqing Kong
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Wanjun Pang
- Animal-derived food safety innovation team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| |
Collapse
|
8
|
Kuruoglu FE, Ekici ZM, Nak D, Ozyigit MO, Kupeli ZA, Koca D. Investigation of efficacy of two different chemotherapy protocols used in neoadjuvant chemotherapy in clinical stages II-IV canine malignant mammary tumours. Vet Comp Oncol 2024; 22:284-294. [PMID: 38600051 DOI: 10.1111/vco.12976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
The first aim of this study is to demonstrate the clinical efficacy and reliability of two different neoadjuvant chemotherapy (NAC) protocols consisting of doxorubicin/cyclophosphamide (AC) and paclitaxel in dogs with clinical stages II-IV canine malignant mammary tumours (CMTs). Secondly, to determine the Luminal A, Luminal B, HER2-positive and triple-negative molecular subtypes and their value in predicting clinical response to NAC in biopsy samples, and thirdly, to reveal the changes in Ki-67, human epidermal growth factor receptor type 2 (HER2), oestrogen receptor (ER), and progesterone receptor (PgR) expression levels induced by NAC. Thirty dogs with clinical stages II-IV CMTs (T1-3N0-1M0) according to the modified TNM system were included in the study. Dogs in group-1 (n = 15) AC combination and dogs in group-2 (n = 15) were administered paclitaxel. Partial response (PR) was the most common clinical response in both treatment groups (66.66% and 86.66%, respectively). There was no difference between the groups regarding clinical response parameters (p = .001). The rate of treatment responders was higher than the rate of non-responders in both groups (p < .001). The adverse effects observed in both groups were mostly limited to grades 1 and 2 and all were easy to manage. The most frequently detected molecular subtype was Luminal A (59.25%). Complete response (CR) was achieved in 33.33% of dogs with triple-negative CMT in the AC group and 14.29% of the Luminal A subtype in the paclitaxel group. Alterations in Ki-67, HER2, ER, and PgR expressions after chemotherapy were not statistically significant (p > .05). As a result, we have shown that these neoadjuvant chemotherapy protocols are effective and safe alternative treatment options for CMTs.
Collapse
Affiliation(s)
- Fikriye Ecem Kuruoglu
- Department of Obstetrics and Gynecology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Zeynep Merve Ekici
- Department of Obstetrics and Gynecology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Deniz Nak
- Department of Obstetrics and Gynecology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Musa Ozgur Ozyigit
- Department of Department of Pathology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Zehra Avci Kupeli
- Department of Department of Pathology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| | - Davut Koca
- Department of Obstetrics and Gynecology, Veterinary Faculty, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
9
|
Zhu T, Jin S, Tong D, Liu X, Liu Y, Zheng J. Enhancing the Anti-Tumor Efficacy of NK Cells on Canine Mammary Tumors through Resveratrol Activation. Animals (Basel) 2024; 14:1636. [PMID: 38891683 PMCID: PMC11171074 DOI: 10.3390/ani14111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
In order to explore the therapeutic effect of Resveratrol (Res)-activated Natural Killer (NK) cells on canine mammary tumors, this study employed a range of assays, including wound healing, colony formation, Transwell, flow cytometry, and Western blot experiments, to investigate the impact of Res-pretreated NK cells on canine mammary tumor cells in vitro. Additionally, a tumor-bearing mouse model was utilized to further analyze the therapeutic effects of Res-pretreated NK cells in vivo. The results showed that Res enhances the capacity of NK cells to induce apoptosis, pyroptosis, and ferroptosis in canine breast tumor cells, while also augmenting their influence on the migration, invasion, and epithelial-mesenchymal transition of these cells. Furthermore, pretreatment of NK cells with Res significantly amplified their inhibitory effect on breast tumor growth in vivo and promoted tumor tissue apoptosis. Additionally, Res enhanced the recruitment of NK cells to other immune cells in the body. In summary, Res has been shown to enhance the anti-breast-tumor effect of NK cells both in vitro and in vivo, offering a new avenue for optimizing immunotherapy for canine breast tumors.
Collapse
Affiliation(s)
- Tingting Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Danning Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (T.Z.); (S.J.); (D.T.); (X.L.)
| | - Jiasan Zheng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| |
Collapse
|
10
|
Bae MK, Ko YU, Seung BJ, Sur JH, Choe NH. PD-L1 mRNA and protein expression in canine mammary carcinomas: Correlation with histopathological grade and molecular markers. Vet Pathol 2024; 61:402-409. [PMID: 38281145 DOI: 10.1177/03009858241226621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Programmed death ligand 1 (PD-L1) is an immune checkpoint molecule that plays a crucial role in regulating antitumor immune responses. Canine mammary carcinomas (CMCs) are common tumors of dogs. Despite extensive studies on the heterogeneity of CMCs, there is still a lack of effective precision therapies for the treatment of CMCs. In this study, we aimed to investigate the correlation between PD-L1 mRNA and protein expression in CMCs and explore its association with histopathological grade and molecular markers, including the estrogen receptor, epidermal growth factor receptor 2, and cytokeratin 5/6 (CK5/6). Formalin-fixed paraffin-embedded samples were evaluated for PD-L1 mRNA expression using RNA in situ hybridization and PD-L1 protein expression using immunohistochemistry. We observed no substantial correlation between PD-L1 mRNA and protein expression in CMCs; however, PD-L1 mRNA levels were significantly higher in grade 3 than in grade 1 tumors (P = .001). In addition, we observed a positive correlation between PD-L1 protein expression and CK5/6 expression in CMCs (P = .032). These findings suggest that PD-L1 expression in CMCs is heterogeneous and may be regulated post-transcriptionally. Further studies are needed to explore the prognostic and therapeutic implications of PD-L1 expression in different molecular subtypes of CMCs and their potential as predictive biomarkers for immunotherapy.
Collapse
Affiliation(s)
| | | | - Byung-Joon Seung
- Konkuk University, Seoul, Korea
- University of Illinois Urbana-Champaign, Urbana, IL
| | - Jung-Hyang Sur
- Konkuk University, Seoul, Korea
- Komipharm International Co., Ltd., Siheung-si, Korea
| | | |
Collapse
|
11
|
Cataldo D, Aravena G, Escobar A, Tapia JC, Peralta OA, Torres CG. Effect of Melatonin on Chemoresistance Exhibited by Spheres Derived from Canine Mammary Carcinoma Cells. Animals (Basel) 2024; 14:1229. [PMID: 38672378 PMCID: PMC11047318 DOI: 10.3390/ani14081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Mammary cancer is a frequent disease in female dogs, where a high proportion of cases correspond to malignant tumors that may exhibit drug resistance. Within the mammary tumor microenvironment, there is a cell subpopulation called cancer stem cells (CSCs), which are capable of forming spheres in vitro and resisting anti-tumor treatments, partly explaining the recurrence of some tumors. Previously, it has been described that spheres derived from canine mammary carcinoma cells CF41.Mg and REM 134 exhibit stemness characteristics. Melatonin has shown anti-tumor effects on mammary tumor cells; however, its effects have been poorly evaluated in canine mammary CSCs. This study aimed to analyze the effect of melatonin on the chemoresistance exhibited by stem-like neoplastic cells derived from canine mammary carcinoma to cytotoxic drugs such as doxorubicin and mitoxantrone. CF41.Mg and REM 134 cells were cultured in high-glucose DMEM supplemented with fetal bovine serum and L-glutamine. The spheres were cultured in ultra-low attachment plates in DMEM/F12 medium without fetal bovine serum and with different growth factors. The CD44+/CD24-/low phenotype was analyzed by flow cytometry. The viability of sphere-derived cells (MTS reduction) was studied in the presence of melatonin (0.1 or 1 mM), doxorubicin, mitoxantrone, and luzindole. In addition, the gene (RT-qPCR) of the multidrug resistance bombs MDR1 and ABCG2 were analyzed in the presence of melatonin. Both cell types expressed the MT1 gene, which encodes the melatonin receptor MT1. Melatonin 1 mM does not modify the CD44+/CD24-/low phenotype; however, the hormone reduced viability (p < 0.0001) only in CF41.Mg spheres, without inducing an additive effect when co-incubated with cytotoxic drugs. These effects were independent of the binding of the hormone to its receptor MT1, since, by pharmacologically inhibiting them, the effect of melatonin was not blocked. In CF41.Mg spheres, the relative gene expression of ABCG2 and MDR1 was decreased in response to the hormone (p < 0.001). These results indicate that melatonin negatively modulates the cell survival of spheres derived from CF41.Mg cells, in a way that is independent of its MT1 receptor. These effects did not counteract the resistance to doxorubicin and mitoxantrone, even though the hormone negatively regulates the gene expression of MDR1 and ABCG2.
Collapse
Affiliation(s)
- Dania Cataldo
- Centralized Laboratory of Veterinary Research, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (D.C.); (G.A.)
- Laboratory of Biomedicine, Department of Clinical Sciences, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| | - Guillermo Aravena
- Centralized Laboratory of Veterinary Research, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (D.C.); (G.A.)
| | - Alejandro Escobar
- Laboratory of Cell and Molecular Biology, Dental Sciences Research Institute, Faculty of Dentistry, Universidad de Chile, Santiago 8380453, Chile;
| | - Julio C. Tapia
- Cell and Molecular Biology Program, Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Oscar A. Peralta
- School of Veterinary Medicine, Pontificia Universidad Catolica de Chile, Santiago 7820435, Chile;
| | - Cristian G. Torres
- Centralized Laboratory of Veterinary Research, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (D.C.); (G.A.)
- Laboratory of Biomedicine, Department of Clinical Sciences, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| |
Collapse
|
12
|
Huniadi M, Nosálová N, Almášiová V, Horňáková Ľ, Valenčáková A, Hudáková N, Cizkova D. Three-Dimensional Cultivation a Valuable Tool for Modelling Canine Mammary Gland Tumour Behaviour In Vitro. Cells 2024; 13:695. [PMID: 38667310 PMCID: PMC11049302 DOI: 10.3390/cells13080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cell cultivation has been one of the most popular methods in research for decades. Currently, scientists routinely use two-dimensional (2D) and three-dimensional (3D) cell cultures of commercially available cell lines and primary cultures to study cellular behaviour, responses to stimuli, and interactions with their environment in a controlled laboratory setting. In recent years, 3D cultivation has gained more attention in modern biomedical research, mainly due to its numerous advantages compared to 2D cultures. One of the main goals where 3D culture models are used is the investigation of tumour diseases, in both animals and humans. The ability to simulate the tumour microenvironment and design 3D masses allows us to monitor all the processes that take place in tumour tissue created not only from cell lines but directly from the patient's tumour cells. One of the tumour types for which 3D culture methods are often used in research is the canine mammary gland tumour (CMT). The clinically similar profile of the CMT and breast tumours in humans makes the CMT a suitable model for studying the issue not only in animals but also in women.
Collapse
Affiliation(s)
- Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Natália Nosálová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Viera Almášiová
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Nikola Hudáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| |
Collapse
|
13
|
Rueda JR, Porto CD, Franco RP, da Costa IB, Bueno LMC, Girio RJS, Manhoso FFR, Bueno PCDS, Repetti CSF. Mammary neoplasms in female dogs: Clinical, diagnostic and therapeutic aspects. VET MED-CZECH 2024; 69:99-114. [PMID: 38751991 PMCID: PMC11093647 DOI: 10.17221/4/2024-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 05/18/2024] Open
Abstract
With the increase in the life expectancy of domestic animals and their increasingly affectionate relationship with their owners, it is possible to observe an increase in cases of neoplasms in these animals. Mammary neoplasia mainly affects older females who have not been castrated, due to hormonal dependence for the development of the tumour. The main form of treatment is surgery. This study aims to carry out an updated review on mammary neoplasms in female dogs covering the anatomy, physiology, prevalence, causes, diagnoses, treatments, prevention and prognosis, based on scientific articles by renowned researchers.
Collapse
Affiliation(s)
- Janaina Reato Rueda
- Department of Veterinary Science, University of Marilia – UNIMAR, Marilia/SP, Brazil
| | - Camila Dias Porto
- Department of Veterinary Science, University of Marilia – UNIMAR, Marilia/SP, Brazil
| | | | | | | | - Raul Jose Silva Girio
- Department of Veterinary Science, University of Marilia – UNIMAR, Marilia/SP, Brazil
| | | | | | | |
Collapse
|
14
|
Nosalova N, Huniadi M, Horňáková Ľ, Valenčáková A, Horňák S, Nagoos K, Vozar J, Cizkova D. Canine Mammary Tumors: Classification, Biomarkers, Traditional and Personalized Therapies. Int J Mol Sci 2024; 25:2891. [PMID: 38474142 DOI: 10.3390/ijms25052891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, many studies have focused their attention on the dog as a proper animal model for human cancer. In dogs, mammary tumors develop spontaneously, involving a complex interplay between tumor cells and the immune system and revealing several molecular and clinical similarities to human breast cancer. In this review, we summarized the major features of canine mammary tumor, risk factors, and the most important biomarkers used for diagnosis and treatment. Traditional therapy of mammary tumors in dogs includes surgery, which is the first choice, followed by chemotherapy, radiotherapy, or hormonal therapy. However, these therapeutic strategies may not always be sufficient on their own; advancements in understanding cancer mechanisms and the development of innovative treatments offer hope for improved outcomes for oncologic patients. There is still a growing interest in the use of personalized medicine, which should play an irreplaceable role in the research not only in human cancer therapy, but also in veterinary oncology. Moreover, immunotherapy may represent a novel and promising therapeutic option in canine mammary cancers. The study of novel therapeutic approaches is essential for future research in both human and veterinary oncology.
Collapse
Affiliation(s)
- Natalia Nosalova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Slavomir Horňák
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Kamil Nagoos
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Juraj Vozar
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
15
|
Zhang X, Mei C, Liang Z, Zhi Y, Xu H, Wang H, Dong H. Homoharringtonine induces apoptosis of mammary carcinoma cells by inhibiting the AKT/mTOR signaling pathway. Vet Comp Oncol 2024; 22:57-69. [PMID: 38081660 DOI: 10.1111/vco.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024]
Abstract
Mammary tumour is the most common type of tumour in dogs, especially in unneutered female dogs. Homoharringtonine (HHT) is a natural alkaloid that can be used to treat various types of human tumour. However, the inhibitory effect and mechanism of HHT on canine mammary carcinomas (CMC) remain unclear. This study aimed to evaluate the inhibitory effect of HHT on CMC in vitro and determine its underlying molecular mechanism. The effects of HHT on the cytotoxicity of CMC U27 cells were evaluated by the cell counting kit-8, wound healing, and Transwell assays. HHT-induced apoptosis of U27 cells was detected by JC-1 and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. Moreover, the gene expression of B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) were analysed using quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and the protein expression of protein kinase B/mammalian target of rapamycin (AKT/mTOR) and mitochondrial apoptosis proteins were determined by western blotting. Furthermore, mammary tumour-bearing mouse models were established using 4T1 cells to evaluate the therapeutic effect of HHT. It was found that HHT could significantly down-regulated the protein expression of p-AKT, p-mTOR, and Bcl-2, and up-regulated the protein expression of P53, Bax, cleaved caspase-3, and cleaved caspase-9. In addition, HHT significantly suppressed both tumour volume and mass in mammary tumour mice. In conclusion, HHT damages CMC cells by inhibiting the AKT/mTOR signalling pathway and inducing mitochondrial apoptosis. Such findings lay a theoretical foundation for the clinical treatment of CMC and provide more options for clinical medication.
Collapse
Affiliation(s)
- Xue Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhixuan Liang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Yan Zhi
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Haojun Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
16
|
Yoo MJ, Jang YJ, Park SY, Choi JW, Seol JW. Synergistic Anti-Cancer Effects of ERB-041 and Genistein through Estrogen Receptor Suppression-Mediated PI3K/AKT Pathway Downregulation in Canine Mammary Gland Tumor Cells. Int J Mol Sci 2024; 25:2466. [PMID: 38473712 DOI: 10.3390/ijms25052466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Canine-mammary-gland tumors (CMTs) are prevalent in female dogs, with approximately 50% of them being malignant and often presenting as inoperable owing to their size or metastasis. Owing to poor outcomes, effective alternatives to conventional chemotherapy for humans are necessary. Two estrogen receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which act in opposition to each other, are involved, and CMT growth involves ERα through the phosphoinositide 3-kinases (PI3K)/AKT pathway. In this study, we aimed to identify the synergistic anti-cancer effects of ERB-041, an ERβ agonist, and genistein, an isoflavonoid from soybeans known to have ERβ-specific pseudo-estrogenic actions, on CMT-U27 and CF41.Mg CMT cell lines. ERB-041 and genistein synergistically inhibited cell proliferation and increased the number of annexin V-positive cells in both cell lines. Furthermore, we observed a synergistic increase in the Bax/Bcl-2 ratio and cleaved caspase-3 expression. Additionally, cell-cycle arrest occurred through the synergistic regulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). We also found a synergistic decrease in the expression of ERα, and the expression of proteins involved in the PI3K/AKT pathway, including p-PI3K, phosphatase and tensin homolog (PTEN), AKT, and mechanistic target of rapamycin (mTOR). In conclusion, ERB-041 and genistein exhibited a synergistic anticancer effect on CMTs, suggesting that cotreatment with ERB-041 and genistein is a promising treatment for CMTs.
Collapse
Affiliation(s)
- Min-Jae Yoo
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Ye-Ji Jang
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Ja-Wun Choi
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Jae-Won Seol
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea
| |
Collapse
|
17
|
Gherman LM, Chiroi P, Nuţu A, Bica C, Berindan-Neagoe I. Profiling canine mammary tumors: A potential model for studying human breast cancer. Vet J 2024; 303:106055. [PMID: 38097103 DOI: 10.1016/j.tvjl.2023.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Despite all clinical progress recorded in the last decades, human breast cancer (HBC) remains a major challenge worldwide both in terms of its incidence and its management. Canine mammary tumors (CMTs) share similarities with HBC and represent an alternative model for HBC. The utility of the canine model in studying HBC relies on their common features, include spontaneous development, subtype classification, mutational profile, alterations in gene expression profile, and incidence/prevalence. This review describes the similarities between CMTs and HBC regarding genomic landscape, microRNA expression alteration, methylation, and metabolomic changes occurring during mammary gland carcinogenesis. The primary purpose of this review is to highlight the advantages of using the canine model as a translational animal model for HBC research and to investigate the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Luciana-Madalina Gherman
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; Experimental Center of Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nuţu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
18
|
Jianpraphat N, Supsavhad W, Ngernmeesri P, Siripattarapravat K, Soontararak S, Akrimajirachoote N, Phaochoosak N, Jermnak U. A New Benzo[6,7]oxepino[3,2-b] Pyridine Derivative Induces Apoptosis in Canine Mammary Cancer Cell Lines. Animals (Basel) 2024; 14:386. [PMID: 38338029 PMCID: PMC10854894 DOI: 10.3390/ani14030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
CMC is the most frequently diagnosed cancer and one of the leading causes of death in non-spayed female dogs. Exploring novel therapeutic agents is necessary to increase the survival rate of dogs with CMC. MPOBA is a BZOP derivative that has a significant anticancer effect in a human cell line. The main goal of this study was to investigate the anticancer properties of MPOBA against two CMC cell lines (REM134 and CMGT071020) using a 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, a wound healing assay, a transwell migration assay, an Annexin V-FITC apoptosis assay with a flow cytometry analysis, a mRNA expression analysis using quantitative real-time PCR (qRT-PCR), and an immunohistochemistry (IHC). According to the accumulated studies, MPOBA caused significant concentration- and time-dependent reductions in cell proliferation and cell migration and induced apoptosis in both CMC cell lines. In gene expression analysis, nine canine genes, including TP53, BCL-2, BAX, epidermal growth factor receptor (EGFR), snail transcription factor (SNAIL), snail-related zinc-finger transcription factor (SLUG), TWIST, E-cadherin, and N-cadherin, were investigated. The mRNA expression results revealed that MPOBA induced upregulation of TP53 and overexpression of the pro-apoptotic gene BAX, together with an inhibition of BCL-2. Moreover, MPOBA also suppressed the mRNA expression levels of SNAIL, EGFR, and N-cadherin and induced upregulation of E-cadherin, crucial genes related to the epithelial-to-mesenchymal transition (EMT). However, there was no significant difference in the IHC results of the expression patterns of vimentin (VT) and cytokeratin (CK) between MPOBA-treated and control CMC cells. In conclusion, the results of the present study suggested that MPOBA exhibited significant anticancer activity by inducing apoptosis in both CMCs via upregulation of TP53 and BAX and downregulation of BCL-2 relative mRNA expression. MPOBA may prove to be a potential candidate drug to be further investigated as a therapeutic agent for CMC.
Collapse
Affiliation(s)
- Natamon Jianpraphat
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| | - Wachiraphan Supsavhad
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.S.); (K.S.)
| | - Paiboon Ngernmeesri
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Kannika Siripattarapravat
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.S.); (K.S.)
| | - Sirikul Soontararak
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Napasorn Phaochoosak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| | - Usuma Jermnak
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (N.J.); (N.P.)
| |
Collapse
|
19
|
Ke CH, Lin CN, Lin CS. Hormone, Targeted, and Combinational Therapies for Breast Cancers: From Humans to Dogs. Int J Mol Sci 2024; 25:732. [PMID: 38255807 PMCID: PMC10815110 DOI: 10.3390/ijms25020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) is the most frequent cancer in women. In female dogs, canine mammary gland tumor (CMT) is also the leading neoplasm. Comparative oncology indicates similar tumor behaviors between human BCs (HBCs) and CMTs. Therefore, this review summarizes the current research in hormone and targeted therapies and describes the future prospects for HBCs and CMTs. For hormone receptor-expressing BCs, the first medical intervention is hormone therapy. Monoclonal antibodies against Her2 are proposed for the treatment of Her2+ BCs. However, the major obstacle in hormone therapy or monoclonal antibodies is drug resistance. Therefore, increasing alternatives have been developed to overcome these difficulties. We systemically reviewed publications that reported inhibitors targeting certain molecules in BC cells. The various treatment choices for humans decrease mortality in females with BC. However, the development of hormone or targeted therapies in veterinary medicine is still limited. Even though some clinical trials have been proposed, severe side effects and insufficient case numbers might restrict further explorations. This difficulty highlights the urgent need to develop updated hormone/targeted therapy or novel immunotherapies. Therefore, exploring new therapies to provide more precise use in dogs with CMTs will be the focus of future research. Furthermore, due to the similarities shared by humans and dogs, well-planned prospective clinical trials on the use of combinational or novel immunotherapies in dogs with CMTs to obtain solid results for both humans and dogs can be reasonably anticipated in the future.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Mei C, Zhang X, Zhi Y, Liang Z, Xu H, Liu Z, Liu Y, Lyu Y, Wang H. Isorhamnetin Regulates Programmed Death Ligand-1 Expression by Suppressing the EGFR-STAT3 Signaling Pathway in Canine Mammary Tumors. Int J Mol Sci 2024; 25:670. [PMID: 38203840 PMCID: PMC10779303 DOI: 10.3390/ijms25010670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Programmed death ligand-1 (PD-L1) is highly expressed in a variety of cancer cells and suggests a poorer prognosis for patients. The natural compound isorhamnetin (ISO) shows promise in treating cancers and causing damage to canine mammary tumor (CMT) cells. We investigated the mechanism of ISO in reducing PD-L1 expression in CMT cells. Clustered, regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) was used to mediate CD274 knockout in U27 cells. Then, monoclonal cells were screened and cultured. Nucleotide sequencing and expression of PD-L1 were detected. Additionally, we examined cell migration, invasion, and damage. Immunofluorescent staining of PD-L1 was examined in U27 cells. The signaling pathways were measured by Western blotting. Murine xenotransplantation models and murine immunocompetent allograft mammary tumor models were established to evaluate the effect of ISO therapy. Expression of Ki-67, caspase3, and PD-L1 were analyzed by immunohistochemistry. A pull-down assay was used to explore which proteins could bind to ISO. Canine EGFR protein was purified and used to detect whether it directly binds to ISO using a surface plasmon resonance assay. ISO inhibited the EGFR-STAT3-PD-L1 signaling pathway and blocked cancer growth, significantly increasing the survival rate of healthy cells. The cell membrane receptor EGFR was identified as a direct target of ISO. ISO could be exploited as an antineoplastic treatment of CMT by targeting EGFR to suppress PD-L1 expression.
Collapse
Affiliation(s)
- Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (C.M.); (X.Z.); (Y.Z.); (Z.L.); (H.X.); (Z.L.); (Y.L.)
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (C.M.); (X.Z.); (Y.Z.); (Z.L.); (H.X.); (Z.L.); (Y.L.)
| | - Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (C.M.); (X.Z.); (Y.Z.); (Z.L.); (H.X.); (Z.L.); (Y.L.)
| | - Zhixuan Liang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (C.M.); (X.Z.); (Y.Z.); (Z.L.); (H.X.); (Z.L.); (Y.L.)
| | - Haojun Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (C.M.); (X.Z.); (Y.Z.); (Z.L.); (H.X.); (Z.L.); (Y.L.)
| | - Zhenyi Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (C.M.); (X.Z.); (Y.Z.); (Z.L.); (H.X.); (Z.L.); (Y.L.)
| | - Ying Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (C.M.); (X.Z.); (Y.Z.); (Z.L.); (H.X.); (Z.L.); (Y.L.)
| | - Yanli Lyu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongjun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguanghuayuan Middle Road, Haidian District, Beijing 100097, China; (C.M.); (X.Z.); (Y.Z.); (Z.L.); (H.X.); (Z.L.); (Y.L.)
| |
Collapse
|
21
|
Chae HK, Oh YI, Lim GH, Jung YC, Park SH, An JH, Park SM, Seo KW, Chu SN, Li Q, Youn HY. Anti-cancer effects of DHP107 on canine mammary gland cancer examined through in-vitro and in-vivo mouse xenograft models. BMC Vet Res 2024; 20:3. [PMID: 38172758 PMCID: PMC10763473 DOI: 10.1186/s12917-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Canine mammary gland cancer (CMGC) is a common neoplasm in intact bitches. However, the benefit of adjuvant chemotherapy is unclear. The aim of this study was to investigate the anti-proliferative effects of paclitaxel on CMGC in in-vitro and in-vivo settings. RESULTS Paclitaxel dose-dependently inhibited viability and induced G2/M phase cell cycle arrest and apoptosis in both primary and metastatic CMGC cell lines (CIPp and CIPm). In animal experiments, the average tumour volume decreased significantly in proportion to the administered oral paclitaxel dose. By examining tumour tissue using a TUNEL assay and immunohistochemical staining with anti-CD31 as a marker of endothelial differentiation, respectively, it was confirmed that oral paclitaxel induced apoptosis and exerted an anti-angiogenetic effect in tumour tissues. Further, downregulation of cyclin D1 in tumour tissues suggested that oral paclitaxel induced cell cycle arrest in tumour tissues in-vivo. CONCLUSIONS Our results suggest that paclitaxel may have anti-cancer effects on CMGC through cell cycle arrest, induction of apoptosis, and anti-angiogenesis. This study could provide a novel approach to treat CMGC.
Collapse
Affiliation(s)
- Hyung-Kyu Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Veterinary Internal Medicine, Western Referral Animal Medical Center, Seoul, Republic of Korea
| | - Ye-In Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun-Chan Jung
- Laboratory Animal Center, CHA University, CHA Biocomplex, Sungnam, Republic of Korea
| | - Seol-Hee Park
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Nam Chu
- Pangyo Research Laboratory, DaeHwa Pharmaceutical Co. Ltd, Sungnam, Republic of Korea
| | - Qiang Li
- Department of Veterinary Medicine, College of Agriculture, YanBian University, YanJi, JiLin, 133000, China.
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
22
|
Rodríguez-Bejarano OH, Roa L, Vargas-Hernández G, Botero-Espinosa L, Parra-López C, Patarroyo MA. Strategies for studying immune and non-immune human and canine mammary gland cancer tumour infiltrate. Biochim Biophys Acta Rev Cancer 2024; 1879:189064. [PMID: 38158026 DOI: 10.1016/j.bbcan.2023.189064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The tumour microenvironment (TME) is usually defined as a cell environment associated with tumours or cancerous stem cells where conditions are established affecting tumour development and progression through malignant cell interaction with non-malignant cells. The TME is made up of endothelial, immune and non-immune cells, extracellular matrix (ECM) components and signalling molecules acting specifically on tumour and non-tumour cells. Breast cancer (BC) is the commonest malignant neoplasm worldwide and the main cause of mortality in women globally; advances regarding BC study and understanding it are relevant for acquiring novel, personalised therapeutic tools. Studying canine mammary gland tumours (CMGT) is one of the most relevant options for understanding BC using animal models as they share common epidemiological, clinical, pathological, biological, environmental, genetic and molecular characteristics with human BC. In-depth, detailed investigation regarding knowledge of human BC-related TME and in its canine model is considered extremely relevant for understanding changes in TME composition during tumour development. This review addresses important aspects concerned with different methods used for studying BC- and CMGT-related TME that are important for developing new and more effective therapeutic strategies for attacking a tumour during specific evolutionary stages.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundacion Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Leonardo Roa
- Veterinary Clinic, Faculty of Agricultural Sciences, Universidad de La Salle, Carrera 7 #179-03, Bogotá 110141, Colombia
| | - Giovanni Vargas-Hernández
- Animal Health Department, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Lucía Botero-Espinosa
- Animal Health Department, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundacion Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
23
|
Sammarco A, Beffagna G, Sacchetto R, Vettori A, Bonsembiante F, Scarin G, Gelain ME, Cavicchioli L, Ferro S, Geroni C, Lombardi P, Zappulli V. Antitumor Effect of Berberine Analogs in a Canine Mammary Tumor Cell Line and in Zebrafish Reporters via Wnt/β-Catenin and Hippo Pathways. Biomedicines 2023; 11:3317. [PMID: 38137538 PMCID: PMC10741123 DOI: 10.3390/biomedicines11123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The heterogeneous nature of human breast cancer (HBC) can still lead to therapy inefficacy and high lethality, and new therapeutics as well as new spontaneous animal models are needed to benefit translational HBC research. Dogs are primarily investigated since they spontaneously develop tumors that share many features with human cancers. In recent years, different natural phytochemicals including berberine, a plant alkaloid, have been reported to have antiproliferative activity in vitro in human cancers and rodent animal models. In this study, we report the antiproliferative activity and mechanism of action of berberine, its active metabolite berberrubine, and eight analogs, on a canine mammary carcinoma cell line and in transgenic zebrafish models. We demonstrate both in vitro and in vivo the significant effects of specific analogs on cell viability via the induction of apoptosis, also identifying their role in inhibiting the Wnt/β-catenin pathway and activating the Hippo signals with a downstream reduction in CTGF expression. In particular, the berberine analogs NAX035 and NAX057 show the highest therapeutic efficacy, deserving further analyses to elucidate their mechanism of action more in detail, and in vivo studies on spontaneous neoplastic diseases are needed, aiming at improving veterinary treatments of cancer as well as translational cancer research.
Collapse
Affiliation(s)
- Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Giorgia Beffagna
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - Giulia Scarin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Cristina Geroni
- Naxospharma Srl, 20026 Novate Milanese, Italy; (C.G.); (P.L.)
| | - Paolo Lombardi
- Naxospharma Srl, 20026 Novate Milanese, Italy; (C.G.); (P.L.)
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| |
Collapse
|
24
|
Yang NY, Zheng HH, Yu C, Ye Y, Du CT, Xie GH. Research progress of good markers for canine mammary carcinoma. Mol Biol Rep 2023; 50:10617-10625. [PMID: 37943402 DOI: 10.1007/s11033-023-08863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Mammary gland tumors are the most common neoplastic diseases in elderly female dogs, about 50% of which are considered to be malignant. Canine mammary tumors are similar to human breast cancers in many respects, so canine mammary tumors are frequently studied alongside human breast cancer. This article mentioned KI-67, HER-2, COX-2, BRCA1, BRCA2, P53, CA15-3, MicroRNA, Top2α and so on. All these markers are expected to have an important role in the clinic. METHODS Existing markers of canine mammary carcinoma are reviewed, and the expression of each marker and its diagnostic role for this tumor are described in detail. RESULTS This article introduced several effective markers of canine mammary tumors, among them, antigen KI-67 (KI-67), human epidermal growth factor receptor 2 (HER-2), cyclooxygenase 2 (COX-2) are promising and can be detected in both serum and tissue samples. Breast cancer caused by mutations in the breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2) is also a hot topic of research. In addition to the above symbols, tumor protein p53 (p53), cancer antigen15-3 (CA15-3), MicroRNA (miRNA), topoisomerase πα (Top2α), proliferating cell nuclear antigen (PCNA), epidermal growth factor receptor (EGFR) and E-cadherin will also be involved in this paper. We will also mention Mammaglobin, which has been rarely reported so far.
Collapse
Affiliation(s)
- Ning-Yu Yang
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Hui-Hua Zheng
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Chao Yu
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Yan Ye
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Chong-Tao Du
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China
| | - Guang-Hong Xie
- College of Veterinary Medicine, Jilin University, No. 5333 Xi'an Road, Changchun, 130062, China.
| |
Collapse
|
25
|
Yeom J, Cho Y, Ahn S, Jeung S. Anticancer effects of alpelisib on PIK3CA-mutated canine mammary tumor cell lines. Front Vet Sci 2023; 10:1279535. [PMID: 38033642 PMCID: PMC10684731 DOI: 10.3389/fvets.2023.1279535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Canine mammary tumors (CMTs) are commonly observed in old and unspayed female dogs. Recently, dogs have been increasingly spaying at a young age to prevent mammary tumors. These CMTs require extensive local excision and exhibit a high probability of metastasis to the regional lymph nodes and lungs during malignancy. However, the molecular and biological mechanisms underlying CMT development have not been fully elucidated, and research in this area is limited. Therefore, in this study, we established new CMT cell lines by isolating cells from tumor tissues and investigated phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), a target for human breast cancer. PIK3CA mutations were observed at a similar loci as in the human PIK3CA gene in half of all canine samples. Furthermore, we investigated whether alpelisib, a PIK3CA inhibitor approved by the U.S. Food and Drug Administration for human breast cancer treatment, along with fulvestrant, is effective for CMT treatment. Alpelisib exerted stronger anticancer effects on cell lines with PIK3CA mutations than on the wild-type cell lines. In conclusion, we established new CMT cell lines with PIK3CA mutations and confirmed the efficacy of alpelisib for CMT treatment in vitro.
Collapse
Affiliation(s)
- Jiah Yeom
- Research Institute, VIP Animal Medical Center, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Gherman ML, Zanoaga O, Budisan L, Raduly L, Berindan-Neagoe I. Doxorubicin as a Potential Treatment Option in Canine Mammary Tumors. Vet Sci 2023; 10:654. [PMID: 37999477 PMCID: PMC10674590 DOI: 10.3390/vetsci10110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Canine mammary tumors represent one of the leading malignant pathologies in female dogs, displaying the importance of efficient therapeutic findings, besides the golden-standard surgery, able to limit the development of the disease. Studies in human cancers demonstrated that Doxorubicin presents a good effect in different biological processes like apoptosis, autophagy, the cell cycle, cell invasion, and the epithelial-to-mesenchymal transition. This study followed the effects of Doxorubicin on two canine mammary cancer cell lines P114 and CMT-U27. Doxorubicin treatment in both cell lines shows an inhibitory effect in cell proliferation and an alteration in expression of the EMT-related genes. The obtained results provide valuable information for revealing the link between Doxorubicin, phenotypic changes, and proliferation dynamics in canine mammary tumor models.
Collapse
Affiliation(s)
- Madalina Luciana Gherman
- Experimental Center, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.Z.); (L.B.); (I.B.-N.)
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.Z.); (L.B.); (I.B.-N.)
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.Z.); (L.B.); (I.B.-N.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.Z.); (L.B.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (O.Z.); (L.B.); (I.B.-N.)
| |
Collapse
|
27
|
Ke C, Sio K, Wu C, Xia Y, Lee J, Hu C, Liu C, Lu C, Cheng C, Lin K, Tomiyasu H, Wang Y, Lin C. Increased plasma DR-70 (fibrinogen-fibrin degradation products) concentrations as a diagnostic biomarker in dogs with neoplasms. J Vet Intern Med 2023; 37:2391-2401. [PMID: 37837297 PMCID: PMC10658483 DOI: 10.1111/jvim.16898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Tumor biomarkers have used widely in clinical oncology in human medicine. Only a few studies have evaluated the clinical utility of tumor biomarkers for veterinary medicine. A test for fibrinogen and fibrin degradation products (DR-70) has been proposed as an ideal biomarker for tumors in humans. The clinical value of DR-70 for veterinary medicine however has yet to be determined. OBJECTIVES Investigate the diagnostic value of DR-70 concentrations by comparing them between healthy dogs and dogs with tumors. ANIMALS Two hundred sixty-three dogs with different types of tumors were included. Sixty healthy dogs also were recruited for comparison. METHODS The DR-70 concentrations were measured in all recruited individuals by ELISA. Clinical conditions were categorized based on histopathology, cytology, ultrasound examination, radiology, clinical findings, and a combination of these tests. RESULTS The median concentration of DR-70 was 2.130 ± 0.868 μg/mL in dogs with tumors, which was significantly higher than in healthy dogs (1.202 ± 0.610 μg/mL; P < .0001). With a cut-off of 1.514 μg/mL, the sensitivity and specificity of DR-70 were 84.03% and 78.33%, respectively. The area under curve was 0.883. The DR-70 concentration can be an effective tumor biomarker in veterinary medicine. CONCLUSIONS AND CLINICAL IMPORTANCE Increased DR-70 concentrations were not affected by tumor type, sex, age, or body weight. However, in dogs with metastatic mast cell tumors and oral malignant melanoma, DR-70 concentrations were significantly increased. Additional studies, including more dogs with nonneoplastic diseases, are needed to further evaluate the usefulness of DR-70 as a tumor biomarker.
Collapse
Affiliation(s)
- Chiao‐Hsu Ke
- Department of Veterinary Medicine, School of Veterinary MedicineNational Taiwan UniversityTaipei 10617Taiwan, ROC
| | - Ka‐Mei Sio
- Department of Veterinary Medicine, School of Veterinary MedicineNational Taiwan UniversityTaipei 10617Taiwan, ROC
| | - Chun‐Hung Wu
- Wellcarevet Animal HospitalTaipei 11460Taiwan, ROC
| | - Yuan‐Yuan Xia
- Graduate Institute of Veterinary Clinical Science, School of Veterinary MedicineNational Taiwan UniversityTaipei 10617Taiwan, ROC
- Animal Cancer Center, College of Bioresources and AgricultureNational Taiwan UniversityTaipei 10617Taiwan, ROC
- National Taiwan University Veterinary Hospital, College of Bioresources and AgricultureNational Taiwan UniversityTaipei 10672Taiwan, ROC
| | - Jih‐Jong Lee
- Graduate Institute of Veterinary Clinical Science, School of Veterinary MedicineNational Taiwan UniversityTaipei 10617Taiwan, ROC
- Animal Cancer Center, College of Bioresources and AgricultureNational Taiwan UniversityTaipei 10617Taiwan, ROC
- National Taiwan University Veterinary Hospital, College of Bioresources and AgricultureNational Taiwan UniversityTaipei 10672Taiwan, ROC
| | - Chin‐Hao Hu
- Lifecare Animal HospitalTaipei 11271Taiwan, ROC
| | - Cheng‐Chi Liu
- Department of Veterinary Medicine, School of Veterinary MedicineNational Taiwan UniversityTaipei 10617Taiwan, ROC
| | | | | | | | - Hirotaka Tomiyasu
- Department of Veterinary Medical SciencesThe University of TokyoTokyo 113‐8657Japan
| | - Yu‐Shan Wang
- Department of Veterinary Medicine, School of Veterinary MedicineNational Taiwan UniversityTaipei 10617Taiwan, ROC
- Uni‐Pharma Co‐Ltd.Taipei 11494Taiwan, ROC
| | - Chen‐Si Lin
- Department of Veterinary Medicine, School of Veterinary MedicineNational Taiwan UniversityTaipei 10617Taiwan, ROC
| |
Collapse
|
28
|
Vazquez E, Lipovka Y, Cervantes-Arias A, Garibay-Escobar A, Haby MM, Queiroga FL, Velazquez C. Canine Mammary Cancer: State of the Art and Future Perspectives. Animals (Basel) 2023; 13:3147. [PMID: 37835752 PMCID: PMC10571550 DOI: 10.3390/ani13193147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Mammary cancer is the most frequently diagnosed neoplasia in women and non-spayed female dogs and is one of the leading causes of death in both species. Canines develop spontaneous mammary tumors that share a significant number of biological, clinical, pathological and molecular characteristics with human breast cancers. This review provides a detailed description of the histological, molecular and clinical aspects of mammary cancer in canines; it discusses risk factors and currently available diagnostic and treatment options, as well as remaining challenges and unanswered questions. The incidence of mammary tumors is highly variable and is impacted by biological, pathological, cultural and socioeconomic factors, including hormonal status, breed, advanced age, obesity and diet. Diagnosis is mainly based on histopathology, although several efforts have been made to establish a molecular classification of canine mammary tumors to widen the spectrum of treatment options, which today rely heavily on surgical removal of tumors. Lastly, standardization of clinical study protocols, development of canine-specific biological tools, establishment of adequate dog-specific disease biomarkers and identification of targets for the development of new therapies that could improve survival and have less adverse effects than chemotherapy are among the remaining challenges.
Collapse
Affiliation(s)
- Eliza Vazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Alejandro Cervantes-Arias
- Department of Small Animal Medicine and Surgery, Small Animal Teaching Hospital, The National University of Mexico (UNAM), Ciudad Universitaria, Investigación Científica 3000, Coyoacán, Mexico City 04360, Mexico;
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Michelle M. Haby
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Felisbina Luisa Queiroga
- CECAV—Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| |
Collapse
|
29
|
Valdivia G, Alonso-Miguel D, Perez-Alenza MD, Zimmermann ABE, Schaafsma E, Kolling FW, Barreno L, Alonso-Diez A, Beiss V, Affonso de Oliveira JF, Suárez-Redondo M, Fiering S, Steinmetz NF, vom Berg J, Peña L, Arias-Pulido H. Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Induces Local and Systemic Antitumor Efficacy in Canine Mammary Cancer Patients. Cells 2023; 12:2241. [PMID: 37759464 PMCID: PMC10527658 DOI: 10.3390/cells12182241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The lack of optimal models to evaluate novel agents is delaying the development of effective immunotherapies against human breast cancer (BC). In this prospective open label study, we applied neoadjuvant intratumoral immunotherapy with empty cowpea mosaic virus-like particles (eCPMV) to 11 companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. We found that two neoadjuvant intratumoral eCPMV injections resulted in tumor reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of injected dogs. Tumor reduction was independent of clinical stage, tumor size, histopathologic grade, and tumor molecular subtype. RNA-seq-based analysis of injected tumors indicated a decrease in DNA replication activity and an increase in activated dendritic cell infiltration in the tumor microenvironment. Immunohistochemistry analysis demonstrated significant intratumoral increases in neutrophils, T and B lymphocytes, and plasma cells. eCPMV intratumoral immunotherapy demonstrated antitumor efficacy without any adverse effects. This novel immunotherapy has the potential for improving outcomes for human BC patients.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Daniel Alonso-Miguel
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Maria Dolores Perez-Alenza
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | | | | | - Fred W. Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (S.F.)
| | - Lucia Barreno
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Angela Alonso-Diez
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (V.B.); (J.F.A.d.O.); (N.F.S.)
| | | | - María Suárez-Redondo
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Steven Fiering
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA (S.F.)
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (V.B.); (J.F.A.d.O.); (N.F.S.)
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92039, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92039, USA
- Center for Nano Immuno-Engineering, University of California San Diego, La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California San Diego, La Jolla, CA 92039, USA
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, 8952 Schlieren, Switzerland; (A.B.E.Z.); (J.v.B.)
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Mammary Oncology Unit, Veterinary Teaching Hospital, Veterinary Medicine School, Complutense University of Madrid, 28040 Madrid, Spain; (G.V.); (D.A.-M.); (M.D.P.-A.); (L.B.); (A.A.-D.); (M.S.-R.); (L.P.)
| | - Hugo Arias-Pulido
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
30
|
Frénel JS, Nguyen F. Mammary carcinoma: Comparative oncology between small animals and humans-New therapeutic tools. Reprod Domest Anim 2023; 58 Suppl 2:102-108. [PMID: 37312625 DOI: 10.1111/rda.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/15/2023]
Abstract
The poor outcomes associated with mammary carcinomas (MCs) in dogs and cats in terms of locoregional recurrence, distant metastasis and survival, highlight the need for better management of mammary cancers in small animals. By contrast, the outcomes of women with breast cancer (BC) have dramatically improved during the last 10 years, notably thanks to new therapeutic strategies. The aim of this article was to imagine what could be the future of therapy for dogs and cats with MCs if it became inspired from current practices in human BC. This article focuses on the importance of taking into account cancer stage and cancer subtypes in therapeutic plans, on locoregional treatments (surgery, radiation therapy), new developments in endocrine therapy, chemotherapy, PARP inhibitors and immunotherapy. Ideally, multimodal treatment regimens would be chosen according to cancer stage and cancer subtypes, and according to predictive factors that are still to be defined.
Collapse
Affiliation(s)
- Jean-Sébastien Frénel
- Nantes Université, University of Angers, INSERM, CRCI2NA, Nantes, France
- Institut de Cancérologie de l'Ouest, Site René Gauducheau, Saint-Herblain, France
| | - Frédérique Nguyen
- Nantes Université, University of Angers, INSERM, CRCI2NA, Nantes, France
- Oniris, Nantes, France
| |
Collapse
|
31
|
Cardama GA, Bucci PL, Lemos JS, Llavona C, Benavente MA, Hellmén E, Fara ML, Medrano E, Spitzer E, Demarco IA, Sabella P, Garona J, Alonso DF. In Silico and In Vitro Evaluation of Bevacizumab Biosimilar MB02 as an Antitumor Agent in Canine Mammary Carcinoma. Animals (Basel) 2023; 13:2507. [PMID: 37570315 PMCID: PMC10417262 DOI: 10.3390/ani13152507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Canine mammary carcinomas (CMC) are associated with major aggressive clinical behavior and high mortality. The current standard of care is based on surgical resection, without an established effective treatment scheme, highlighting the urgent need to develop novel effective therapies. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis and progression in the majority of solid cancers, including human and canine mammary carcinomas. The first therapy developed to target VEGF was bevacizumab, a recombinant humanized monoclonal antibody, which has already been approved as an anticancer agent in several human cancers. The goal of this work was to establish the therapeutic value of MB02 bevacizumab biosimilar in CMC. First, through different in silico approaches using the MUSCLE multiple-sequence alignment tool and the FoldX protein design algorithm, we were able to predict that canine VEGF is recognized by bevacizumab, after showing an extremely high sequence similarity between canine and human VEGF. Further, by using an ELISA-based in vitro binding assay, we confirmed that MB02 biosimilar was able to recognize canine VEGF. Additionally, canine VEGF-induced microvascular endothelial cell proliferation was inhibited in a concentration-dependent manner by MB02 biosimilar. These encouraging results show a high potential for MB02 as a promising therapeutic agent for the management of CMC.
Collapse
Affiliation(s)
- Georgina A. Cardama
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
| | - Paula L. Bucci
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
| | - Jesús S. Lemos
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
| | - Candela Llavona
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Centro de Medicina Traslacional (CEMET), Hospital de Alta Complejidad en Red S.A.M.I.C. El Cruce “Nestor Kirchner”, Florencio Varela B5401, Argentina
| | - Micaela A. Benavente
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
- Laboratorio de Endocrinología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7000, Argentina
- Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET—CICPBA—Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil B7000, Argentina
| | - Eva Hellmén
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden;
| | - María Laura Fara
- Laboratorio Elea Phoenix S.A, Los Polvorines B1613, Argentina; (M.L.F.); (E.M.); (E.S.)
| | - Eduardo Medrano
- Laboratorio Elea Phoenix S.A, Los Polvorines B1613, Argentina; (M.L.F.); (E.M.); (E.S.)
| | - Eduardo Spitzer
- Laboratorio Elea Phoenix S.A, Los Polvorines B1613, Argentina; (M.L.F.); (E.M.); (E.S.)
| | | | | | - Juan Garona
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
- Centro de Medicina Traslacional (CEMET), Hospital de Alta Complejidad en Red S.A.M.I.C. El Cruce “Nestor Kirchner”, Florencio Varela B5401, Argentina
| | - Daniel F. Alonso
- Centro de Oncología Molecular y Traslacional (COMTra), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina; (P.L.B.); (J.S.L.); (C.L.); (J.G.)
- Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1040, Argentina;
| |
Collapse
|
32
|
Crespo B, Caceres S, Silvan G, Illera MJ, Illera JC. The inhibition of steroid hormones determines the fate of IPC-366 tumor cells, highlighting the crucial role of androgen production in tumor processes. Res Vet Sci 2023; 161:1-14. [PMID: 37290206 DOI: 10.1016/j.rvsc.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/01/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Inflammatory mammary cancer (IMC) is a disease that affects female dogs. It is characterized by poor treatment options and no efficient targets. However, anti-androgenic and anti-estrogenic therapies could be effective because IMC has a great endocrine influence, affecting tumor progression. IPC-366 is a triple negative IMC cell line that has been postulated as a useful model to study this disease. Therefore, the aim of this study was to inhibit steroid hormones production at different points of the steroid pathway in order to determine its effect in cell viability and migration in vitro and tumor growth in vivo. For this purpose, Dutasteride (anti-5αReductase), Anastrozole (anti-aromatase) and ASP9521 (anti-17βHSD) and their combinations have been used. Results revealed that this cell line is positive to estrogen receptor β (ERβ) and androgen receptor (AR) and endocrine therapies reduce cell viability. Our results enforced the hypothesis that estrogens promote cell viability and migration in vitro due to the function of E1SO4 as an estrogen reservoir for E2 production that promotes the IMC cells proliferation. Also, an increase in androgen secretion was associated with a reduction in cell viability. Finally, in vivo assays showed large tumor reduction. Hormone assays determined that high estrogen levels and the reduction of androgen levels promote tumor growth in Balb/SCID IMC mice. In conclusion, estrogen levels reduction may be associated with a good prognosis. Also, activation of AR by increasing androgen production could result in effective therapy for IMC because their anti-proliferative effect.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| | - J C Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain.
| |
Collapse
|
33
|
Cacciola NA, Sepe F, Fioriniello S, Petillo O, Margarucci S, Scivicco M, Peluso G, Balestrieri A, Bifulco G, Restucci B, Severino L. The Carnitine Palmitoyltransferase 1A Inhibitor Teglicar Shows Promising Antitumour Activity against Canine Mammary Cancer Cells by Inducing Apoptosis. Pharmaceuticals (Basel) 2023; 16:987. [PMID: 37513899 PMCID: PMC10383333 DOI: 10.3390/ph16070987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Canine mammary tumours (CMTs) are the most common cancer in intact female dogs. In addition to surgery, additional targeted and non-targeted therapies may offer survival benefits to these patients. Therefore, exploring new treatments for CMT is a promising area in veterinary oncology. CMT cells have an altered lipid metabolism and use the oxidation of fatty acids for their energy needs. Here we investigated the tumoricidal effects of teglicar, a reversible inhibitor of carnitine palmitoyl transferase 1A (CPT1A), the rate-limiting enzyme for fatty acid import into mitochondria, on two CMT cells, P114 and CMT-U229. Viability and apoptosis were examined in CMT cells using the crystal violet assay, trypan blue assay, and flow cytometry analysis. The expression of mediators of apoptosis signalling (e.g., caspase-9, caspase-8, and caspase-3) was assessed by quantitative real-time polymerase chain reaction and western blot analyses. Teglicar was able to decrease cell viability and induce apoptosis in P114 and CMT-U229 cells. At the molecular level, the effect of teglicar was associated with an upregulation of the mRNA expression levels of caspase-9, caspase-8, and caspase-3 and an increase in their protein levels. In summary, our results show that teglicar has a potential effect against CMTs through the induction of apoptotic cell death, making it a promising therapeutic agent against CMTs.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Fabrizia Sepe
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marcello Scivicco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| | - Giovanna Bifulco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | - Brunella Restucci
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | - Lorella Severino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| |
Collapse
|
34
|
Seitz J, Bilsland A, Puget C, Baasner I, Klopfleisch R, Stein T. SFRP1 Expression is Inversely Associated With Metastasis Formation in Canine Mammary Tumours. J Mammary Gland Biol Neoplasia 2023; 28:15. [PMID: 37402051 DOI: 10.1007/s10911-023-09543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Canine mammary tumours (CMTs) are the most frequent tumours in intact female dogs and show strong similarities with human breast cancer. In contrast to the human disease there are no standardised diagnostic or prognostic biomarkers available to guide treatment. We recently identified a prognostic 18-gene RNA signature that could stratify human breast cancer patients into groups with significantly different risk of distant metastasis formation. Here, we assessed whether expression patterns of these RNAs were also associated with canine tumour progression. METHOD A sequential forward feature selection process was performed on a previously published microarray dataset of 27 CMTs with and without lymph node (LN) metastases to identify RNAs with significantly differential expression to identify prognostic genes within the 18-gene signature. Using an independent set of 33 newly identified archival CMTs, we compared expression of the identified prognostic subset on RNA and protein basis using RT-qPCR and immunohistochemistry on FFPE-tissue sections. RESULTS While the 18-gene signature as a whole did not have any prognostic power, a subset of three RNAs: Col13a1, Spock2, and Sfrp1, together completely separated CMTs with and without LN metastasis in the microarray set. However, in the new independent set assessed by RT-qPCR, only the Wnt-antagonist Sfrp1 showed significantly increased mRNA abundance in CMTs without LN metastases on its own (p = 0.013) in logistic regression analysis. This correlated with stronger SFRP1 protein staining intensity of the myoepithelium and/or stroma (p < 0.001). SFRP1 staining, as well as β-catenin membrane staining, was significantly associated with negative LN status (p = 0.010 and 0.014 respectively). However, SFRP1 did not correlate with β-catenin membrane staining (p = 0.14). CONCLUSION The study identified SFRP1 as a potential biomarker for metastasis formation in CMTs, but lack of SFRP1 was not associated with reduced membrane-localisation of β-catenin in CMTs.
Collapse
Affiliation(s)
- Judith Seitz
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alan Bilsland
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, UK
| | - Chloé Puget
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ian Baasner
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Torsten Stein
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
35
|
Lim GH, An JH, Park SM, Youn GH, Oh YI, Seo KW, Youn HY. Macrophage induces anti-cancer drug resistance in canine mammary gland tumor spheroid. Sci Rep 2023; 13:10394. [PMID: 37369757 DOI: 10.1038/s41598-023-37311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor-associated macrophages (TAMs) play an important role in the tumor microenvironment by producing cytokines and growth factors. Furthermore, TAMs play multifunctional roles in tumor progression, immune regulation, metastasis, angiogenesis, and chemoresistance. Hypoxia in the tumor microenvironment induces tumor-supporting transformation of TAMs, which enhances tumor malignancy through developing anti-cancer resistance, for example. In this study, a hybrid spheroid model of canine mammary gland tumor (MGT) cell lines (CIPp and CIPm) and canine macrophages (DH82) was established. The effects of hypoxia induced by the spheroid culture system on the anti-cancer drug resistance of canine MGT cells were investigated. A hybrid spheroid was created using an ultralow-adhesion plate. The interactions between canine MGT cells and DH82 were investigated using a co-culture method. When co-cultured with DH82, cell viability and expression levels of tumor growth factors and multi-drug resistance genes were increased in canine MGT cells under doxorubicin. Additionally, doxorubicin-induced apoptosis and G2/M cell cycle arrest were attenuated in canine MGT cells co-cultured with DH82. In conclusion, the hybrid spheroid model established in this study reflects the hypoxic TME, allowing DH82 to induce anti-cancer drug resistance in canine MGT cells.
Collapse
Affiliation(s)
- Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon-si, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hee Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-In Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
36
|
Packeiser EM, Engels L, Nolte I, Goericke-Pesch S, Murua Escobar H. MDR1 Inhibition Reverses Doxorubicin-Resistance in Six Doxorubicin-Resistant Canine Prostate and Bladder Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24098136. [PMID: 37175843 PMCID: PMC10179448 DOI: 10.3390/ijms24098136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Acquired chemoresistance during chemotherapy, often accompanied by cross- and multi-resistance, limits therapeutic outcomes and leads to recurrence. In order to create in vitro model systems to understand acquired doxorubicin-resistance, we generated doxorubicin-resistant sublines of canine prostate adenocarcinoma and urothelial cell carcinoma cell lines. Chemoresistance to doxorubicin, cross-resistance to carboplatin, and the reversibility of the acquired resistance by the specific MDR1-inhibitor tariquidar were quantified in metabolic assays. Resistance mechanisms were characterized by expression of the efflux transporters MDR1 and RALBP1, as well as the molecular target of doxorubicin, TOP2A, with qPCR and Western blotting. Six out of nine cell lines established stable resistance to 2 µM doxorubicin. Drug efflux via massive MDR1 overexpression was identified as common, driving resistance mechanism in all sublines. MDR1 inhibition with tariquidar extensively reduced or reversed the acquired, and also partly the parental resistance. Three cell lines developed additional, non-MDR1-dependent resistance. RALBP1 was upregulated in one resistant subline at the protein level, while TOP2A expression was not altered. Combination therapies aiming to inhibit MDR1 activity can now be screened for synergistic effects using our resistant sublines. Nevertheless, detailed resistance mechanisms and maintained molecular target expression in the resistant sublines are still to be examined.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Unit for Reproductive Medicine-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Leoni Engels
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Sandra Goericke-Pesch
- Unit for Reproductive Medicine-Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
37
|
Zhou C, Lin Z, Li X, Zhang D, Song P. Establishment and characterization of a multi-drug resistant cell line for canine mammary tumors. Front Vet Sci 2023; 10:1129756. [PMID: 37077947 PMCID: PMC10108679 DOI: 10.3389/fvets.2023.1129756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Background and purposeCanine mammary tumors are the most common tumor disease of female dogs, and adjuvant chemotherapy often results in multi-drug resistance. Currently, the mechanisms underlying the development of tumor multi-drug resistance are unclear. The translation of research applications that can be used to effectively overcome tumor resistance is similarly hampered. Therefore, it is urgent to construct multi-drug resistance models of canine mammary tumors that can be used for research, to explore the mechanisms and means of overcoming resistance.Materials and methodsIn this study, the canine triple negative breast cancer cell line CMT-7364 was induced to develop multidrug resistance using doxorubicin by high-dose drug pulse method. The drug resistance and the expression of drug transport pumps of the cells was verified by CCK8 assay, immunoblotting, qPCR and immunofluorescence. Next, we used scratch assay and Transwell invasion assay to compare the migration and invasion abilities of the two cell lines and examined the expression of EMT-related proteins in both using immunoblotting. The differences of transcriptome between parental and drug-resistant cell lines were detected by RNA-seq sequencing. Finally, mouse xenograft models of drug-resistant and parental cell lines were constructed to evaluate the tumorigenic ability.ResultsAfter more than 50 generations of continuous passages stimulated by high-dose drug pulse method, the morphology of drug-resistant cell line CMT-7364/R tended to be mesenchymal-like and heterogeneous under light microscopy compared with the parental cell line CMT-7364/S, and developed resistance to doxorubicin and other commonly used chemotherapeutic drugs. In CMT-7364/R, BCRP was expressed at higher levels at both transcriptional and protein levels, while P-glycoprotein was not significantly different. Secondly, the migration and invasion ability of CMT-7364/R was significantly enhanced, with decreased expression of E-cadherin and increased expression of vimentin and mucin 1-N terminus. Finally, mouse xenograft models were constructed, while there was no significant difference in the volume of masses formed at 21 days.ConclusionIn summary, by using the canine mammary tumor cell line CMT-7364/S as the parental cell line, we successfully constructed a multidrug-resistant CMT-7364/R with high-dose drug pulse methods. Compared to its parental cell line, CMT-7364/R has decreased growth rate, overexpression of BCRP and increased migration and invasion ability due to EMT. The results of this study showed that CMT-7364/R might serve as a model for future studies on tumor drug resistance.
Collapse
|
38
|
Epithelial-to-Mesenchymal Transition and Phenotypic Marker Evaluation in Human, Canine, and Feline Mammary Gland Tumors. Animals (Basel) 2023; 13:ani13050878. [PMID: 36899736 PMCID: PMC10000046 DOI: 10.3390/ani13050878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal properties. EMT has been closely associated with cancer cell aggressiveness. The aim of this study was to evaluate the mRNA and protein expression of EMT-associated markers in mammary tumors of humans (HBC), dogs (CMT), and cats (FMT). Real-time qPCR for SNAIL, TWIST, and ZEB, and immunohistochemistry for E-cadherin, vimentin, CD44, estrogen receptor (ER), progesterone receptor (PR), ERBB2, Ki-67, cytokeratin (CK) 8/18, CK5/6, and CK14 were performed. Overall, SNAIL, TWIST, and ZEB mRNA was lower in tumors than in healthy tissues. Vimentin was higher in triple-negative HBC (TNBC) and FMTs than in ER+ HBC and CMTs (p < 0.001). Membranous E-cadherin was higher in ER+ than in TNBCs (p < 0.001), whereas cytoplasmic E-cadherin was higher in TNBCs when compared with ER+ HBC (p < 0.001). A negative correlation between membranous and cytoplasmic E-cadherin was found in all three species. Ki-67 was higher in FMTs than in CMTs (p < 0.001), whereas CD44 was higher in CMTs than in FMTs (p < 0.001). These results confirmed a potential role of some markers as indicators of EMT, and suggested similarities between ER+ HBC and CMTs, and between TNBC and FMTs.
Collapse
|
39
|
Canine mammary carcinoma: current therapeutic targets and future perspectives – a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Canine mammary carcinoma (CMC) is the most common neoplasm in bitches, and it shares many biological similarities with breast cancer in humans. Drug resistance, high epigenetic mutations, and relapse rates are among the challenges which eventually urge the need for a veterinary oncologist to discover new therapeutic approaches that are more effective and safer. Therefore, in this review, we also cover the current therapeutic strategies from human medicine for the future perspectives of tumor immunotherapy in veterinary medicine. These strategies have great potential to be employed as therapeutic or prophylactic options due to their ability to modulate a specific and potent immune response against CMC. As we acquire a better understanding of canine tumor immunology, we can move towards a brighter prognosis. Additionally, we report on the recent successful studies in breast cancer that may benefit canines as well.
Collapse
|
40
|
Kwon JY, Moskwa N, Kang W, Fan TM, Lee C. Canine as a Comparative and Translational Model for Human Mammary Tumor. J Breast Cancer 2023; 26:1-13. [PMID: 36762784 PMCID: PMC9981990 DOI: 10.4048/jbc.2023.26.e4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 02/10/2023] Open
Abstract
Despite the advances in research and treatment of human breast cancer, its incidence rate continues to increase by 0.5% per year, and the discovery of novel therapeutic strategies for specific subtypes of human breast cancer remains challenging. Traditional laboratory mouse models have contributed tremendously to human breast cancer research. However, mice do not develop tumors spontaneously; consequently, genetically engineered mouse models or patient-derived xenograft models are often relied upon for more sophisticated human breast cancer studies. Since human breast cancer develops spontaneously, there is a need for alternative, yet complementary, models that can better recapitulate the features of human breast cancer to better understand the molecular and clinical complexities of the disease in developing new therapeutic strategies. Canine mammary tumors are one such alternative model that share features with human breast cancer, including prevalence rate, subtype classification, treatment, and mutational profiles, all of which are described in this review.
Collapse
Affiliation(s)
- Jee Young Kwon
- The Jackson Laboratory for Genomic Medicine, Farmington, USA
| | - Nicholas Moskwa
- The Jackson Laboratory for Genomic Medicine, Farmington, USA
| | | | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, USA.,Cancer Center at Illinois, University of Illinois, Urbana, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, USA.
| |
Collapse
|
41
|
Michishita M, Ochiai K, Nakahira R, Azakami D, Machida Y, Nagashima T, Nakagawa T, Ishiwata T. mTOR pathway as a potential therapeutic target for cancer stem cells in canine mammary carcinoma. Front Oncol 2023; 13:1100602. [PMID: 36816969 PMCID: PMC9931192 DOI: 10.3389/fonc.2023.1100602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Mammary adenocarcinoma, the most common cancer in female dogs, often exhibits the lymph node and lung metastases and has a higher mortality rate. However, mammary adenocarcinoma has no established treatment, except early surgical excision. Canine mammary carcinoma has many common features with human mammary carcinoma, including clinical characteristics, heterogeneity, and genetic aberrations, making it an excellent spontaneous tumor model for human breast cancer. Diverse cancers comprised heterogeneous cell populations originating from cancer stem cells (CSCs) with self-renewal ability. Therefore, in addition to conventional therapy, therapeutic strategies targeting CSCs are essential for cancer eradication. The present study aimed to extract inhibitors of canine mammary CSCs that suppress their self-renewal ability. Sphere-formation assay, which evaluates self-renewal ability, was performed for the canine mammary cancer cell lines CTBp and CNMp. The spheres formed in this assay were used in inhibitor library screening, which identified various signaling pathways such as proteosome, stress inducer, and mammalian target of rapamycin (mTOR). The present study focused on the mTOR signaling pathway. Western blotting showed higher levels of phosphorylated mTOR in sphere-forming CTBp and CNMp cells than in adherent cells. Drug sensitivity examination using the mTOR inhibitors everolimus and temsirolimus revealed dose-dependent reductions in viability among both sphere-forming cells and adherent cells. Expression of phosphorylated mTOR in adherent and sphere-forming cells decreased by everolimus and temsirolimus treatment. In mice transplanted with CTBp-derived spheres, everolimus treatment significantly decreased tumor volume compared to control. These results reveal that the mTOR signaling pathway may be a potential to be a therapeutic target in both cancer cells and CSCs. Novel therapeutic strategies for canine mammary carcinoma are expected to benefit to human breast carcinoma as well.
Collapse
Affiliation(s)
- Masaki Michishita
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan,Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan,*Correspondence: Masaki Michishita,
| | - Kazuhiko Ochiai
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan,Department of Veterinary Hygiene, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Rei Nakahira
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Clinical Oncology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yukino Machida
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tomokazu Nagashima
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
42
|
Barbagianni MS, Gouletsou PG. Modern Imaging Techniques in the Study and Disease Diagnosis of the Mammary Glands of Animals. Vet Sci 2023; 10:vetsci10020083. [PMID: 36851387 PMCID: PMC9965774 DOI: 10.3390/vetsci10020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
The study of the structure and function of the animals' mammary glands is of key importance, as it reveals pathological processes at their onset, thus contributing to their immediate treatment. The most frequently studied mammary diseases are mastitis in cows and ewes and mammary tumours in dogs and cats. Various imaging techniques such as computed tomography, positron emission tomography, magnetic resonance imaging, and ultrasonographic techniques (Doppler, contrast-enchanced, three-dimensional and elastography) are available and can be applied in research or clinical practice in order to evaluate possible abnormalities in mammary glands, as well as to assist in the differential diagnosis. In this review, the above imaging technologies are described, and the perspectives of each method are highlighted. It is inferred that ultrasonographic modalities are the most frequently used imaging techniques for the diagnosis of clinical or subclinical mastitis and treatment guidance on a farm. In companion animals, a combination of imaging techniques should be applied for a more accurate diagnosis of mammary tumours. In any case, the confirmation of the diagnosis is provided by laboratory techniques.
Collapse
|
43
|
Shimakawa K, Ochiai K, Hirose S, Tanabe E, Michishita M, Sakaue M, Yoshikawa Y, Morimatsu M, Tajima T, Watanabe M, Tanaka Y. Canine Mammary Tumor Cell Lines Derived from Metastatic Foci Show Increased RAD51 Expression but Diminished Radioresistance via p21 Inhibition. Vet Sci 2022; 9:vetsci9120703. [PMID: 36548864 PMCID: PMC9784702 DOI: 10.3390/vetsci9120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the high incidence of mammary tumors in dogs, it is important to elucidate the pathogenesis of these tumors in veterinary medicine. Radiation therapy is often used to treat mammary tumors that target DNA lesions. RAD51 is a key molecule that repairs DNA damage via homologous recombination. We examined the relationship between RAD51 expression and radiosensitivity in mammary tumor cell lines. CHMp and CHMm from the same individual were selected based on the differences in RAD51 expression. The radiosensitivity of both cell lines was examined using MTT and scratch assays; CHMm, which has high RAD51 expression, showed higher sensitivity to radiation than CHMp. However, the nuclear focus of RAD51 during DNA repair was formed normally in CHMp, but not in most of CHMm. Since irradiation resulted in the suppression of cell cycle progression in CHMp, the expression of p21, a cell cycle regulatory factor, was detected in CHMp after 15 Gy irradiation but not in CHMm. These results indicate that functional expression is more important than the quantitative expression of RAD51 in canine mammary tumor cells in response to DNA damage.
Collapse
Affiliation(s)
- Kei Shimakawa
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Research Center for Animal Life Science, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Correspondence: ; Tel.: +81-422-31-4151
| | - Sachi Hirose
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Eri Tanabe
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Masaki Michishita
- Research Center for Animal Life Science, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Laboratory of Veterinary Pathology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Motoharu Sakaue
- Laboratory of Anatomy II, Department of Veterinary Medicine, Azabu University, Sagamihara 252-5201, Japan
| | - Yasunaga Yoshikawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tsuyoshi Tajima
- Department of Veterinary Pharmacology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Masami Watanabe
- Department of Urology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yoshikazu Tanaka
- Laboratory of Veterinary Hygiene, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
- Research Center for Animal Life Science, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| |
Collapse
|
44
|
Molecular Characterization of CF33 Canine Cell Line and Evaluation of Its Ability to Respond against Infective Stressors in Sight of Anticancer Approaches. Vet Sci 2022; 9:vetsci9100543. [PMID: 36288156 PMCID: PMC9610178 DOI: 10.3390/vetsci9100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Canine mammary cancer is very common and has many similarities with human breast cancer. Risk factors, physiological and pathological behaviors, and the clinical course in dogs are very similar to humans. Several molecular similarities have also been reported, such as overexpression of EGF, proliferation markers, metalloproteinase and cyclooxygenase, TP53 mutations, and CXCR4/SDF1 axis activation. These common characteristics make these breast tumors resistant to conventional therapies. It is therefore necessary to study therapeutic alternatives. Cell lines could be helpful to test in vitro immunomodulant anti-cancer therapies, allowing a reduction of laboratory animals’ involvement in the preliminary tests and achieving results in a shorter time. Although the canine mammary carcinoma cell line CF33 has been widely used in many studies on dog mammary cancer, characterization of its gene expression profile and of the influence of infective stressors of this cell line is poor. Our study shows the interaction of CF33 and Salmonella Typhimurium (ST) as an infective stressor, indicating that these cells may represent an in vitro model for assessing novel therapeutic approaches using bacteria. Abstract Spontaneous mammary tumors are the most frequent neoplasms in bitches and show similarities with human breast cancer in risk factors, clinical course, and histopathology. The poor prognosis of some cancer subtypes, both in human and dog, demands more effective therapeutic approaches. A possible strategy is the new anticancer therapy based on immune response modulation through bacteria or their derivatives on canine mammary carcinoma cell lines. The aim of the present study was to analyze the CF33 cell line in terms of basal expression of immune innate genes, CXCR4 expression, and interaction with infectious stressors. Our results highlight that CF33 maintains gene expression parameters typical of mammary cancer, and provides the basal gene expression of CF33, which is characterized by overexpression of CXCR4, CD44, RAD51, LY96, and a non-continuous expression of TP53 and PTEN. No mutations appeared in the CXCR4 gene until the 58th passage; this may represent important information for studying the CXCR4 pathway as a therapeutic target. Moreover, the CF33 cell line was shown to be able to interact with Salmonella Typhimurium (ST) (an infective stressor), indicating that these cells could be used as an in vitro model for developing innovative therapeutic approaches involving bacteria.
Collapse
|
45
|
Kaszak I, Witkowska-Piłaszewicz O, Domrazek K, Jurka P. The Novel Diagnostic Techniques and Biomarkers of Canine Mammary Tumors. Vet Sci 2022; 9:526. [PMID: 36288138 PMCID: PMC9610006 DOI: 10.3390/vetsci9100526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 07/25/2023] Open
Abstract
Canine mammary tumors (CMTs) are considered a serious clinical problem in older bitches. Due to the high malignancy rate and poor prognosis, an early diagnosis is essential. This article is a summary of novel diagnostic techniques as well as the main biomarkers of CMTs. So far, CMTs are detected only when changes in mammary glands are clinically visible and surgical removal of the mass is the only recommended treatment. Proper diagnostics of CMT is especially important as they represent a very diverse group of tumors and therefore different treatment approaches may be required. Recently, new diagnostic options appeared, like a new cytological grading system of CMTs or B-mode ultrasound, the Doppler technique, contrast-enhanced ultrasound, and real-time elastography, which may be useful in pre-surgical evaluation. However, in order to detect malignancies before macroscopic changes are visible, evaluation of serum and tissue biomarkers should be considered. Among them, we distinguish markers of the cell cycle, proliferation, apoptosis, metastatic potential and prognosis, hormone receptors, inflammatory and more recent: metabolomic, gene expression, miRNA, and transcriptome sequencing markers. The use of a couple of the above-mentioned markers together seems to be the most useful for the early diagnosis of neoplastic diseases as well as to evaluate response to treatment, presence of tumor progression, or further prognosis. Molecular aspects of tumors seem to be crucial for proper understanding of tumorigenesis and the application of individual treatment options.
Collapse
Affiliation(s)
- Ilona Kaszak
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Kinga Domrazek
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Jurka
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
46
|
Vieira TC, Oliveira EA, dos Santos BJ, Souza FR, Veloso ES, Nunes CB, Del Puerto HL, Cassali GD. COX-2 expression in mammary invasive micropapillary carcinoma is associated with prognostic factors and acts as a potential therapeutic target in comparative oncology. Front Vet Sci 2022; 9:983110. [PMID: 36172611 PMCID: PMC9510711 DOI: 10.3389/fvets.2022.983110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Pure human and canine mammary invasive micropapillary carcinoma is a rare malignant epithelial tumor accounting for 0.9 to 2% of all invasive mammary carcinomas and present a high rate of lymphatic invasion and metastasis, with unfavorable prognosis. Surgery and chemotherapy are standard treatments for almost all mammary cancer in both species, as well as hormonal and target therapies available for human patients. However, depending on the patient's clinical staging, satisfactory therapeutic results for invasive micropapillary carcinoma are a challenge due to its high capacity of invasion and metastasis. Cyclooxygenase-2 (COX-2) isoform is an important enzyme stimulated by cytokines, growth factors and oncogenes activation to synthetizes prostaglandins in inflammatory process. COX-2 overexpression is associated with angiogenesis and invasion and contributes to cancer development, disease progression, tumor recurrence and regional lymph node metastasis in human and canine mammary carcinomas. This enzyme can be targeted by non-steroidal anti-inflammatory drugs and its inhibition can reduce tumor growth and metastasis in several cancer types. Given the similarity between both species, the present study aims to elucidate the involvement of COX-2 mRNA and protein expression in canine (cIMPC) and human (hIMPC) pure invasive mammary micropapillary carcinoma, with clinicopathological and survival data. Twenty-nine cases of cIMPC and 17 cases of hIMPC were analyzed regarding histologic type, grade, age, tumor size, lymph node condition, extracapsular extension, inflammatory infiltrate and immunophenotype. When available, information on adjuvant treatment, recurrence, metastasis and overall survival were collected. The present study demonstrated COX-2 protein expression in 65.5% of cIMPC and 92.3% of hIMPC, and an association with more advanced histological grades in bitches and higher Ki67 in women. COX-2 mRNA expression was significantly higher in cIMPC than in hIMPC, and its expression was not associated with COX-2 protein expression in both species. COX-2 mRNA expression was associated with negative-ER hIMPC as well as higher Ki67. cIMPC demonstrated proportional early development, more regional metastasis, and a prevalence of negative estrogen receptor, than hIMPC. This is the first time COX-2 expression is associated with negative prognostic factors in both cIMPC and hIMPC, besides the overexpression of COX-2 protein in such unfavorable histological type, which suggests that COX-2 can act as a potential target in IMPC.
Collapse
Affiliation(s)
- Thaynan Cunha Vieira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Evelyn Ane Oliveira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bárbara Jaime dos Santos
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Rezende Souza
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emerson Soares Veloso
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana Buzelin Nunes
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helen Lima Del Puerto
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Geovanni Dantas Cassali
| |
Collapse
|
47
|
Eskiler GG, Turna O, Ozkan AD, Baykal A, Gurgen HO, Erk B, Armutak EI, Lim HS. The response of the canine mammary simple carcinoma and carcinosarcoma cells to 5-aminolaevulinic acid-based photodynamic therapy: An in vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112509. [PMID: 35810598 DOI: 10.1016/j.jphotobiol.2022.112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUNDS Canine mammary gland tumors (CMGTs) are heterogeneous tumors and share many similar features with human breast cancer. Despite the improvement of current treatment options, new treatment modalities are required to effectively kill tumor cells without general toxicity in the treatment of CMGTs. Photodynamic therapy (PDT) is a promising method for cancer treatment. However, there is a limited study evaluating the therapeutic efficacy of PDT in the treatment of CMGTs. METHODS In this context, we, for the first time, investigated the therapeutic potential of 5-aminolaevulinic acid (5-ALA) mediated PDT at 6 and 12 J/cm2 in two different subtypes [Tubulopapillary carcinoma (TPC) and carcinosarcoma (CS)] cells via different molecular analysis. The cytotoxic effects of 5-ALA/PDT on these cells were analyzed by intracellular PpIX level, WST-1 and ROS analysis. Furthermore, the underlying moleculer mechanism of 5-ALA/PDT mediated apoptotic effects on TPC and CS cells were evaluated Annexin V, AO/PI, RT-PCR and western blot analysis. RESULTS The 5-ALA/PDT treatment upon irradiation considerably inhibited the viability of both TPC and CS cells (p<0.01) and caused apoptotic death through elevated ROS levels, the activation of Caspase-9, and Caspase-3, and the overexpression of Bax. However, the response of TPC and CS cells to 5-ALA/PDT was different. CONCLUSIONS Our preliminary in vitro findings provide novel insights into the molecular mechanisms underlying 5-ALA/PDT mediated apoptosis in both TPC and CS cells. However, the therapeutic response of CMGT cells to 5-ALA/PDT is limited.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Ozge Turna
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Aslihan Baykal
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hazal Ozturk Gurgen
- Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Beyzanur Erk
- Department of Biomedical Engineering, Institute of Natural Sciences, Sakarya University, Sakarya, Turkey
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hyun Soo Lim
- Department of Electric and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey
| |
Collapse
|
48
|
Ren X, Fan Y, Shi D, Xu E, Liu Y. MicroRNA-124 inhibits canine mammary carcinoma cell proliferation, migration and invasion by targeting CDH2. Res Vet Sci 2022; 146:5-14. [DOI: 10.1016/j.rvsc.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 01/09/2023]
|
49
|
Filippou A, Damianou C. Ultrasonic attenuation of canine mammary tumours. ULTRASONICS 2022; 125:106798. [PMID: 35785631 DOI: 10.1016/j.ultras.2022.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Canine mammary tumours (CMTs) are the most common neoplasm appearing in female dogs and are considered the equivalent animal model of human breast cancer. However, in the literature, there is a gap for ultrasonic characterisation of these tumours. In this study, experimental measurements for acoustic attenuation and propagation speed of three surgically excised malignant CMTs were implemented. METHODS The three tumours were fixed in formaldehyde for up to 72 h and a total of five sample pieces were sectioned from the three tumours to account for the varied morphology observed along the tumours. The through-transmission and pulse-echo techniques were employed for experimental measurements of the acoustic attenuation and propagation speed. RESULTS Acoustic propagation speed of the five samples as measured at 2.7 MHz was in the range of 1568-1636 m/s. Correspondingly, acoustic attenuation was in the range of 1.95-3.45 dB/cm.MHz. Variations in both speed and attenuation were observed between samples acquired from the same tumour. CONCLUSIONS Present findings suggest that both acoustic attenuation and propagation speed of CMTs are higher than normal canine tissues due to increased heterogeneity and varied morphology visually observed between the tumour specimens and evidenced by histological examination. Nevertheless, experimental results could aid in enhancing the use of ultrasound in the diagnosis and treatment of CMTs as well as provide essential data for comparative oncology.
Collapse
Affiliation(s)
- Antria Filippou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, Limassol, Cyprus.
| |
Collapse
|
50
|
The development of molecular typing in canine mammary carcinomas. Mol Biol Rep 2022; 49:8943-8951. [PMID: 35841467 DOI: 10.1007/s11033-022-07383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/16/2022] [Indexed: 10/17/2022]
Abstract
Mammary tumors are the most frequent neoplasia in old female dogs and present challenges in diagnosis and prognosis owing to heterogeneity. Along with the rapid development of biotechnology, the molecular subtyping of canine mammary carcinomas has been researched, and provides an important reference basis for diagnosis, treatment, prognosis, and even prediction of recurrence rate. Therefore, the molecular classification of canine mammary carcinomas has gained a broad clinical application prospect. However, the existing molecular markers of canine mammary carcinomas are still unable to meet the expanding clinical needs with poor clinical feasibility. Thus, it is urgent to develop more applicable biomarkers appropriate for personalized treatment modalities. At present, the molecular typing of canine mammary carcinomas is not fully understood, and it is first reviewed in this study.
Collapse
|