1
|
Shi Y, Zhou D, Wang H, Huang L, Gao X, Maitiabula G, Zhang L, Wang X. Succinate Regulates Exercise-Induced Muscle Remodelling by Boosting Satellite Cell Differentiation Through Succinate Receptor 1. J Cachexia Sarcopenia Muscle 2025; 16:e13670. [PMID: 39723719 DOI: 10.1002/jcsm.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 11/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Skeletal muscle remodelling can cause clinically important changes in muscle phenotypes. Satellite cells (SCs) myogenic potential underlies the maintenance of muscle plasticity. Accumulating evidence shows the importance of succinate in muscle metabolism and function. However, whether succinate can affect SC function and subsequently coordinate muscle remodelling to exercise remains unexplored. METHODS A mouse model of high-intensity interval training (HIIT) was used to investigate the effects of succinate on muscle remodelling and SC function by exercise capacity test and biochemical methods. Mice with succinate receptor 1 (SUCNR1)-specific knockout in SCs were generated as an in vivo model to explore the underlying mechanisms. RNA sequencing of isolated SCs was performed to identify molecular changes responding to succinate-SUCNR1 signalling. The effects of identified key molecules on the myogenic capacity of SCs were investigated using gain- and loss-of-function assays in vitro. To support the translational application, the clinical efficacy of succinate was explored in muscle-wasting mice. RESULTS After 21 days of HIIT, mice supplemented with 1.5% succinate exhibited striking gains in grip strength (+0.38 ± 0.04 vs. 0.26 ± 0.03 N, p < 0.001) and endurance (+276.70 ± 55.80 vs. 201.70 ± 45.31 s, p < 0.05), accompanied by enhanced muscle hypertrophy and neuromuscular junction regeneration (p < 0.001). The myogenic capacity of SCs was significantly increased in gastrocnemius muscle of mice supplemented with 1% and 1.5% succinate (+16.48% vs. control, p = 0.008; +47.25% vs. control, p < 0.001, respectively). SUCNR1-specific deletion in SCs abolished the modulatory influence of succinate on muscle adaptation in response to exercise, revealing that SCs respond to succinate-SUCNR1 signalling, thereby facilitating muscle remodelling. SUCNR1 signalling markedly upregulated genes associated with stem cell differentiation and phosphorylation pathways within SCs, of which p38α mitogen-activated protein kinase (MAPK; fold change = 6.7, p < 0.001) and protein kinase C eta (PKCη; fold change = 12.5, p < 0.001) expressions were the most enriched, respectively. Mechanistically, succinate enhanced the myogenic capacity of isolated SCs by activating the SUCNR1-PKCη-p38α MAPK pathway. Finally, succinate promoted SC differentiation (1.5-fold, p < 0.001), ameliorating dexamethasone-induced muscle atrophy in mice (p < 0.001). CONCLUSIONS Our findings reveal a novel function of succinate in enhancing SC myogenic capacity via SUCNR1, leading to enhanced muscle adaptation in response to exercise. These findings provide new insights for developing pharmacological strategies to overcome muscle atrophy-related diseases.
Collapse
Affiliation(s)
- Yifan Shi
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Da Zhou
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Haoyang Wang
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Longchang Huang
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xuejin Gao
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Gulisudumu Maitiabula
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Li Zhang
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xinying Wang
- Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Kim D, Xu H, Li O, Xue M, Bao Z, Yang F. Phenyllactic acid modulates the gut microbiota, enhances intestinal health, and alleviates physical frailty in aging mice. Eur J Pharmacol 2024; 985:177105. [PMID: 39515558 DOI: 10.1016/j.ejphar.2024.177105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Phenyllactic acid (PLA) is a natural antibiotic-like compound derived from certain foods and probiotics. PLA levels have been associated with age-related sarcopenia and provide benefits to metabolic health when derived from probiotics. However, the specific regulatory effects of PLA in aging remain largely unexplored. In this study, aging mice were administered PLA via gavage, followed by fecal 16S rRNA sequencing, measurements of targeted metabolites, glucose metabolism monitoring, and physical performance assessments. Our results indicate that PLA administration significantly altered gut microbiota composition, increased the abundance of short-chain fatty acids (SCFAs) and succinate producing microbiota, and enhanced gut integrity in aging mice. Furthermore, PLA treatment raised fasting blood glucose levels and improved physical activity. Mechanistically, PLA intake elevated the levels of circulating SCFAs and succinate, promoting glycogen metabolic homeostasis and maintaining skeletal muscle oxidative capacity. This study provides evidence that PLA modulates the gut microbiota in aging mice, supports intestinal health, promotes glucose homeostasis, and enhances physical activity.
Collapse
Affiliation(s)
- Dayoung Kim
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Han Xu
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Ouyang Li
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Mengjuan Xue
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| | - Fan Yang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| |
Collapse
|
3
|
Jędrejko K, Catlin O, Stewart T, Muszyńska B. Mexidol, Cytoflavin, and succinic acid derivatives as antihypoxic, anti-ischemic metabolic modulators, and ergogenic aids in athletes and consideration of their potential as performance enhancing drugs. Drug Test Anal 2024; 16:1436-1467. [PMID: 38403950 DOI: 10.1002/dta.3655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Emoxypine (ethylmethylhydroxypyridine) is a synthetic derivative of vitamin B6. Emoxypine succinate is a registered drug in Russia and Ukraine under various trade names including Mexidol, Mexicor, and Armadin Long. Mexidol demonstrates antihypoxic and anti-ischemic effects and also modulates metabolism. The use of Mexidol by Russian athletes has been confirmed in the past. Current use by athletes is unknown as this drug is not monitored or included in drug testing protocol. Metabotropic and antihypoxic effects of Mexidol were compared to the effects of meldonium or trimetazidine, both of which are included on the World Anti-Doping Agency (WADA) Prohibited List in category S4.4. Metabolic Modulators. The conjugation of emoxypine with succinate elevates the therapeutic effectiveness of the Mexidol formulation as succinic acid itself has important impacts to consider despite being a common food additive and drug excipient. Other succinic acid salts like ammonium succinate, found as dietary supplement, have been patented as performance enhancers. Available research on healthy subjects suggests that combinations of selected 3-substituted pyridine derivatives with succinate including Mexidol and a related drug Cytoflavin can enhance the performance of athletes. Cytoflavin is a multi-component formula containing meglumine sodium succinate, nicotinamide (vitamin B3), inosine (riboxin), and riboflavin. Other related succinate-based drugs include Remaxol, Reamberin, and Cogitum. Mexidol and Cytoflavin and related substances exhibit similar biological effects as drugs on the WADA Prohibited List, and if they are used for performance enhancement by athletes, they could be worthy of consideration as prohibited substances in sport.
Collapse
Affiliation(s)
- Karol Jędrejko
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Jagiellonian University Medical College, Kraków, Poland
| | - Oliver Catlin
- Banned Substances Control Group (BSCG), Los Angeles, California, USA
| | - Timothy Stewart
- Banned Substances Control Group (BSCG), Los Angeles, California, USA
| | - Bożena Muszyńska
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
4
|
Raber J, Chaudhari M, De la Torre A, Holden S, Kessler K, Glaeser B, Lenarczyk M, Leonard SW, Borg A, Kwok A, Patel C, Kronenberg A, Olsen CM, Willey JS, Morré J, Choi J, Stevens JF, Bobe G, Minnier J, Baker J. Effects of 5-ion 6-beam sequential irradiation in the presence and absence of hindlimb or control hindlimb unloading on behavioral performances and plasma metabolic pathways of Fischer 344 rats. Front Physiol 2024; 15:1486767. [PMID: 39605860 PMCID: PMC11598337 DOI: 10.3389/fphys.2024.1486767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/07/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Effects and interactions between different spaceflight stressors are expected to be experienced by crew on missions when exposed to microgravity and galactic cosmic rays (GCRs). One of the limitations of previous studies on simulated weightlessness using hindlimb unloading (HU) is that a control HU condition was not included. Methods We characterized the behavioral performance of male Fischer rats 2 months after sham or total body irradiation with a simplified 5-ion 6-mixed-beam exposure representative of GCRs in the absence or presence of HU. Six months later, the plasma, hippocampus, and cortex were processed to determine whether the behavioral effects were associated with long-term alterations in the metabolic pathways. Results In the open field without and with objects, interactions were observed for radiation × HU. In the plasma of animals that were not under the HU or control HU condition, the riboflavin metabolic pathway was affected most for sham irradiation vs. 0.75 Gy exposure. Analysis of the effects of control HU on plasma in the sham-irradiated animals showed that the alanine, aspartate, glutamate, riboflavin, and glutamine metabolisms as well as arginine biosynthesis were affected. The effects of control HU on the hippocampus in the sham-irradiated animals showed that the phenylalanine, tyrosine, and tryptophan pathway was affected the most. Analysis of effects of 0.75 Gy irradiation on the cortex of control HU animals showed that the glutamine and glutamate metabolic pathway was affected similar to the hippocampus, while the riboflavin pathway was affected in animals that were not under the control HU condition. The effects of control HU on the cortex in sham-irradiated animals showed that the riboflavin metabolic pathway was affected. Animals receiving 0.75 Gy of irradiation showed impaired glutamine and glutamate metabolic pathway, whereas animals receiving 1.5 Gy of irradiation showed impaired riboflavin metabolic pathways. A total of 21 plasma metabolites were correlated with the behavioral measures, indicating that plasma and brain biomarkers associated with behavioral performance are dependent on the environmental conditions experienced. Discussion Phenylalanine, tyrosine, and tryptophan metabolism as well as phenylalanine and tryptophan as plasma metabolites are biomarkers that can be considered for spaceflight as they were revealed in both Fischer and WAG/Rij rats exposed to simGCRsim and/or HU.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, Psychiatry, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Mitali Chaudhari
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Alexis De la Torre
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Breanna Glaeser
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marek Lenarczyk
- Radiation Biosciences laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott Willem Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Chirayu Patel
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Christopher M. Olsen
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Center, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Mass Spectrometry Center, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Mass Spectrometry Center, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Animal & Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Jessica Minnier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - John Baker
- Radiation Biosciences laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Ou Z, Yang L, Wu J, Xu M, Weng X, Xu G. Metabolic characteristics of ischaemic preconditioning induced performance improvement in Taekwondo athletes using LC‒MS/MS-based plasma metabolomics. Sci Rep 2024; 14:24609. [PMID: 39427043 PMCID: PMC11490506 DOI: 10.1038/s41598-024-76045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In recent years, ischemic preconditioning (IPC) has garnered significant attention in sports research. While IPC has demonstrated positive effects in high-intensity sports such as judo and swimming, its potential benefits for enhancing the performance of Taekwondo athletes have not been extensively studied. This study aimed to investigate the effects of IPC on taekwondo performance and to observe the metabolic characteristics associated with enhancing sports performance via LC‒MS/MS-based plasma metabolomics. Seventeen participants underwent the repeated frequency speed of kick test (FSKT) after IPC, along with pre- and post-exercise plasma metabolite analysis. Differential abundance metabolite analysis, enriched pathway analysis, and weighted gene coexpression network analysis (WGNCA) were employed to delve into metabolic characteristics. The findings highlighted a significant enhancement in FSKT performance in the experimental group. Metabolomic analysis revealed 109 differentially abundant metabolites, including Dl-lactate, hypoxanthine, acetylcarnitine, and acetylsalicylic acid. Enriched pathway analysis revealed pathways such as pentose and glucuronic acid interconversion, ascorbic acid and aldonic acid metabolism, the pentose phosphate pathway (PPP), and the Warburg effect. In conclusion, IPC can significantly increase the specific athletic abilities of Taekwondo athletes, with enhancements linked to anaerobic metabolism, PPP utilization, the Warburg effect for energy production, redox system stability, reduced muscle fatigue, and pain alleviation.
Collapse
Affiliation(s)
- Ziyue Ou
- College of Martial Arts, Guangzhou Sport University, Guangzhou, 510500, China
| | - Liang Yang
- College of Martial Arts, Guangzhou Sport University, Guangzhou, 510500, China
| | - Jingyun Wu
- Department of Physical Education, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiquan Weng
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou, 510500, China.
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, China.
| |
Collapse
|
6
|
Raber J, Holden S, Kessler K, Glaeser B, McQuesten C, Chaudhari M, Stenzel F, Lenarczyk M, Leonard SW, Morré J, Choi J, Kronenberg A, Borg A, Kwok A, Stevens JF, Olsen C, Willey JS, Bobe G, Minnier J, Baker JE. Effects of photon irradiation in the presence and absence of hindlimb unloading on the behavioral performance and metabolic pathways in the plasma of Fischer rats. Front Physiol 2024; 14:1316186. [PMID: 38260101 PMCID: PMC10800373 DOI: 10.3389/fphys.2023.1316186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: The space environment astronauts experience during space missions consists of multiple environmental challenges, including microgravity. In this study, we assessed the behavioral and cognitive performances of male Fisher rats 2 months after sham irradiation or total body irradiation with photons in the absence or presence of simulated microgravity. We analyzed the plasma collected 9 months after sham irradiation or total body irradiation for distinct alterations in metabolic pathways and to determine whether changes to metabolic measures were associated with specific behavioral and cognitive measures. Methods: A total of 344 male Fischer rats were irradiated with photons (6 MeV; 3, 8, or 10 Gy) in the absence or presence of simulated weightlessness achieved using hindlimb unloading (HU). To identify potential plasma biomarkers of photon radiation exposure or the HU condition for behavioral or cognitive performance, we performed regression analyses. Results: The behavioral effects of HU on activity levels in an open field, measures of anxiety in an elevated plus maze, and anhedonia in the M&M consumption test were more pronounced than those of photon irradiation. Phenylalanine, tyrosine, and tryptophan metabolism, and phenylalanine metabolism and biosynthesis showed very strong pathway changes, following photon irradiation and HU in animals irradiated with 3 Gy. Here, 29 out of 101 plasma metabolites were associated with 1 out of 13 behavioral measures. In the absence of HU, 22 metabolites were related to behavioral and cognitive measures. In HU animals that were sham-irradiated or irradiated with 8 Gy, one metabolite was related to behavioral and cognitive measures. In HU animals irradiated with 3 Gy, six metabolites were related to behavioral and cognitive measures. Discussion: These data suggest that it will be possible to develop stable plasma biomarkers of behavioral and cognitive performance, following environmental challenges like HU and radiation exposure.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology, and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Sarah Holden
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Breanna Glaeser
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chloe McQuesten
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Mitali Chaudhari
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Fiona Stenzel
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Marek Lenarczyk
- Radiation Biosciences Laboratory, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Scott Willem Leonard
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeffrey Morré
- Mass Spectrometry Core, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Alexander Borg
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andy Kwok
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jan Frederik Stevens
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Christopher Olsen
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- Department of Animal Sciences, Oregon State University, Corvallis, OR, United States
| | - Jessica Minnier
- Oregon Health & Science University-Portland State University School of Public Health, Knight Cancer Institute Biostatistics Shared Resource, The Knight Cardiovascular Institute, OR Health & Science University, Portland, OR, United States
| | - John E. Baker
- Neuroscience Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
7
|
Ismaeel A, Valentino TR, Burke B, Goh J, Saliu TP, Albathi F, Owen A, McCarthy JJ, Wen Y. Acetate and succinate benefit host muscle energetics as exercise-associated post-biotics. Physiol Rep 2023; 11:e15848. [PMID: 37940330 PMCID: PMC10632089 DOI: 10.14814/phy2.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Recently, the gut microbiome has emerged as a potent modulator of exercise-induced systemic adaptation and appears to be crucial for mediating some of the benefits of exercise. This study builds upon previous evidence establishing a gut microbiome-skeletal muscle axis, identifying exercise-induced changes in microbiome composition. Metagenomics sequencing of fecal samples from non-exercise-trained controls or exercise-trained mice was conducted. Biodiversity indices indicated exercise training did not change alpha diversity. However, there were notable differences in beta-diversity between trained and untrained microbiomes. Exercise significantly increased the level of the bacterial species Muribaculaceae bacterium DSM 103720. Computation simulation of bacterial growth was used to predict metabolites that accumulate under in silico culture of exercise-responsive bacteria. We identified acetate and succinate as potential gut microbial metabolites that are produced by Muribaculaceae bacterium, which were then administered to mice during a period of mechanical overload-induced muscle hypertrophy. Although no differences were observed for the overall muscle growth response to succinate or acetate administration during the first 5 days of mechanical overload-induced hypertrophy, acetate and succinate increased skeletal muscle mitochondrial respiration. When given as post-biotics, succinate or acetate treatment may improve oxidative metabolism during muscle hypertrophy.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Benjamin Burke
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Jensen Goh
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Tolulope P. Saliu
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Fatmah Albathi
- Department of Pharmacology and Nutritional Sciences, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Allison Owen
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic TrainingCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - John J. McCarthy
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Yuan Wen
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Division of Biomedical Informatics, Department of Internal Medicine, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
8
|
Wu KK. Extracellular Succinate: A Physiological Messenger and a Pathological Trigger. Int J Mol Sci 2023; 24:11165. [PMID: 37446354 DOI: 10.3390/ijms241311165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
When tissues are under physiological stresses, such as vigorous exercise and cold exposure, skeletal muscle cells secrete succinate into the extracellular space for adaptation and survival. By contrast, environmental toxins and injurious agents induce cellular secretion of succinate to damage tissues, trigger inflammation, and induce tissue fibrosis. Extracellular succinate induces cellular changes and tissue adaptation or damage by ligating cell surface succinate receptor-1 (SUCNR-1) and activating downstream signaling pathways and transcriptional programs. Since SUCNR-1 mediates not only pathological processes but also physiological functions, targeting it for drug development is hampered by incomplete knowledge about the characteristics of its physiological vs. pathological actions. This review summarizes the current status of extracellular succinate in health and disease and discusses the underlying mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Institute of Biotechnology, College of Life Science, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
9
|
Germanova E, Khmil N, Pavlik L, Mikheeva I, Mironova G, Lukyanova L. The Role of Mitochondrial Enzymes, Succinate-Coupled Signaling Pathways and Mitochondrial Ultrastructure in the Formation of Urgent Adaptation to Acute Hypoxia in the Myocardium. Int J Mol Sci 2022; 23:ijms232214248. [PMID: 36430733 PMCID: PMC9696391 DOI: 10.3390/ijms232214248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
The effect of a single one-hour exposure to three modes of hypobaric hypoxia (HBH) differed in the content of O2 in inhaled air (FiO2-14%, 10%, 8%) in the development of mitochondrial-dependent adaptive processes in the myocardium was studied in vivo. The following parameters have been examined: (a) an urgent reaction of catalytic subunits of mitochondrial enzymes (NDUFV2, SDHA, Cyt b, COX2, ATP5A) in the myocardium as an indicator of the state of the respiratory chain electron transport function; (b) an urgent activation of signaling pathways dependent on GPR91, HIF-1α and VEGF, allowing us to assess their role in the formation of urgent mechanisms of adaptation to hypoxia in the myocardium; (c) changes in the ultrastructure of three subpopulations of myocardial mitochondria under these conditions. The studies were conducted on two rat phenotypes: rats with low resistance (LR) and high resistance (HR) to hypoxia. The adaptive and compensatory role of the mitochondrial complex II (MC II) in maintaining the electron transport and energy function of the myocardium in a wide range of reduced O2 concentrations in the initial period of hypoxic exposure has been established. The features of urgent reciprocal regulatory interaction of NAD- and FAD-dependent oxidation pathways in myocardial mitochondria under these conditions have been revealed. The data indicating the participation of GPR91, HIF-1a and VEGF in this process have been obtained. The ultrastructure of the mitochondrial subpopulations in the myocardium of LR and HR rats differed in normoxic conditions and reacted differently to hypoxia of varying severity. The parameters studied together are highly informative indicators of the quality of cardiac activity and metabolic biomarkers of urgent adaptation in various hypoxic conditions.
Collapse
Affiliation(s)
- Elita Germanova
- Institute of General Pathology and Pathophysiology, 8 Baltijskaya Str., Moscow 125315, Russia
| | - Natalya Khmil
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
| | - Lyubov Pavlik
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
| | - Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
| | - Galina Mironova
- Institute of Theoretical and Experimental Biophysics RAS, 3 Institutskaya Str., Pushchino 142290, Moscow Region, Russia
- Correspondence: (G.M.); (L.L.)
| | - Ludmila Lukyanova
- Institute of General Pathology and Pathophysiology, 8 Baltijskaya Str., Moscow 125315, Russia
- Correspondence: (G.M.); (L.L.)
| |
Collapse
|