1
|
Poenaru RC, Milanesi E, Niculae AM, Dobre AM, Vladut C, Ciocîrlan M, Balaban DV, Herlea V, Dobre M, Hinescu ME. Dysregulation of genes involved in the long-chain fatty acid transport in pancreatic ductal adenocarcinoma. World J Gastrointest Oncol 2025; 17:98409. [DOI: 10.4251/wjgo.v17.i1.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11% in the United States. As for other types of tumors, such as colorectal cancer, aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.
AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid (FA) import into cell.
METHODS A gene expression analysis of FASN, CD36, SLC27A1, SLC27A2, SLC27A3, SLC27A4, SLC27A5, ACSL1, and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection. The genes were considered significantly dysregulated between the groups when the p value was < 0.05 and the fold change (FC) was ≤ 0.5 and ≥ 2.
RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue: SLC27A2 (FC = 5.66; P = 0.033), SLC27A3 (FC = 2.68; P = 0.040), SLC27A4 (FC = 3.13; P = 0.033), ACSL1 (FC = 4.10; P < 0.001), and ACSL3 (FC = 2.67; P = 0.012). We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors, including the anatomic location, the lymph node involvement, and the presence of metastasis. A significant difference in the expression of SLC27A3 (FC = 3.28; P = 0.040) was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.
CONCLUSION Despite the low number of patients analyzed, these preliminary results seem to be promising. Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy. Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.
Collapse
Affiliation(s)
- Radu Cristian Poenaru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Elena Milanesi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Radiobiology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Andrei Marian Niculae
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Anastasia-Maria Dobre
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Catalina Vladut
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology, Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, Bucharest 011356, Romania
| | - Mihai Ciocîrlan
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Gastroenterology, Prof. Dr. Agrippa Ionescu Clinical Emergency Hospital, Bucharest 011356, Romania
| | - Daniel Vasile Balaban
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Vlad Herlea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Fundeni Clinical Institute, Bucharest 022258, Romania
| | - Maria Dobre
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| | - Mihail Eugen Hinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania
- Department of Pathology, Victor Babes National Institute of Pathology, Bucharest 050096, Romania
| |
Collapse
|
2
|
Yang Y, Liu X, Yang D, Li L, Li S, Lu S, Li N. Interplay of CD36, autophagy, and lipid metabolism: insights into cancer progression. Metabolism 2024; 155:155905. [PMID: 38548128 DOI: 10.1016/j.metabol.2024.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lianhui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Harsanyi S, Kianickova K, Katrlik J, Danisovic L, Ziaran S. Current look at the most promising proteomic and glycomic biomarkers of bladder cancer. J Cancer Res Clin Oncol 2024; 150:96. [PMID: 38372785 PMCID: PMC10876723 DOI: 10.1007/s00432-024-05623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Bladder cancer (BC) belongs to the most frequent cancer types. The diagnostic process is still long and costly, with a high percentage of false-positive or -negative results. Due to the cost and lack of effectiveness, older methods need to be supplemented or replaced by a newer more reliable method. In this regard, proteins and glycoproteins pose high potential. METHODS We performed an online search in PubMed/Medline, Scopus, and Web of Science databases to find relevant studies published in English up until May 2023. If applicable, we set the AUC threshold to 0.90 and sensitivity/specificity (SN/SP) to 90%. FINDINGS Protein and glycoprotein biomarkers are a demonstrably viable option in BC diagnostics. Cholinesterase shows promise in progression-free survival. BLCA-4, ORM-1 along with HTRA1 in the detection of BC. Matrix metallopeptidase 9 exhibits potential for stratification of muscle-invasive subtypes with high negative predictive value for aggressive phenotypes. Distinguishing non-muscle invasive subtypes benefits from Keratin 17. Neu5Gc-modified UMOD glycoproteins pose potential in BC diagnosis, while fibronectin, laminin-5, collagen type IV, and lamprey immunity protein in early detection of BC.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | | | - Jaroslav Katrlik
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Stanislav Ziaran
- Department of Urology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
4
|
Bishayee K, Lee SH, Park YS. The Illustration of Altered Glucose Dependency in Drug-Resistant Cancer Cells. Int J Mol Sci 2023; 24:13928. [PMID: 37762231 PMCID: PMC10530558 DOI: 10.3390/ijms241813928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
A chemotherapeutic approach is crucial in malignancy management, which is often challenging due to the development of chemoresistance. Over time, chemo-resistant cancer cells rapidly repopulate and metastasize, increasing the recurrence rate in cancer patients. Targeting these destined cancer cells is more troublesome for clinicians, as they share biology and molecular cross-talks with normal cells. However, the recent insights into the metabolic profiles of chemo-resistant cancer cells surprisingly illustrated the activation of distinct pathways compared with chemo-sensitive or primary cancer cells. These distinct metabolic dynamics are vital and contribute to the shift from chemo-sensitivity to chemo-resistance in cancer. This review will discuss the important metabolic alterations in cancer cells that lead to drug resistance.
Collapse
Affiliation(s)
- Kausik Bishayee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | | | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
5
|
Shi ZD, Han XX, Song ZJ, Dong Y, Pang K, Wang XL, Liu XY, Lu H, Xu GZ, Hao L, Dong BZ, Liang Q, Wu XK, Han CH. Integrative multi-omics analysis depicts the methylome and hydroxymethylome in recurrent bladder cancers and identifies biomarkers for predicting PD-L1 expression. Biomark Res 2023; 11:47. [PMID: 37138354 PMCID: PMC10155358 DOI: 10.1186/s40364-023-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Urinary bladder cancer (UBC) is a common malignancy of the urinary tract; however, the mechanism underlying its high recurrence and responses to immunotherapy remains unclear, making clinical outcome predictions difficult. Epigenetic alterations, especially DNA methylation, play important roles in bladder cancer development and are increasingly being investigated as biomarkers for diagnostic or prognostic predictions. However, little is known about hydroxymethylation since previous studies based on bisulfite-sequencing approaches could not differentiate between 5mC and 5hmC signals, resulting in entangled methylation results. METHODS Tissue samples of bladder cancer patients who underwent laparoscopic radical cystectomy (LRC), partial cystectomy (PC), or transurethral resection of bladder tumor (TURBT) were collected. We utilized a multi-omics approach to analyze both primary and recurrent bladder cancer samples. By integrating various techniques including RNA sequencing, oxidative reduced-representation bisulfite sequencing (oxRRBS), reduced-representation bisulfite sequencing (RRBS), and whole exome sequencing, a comprehensive analysis of the genome, transcriptome, methylome, and hydroxymethylome landscape of these cancers was possible. RESULTS By whole exome sequencing, we identified driver mutations involved in the development of UBC, including those in FGFR3, KDMTA, and KDMT2C. However, few of these driver mutations were associated with the down-regulation of programmed death-ligand 1 (PD-L1) or recurrence in UBC. By integrating RRBS and oxRRBS data, we identified fatty acid oxidation-related genes significantly enriched in 5hmC-associated transcription alterations in recurrent bladder cancers. We also observed a series of 5mC hypo differentially methylated regions (DMRs) in the gene body of NFATC1, which is highly involved in T-cell immune responses in bladder cancer samples with high expression of PD-L1. Since 5mC and 5hmC alternations are globally anti-correlated, RRBS-seq-based markers that combine the 5mC and 5hmC signals, attenuate cancer-related signals, and therefore, are not optimal as clinical biomarkers. CONCLUSIONS By multi-omics profiling of UBC samples, we showed that epigenetic alternations are more involved compared to genetic mutations in the PD-L1 regulation and recurrence of UBC. As proof of principle, we demonstrated that the combined measurement of 5mC and 5hmC levels by the bisulfite-based method compromises the prediction accuracy of epigenetic biomarkers.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- School of Life Sciences, Jiangsu Normal University, Jiangsu, China
- Department of Urology, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Xiangfang District, Harbin City, Heilongjiang Province, China
| | - Xiao-Xiao Han
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zi-Jian Song
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xin-Lei Wang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xin-Yu Liu
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Hao Lu
- Department of Urology, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Xiangfang District, Harbin City, Heilongjiang Province, China
| | - Guang-Zhi Xu
- Department of Urology, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Xiangfang District, Harbin City, Heilongjiang Province, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Bing-Zheng Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qing Liang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Xiao-Ke Wu
- Department of Reproductive Medicine, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Xiangfang DistrictHeilongjiang Province, Harbin City, China.
- Department of Gynaecology and Obstetrics, Heilongjiang Provincial Clinical Research Centre for Ovary Diseases, First Affiliated Hospital, Heilongjiang University of Chineses Medicine, 26 Heping Road, Xiangfang District, Harbin, Heilongjiang, China.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.
- Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.
- School of Life Sciences, Jiangsu Normal University, Jiangsu, China.
- Department of Urology, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Xiangfang District, Harbin City, Heilongjiang Province, China.
| |
Collapse
|
6
|
Li Z, Liao X, Hu Y, Li M, Tang M, Zhang S, Mo S, Li X, Chen S, Qian W, Feng R, Yu R, Xu Y, Yuan S, Xie C, Li J. SLC27A4-mediated selective uptake of mono-unsaturated fatty acids promotes ferroptosis defense in hepatocellular carcinoma. Free Radic Biol Med 2023; 201:41-54. [PMID: 36924851 DOI: 10.1016/j.freeradbiomed.2023.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Aberrant lipid metabolism mediated by the selective transport of fatty acids plays vital roles in cancer initiation, progression, and therapeutic failure. However, the biological function and clinical significance of abnormal fatty acid transporters in human cancer remain unclear. In the present study, we reported that solute carrier family 27 member 4 (SLC27A4) is significantly overexpressed in 21 types of human cancer, especially in the fatty acids-enriched microenvironment surrounding hepatocellular carcinoma (HCC), breast cancer, and ovarian cancer. Upregulated SLC27A4 expression correlated with shorter overall and relapse-free survival of patients with HCC, breast cancer, or ovarian cancer. Lipidomic analysis revealed that overexpression of SLC27A4 significantly promoted the selective uptake of mono-unsaturated fatty acids (MUFAs), which induced a high level of MUFA-containing phosphatidylcholine and phosphatidylethanolamine in HCC cells, consequently resulting in resistance to lipid peroxidation and ferroptosis. Importantly, silencing SLC27A4 significantly promoted the sensitivity of HCC to sorafenib treatment, both in vitro and in vivo. Our findings revealed a plausible role for SLC27A4 in ferroptosis defense via lipid remodeling, which might represent an attractive therapeutic target to increase the effectiveness of sorafenib treatment in HCC.
Collapse
Affiliation(s)
- Ziwen Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Biochemistry Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinyi Liao
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Biochemistry Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yameng Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Man Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Biochemistry Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miaoling Tang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuxia Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Mo
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Biochemistry Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xincheng Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Biochemistry Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Suwen Chen
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Biochemistry Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wanying Qian
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Biochemistry Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rongni Feng
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Biochemistry Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ruyuan Yu
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingru Xu
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Chan Xie
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Biochemistry Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
The Roles of miRNAs in Predicting Bladder Cancer Recurrence and Resistance to Treatment. Int J Mol Sci 2023; 24:ijms24020964. [PMID: 36674480 PMCID: PMC9864802 DOI: 10.3390/ijms24020964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bladder cancer (BCa) is associated with significant morbidity, with development linked to environmental, lifestyle, and genetic causes. Recurrence presents a significant issue and is managed in the clinical setting with intravesical chemotherapy or immunotherapy. In order to address challenges such as a limited supply of BCG and identifying cases likely to recur, it would be advantageous to use molecular biomarkers to determine likelihood of recurrence and treatment response. Here, we review microRNAs (miRNAs) that have shown promise as predictors of BCa recurrence. MiRNAs are also discussed in the context of predicting resistance or susceptibility to BCa treatment.
Collapse
|
8
|
Fatty acid transport proteins (FATPs) in cancer. Chem Phys Lipids 2023; 250:105269. [PMID: 36462545 DOI: 10.1016/j.chemphyslip.2022.105269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Lipids play pivotal roles in cancer biology. Lipids have a wide range of biological roles, especially in cell membrane synthesis, serve as energetic molecules in regulating energy-demanding processes; and they play a significant role as signalling molecules and modulators of numerous cellular functions. Lipids may participate in the development of cancer through the fatty acid signalling pathway. Lipids consumed in the diet act as a key source of extracellular pools of fatty acids transported into the cellular system. Increased availability of lipids to cancer cells is due to increased uptake of fatty acids from adipose tissues. Lipids serve as a source of energy for rapidly dividing cancerous cells. Surviving requires the swift synthesis of biomass and membrane matrix to perform exclusive functions such as cell proliferation, growth, invasion, and angiogenesis. FATPs (fatty acid transport proteins) are a group of proteins involved in fatty acid uptake, mainly localized within cells and the cellular membrane, and have a key role in long-chain fatty acid transport. FATPs are composed of six isoforms that are tissue-specific and encoded by a specific gene. Previous studies have reported that FATPs can alter fatty acid metabolism, cell growth, and cell proliferation and are involved in the development of various cancers. They have shown increased expression in most cancers, such as melanoma, breast cancer, prostate cancer, renal cell carcinoma, hepatocellular carcinoma, bladder cancer, and lung cancer. This review introduces a variety of FATP isoforms and summarises their functions and their possible roles in the development of cancer.
Collapse
|
9
|
Guerrero-Rodríguez SL, Mata-Cruz C, Pérez-Tapia SM, Velasco-Velázquez MA. Role of CD36 in cancer progression, stemness, and targeting. Front Cell Dev Biol 2022; 10:1079076. [PMID: 36568966 PMCID: PMC9772993 DOI: 10.3389/fcell.2022.1079076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
CD36 is highly expressed in diverse tumor types and its expression correlates with advanced stages, poor prognosis, and reduced survival. In cancer cells, CD36: 1) increases fatty acid uptake, reprogramming lipid metabolism; 2) favors cancer cell proliferation, and 3) promotes epithelial-mesenchymal transition. Furthermore, CD36 expression correlates with the expression of cancer stem cell markers and CD36+ cancer cells display increased stemness functional properties, including clonogenicity, chemo- and radioresistance, and metastasis-initiating capability, suggesting CD36 is a marker of the cancer stem cell population. Thus, CD36 has been pointed as a potential therapeutic target in cancer. At present, at least three different types of molecules have been developed for reducing CD36-mediated functions: blocking monoclonal antibodies, small-molecule inhibitors, and compounds that knock-down CD36 expression. Herein, we review the role of CD36 in cancer progression, its participation in stemness control, as well as the efficacy of reported CD36 inhibitors in cancer cell cultures and animal models. Overall, the evidence compiled points that CD36 is a valid target for the development of new anti-cancer therapies.
Collapse
Affiliation(s)
| | - Cecilia Mata-Cruz
- Pharmacology Department, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Graduate Program in Biochemical Sciences, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sonia M. Pérez-Tapia
- Research and Development in Biotherapeutics Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
- National Laboratory for Specialized Services of Investigation Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological products LANSEIDI-FarBiotec-CONACyT, Mexico City, Mexico
- Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Marco A. Velasco-Velázquez
- Pharmacology Department, School of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Kant R, Manne RK, Anas M, Penugurti V, Chen T, Pan BS, Hsu CC, Lin HK. Deregulated transcription factors in cancer cell metabolisms and reprogramming. Semin Cancer Biol 2022; 86:1158-1174. [PMID: 36244530 PMCID: PMC11220368 DOI: 10.1016/j.semcancer.2022.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Metabolic reprogramming is an important cancer hallmark that plays a key role in cancer malignancies and therapy resistance. Cancer cells reprogram the metabolic pathways to generate not only energy and building blocks but also produce numerous key signaling metabolites to impact signaling and epigenetic/transcriptional regulation for cancer cell proliferation and survival. A deeper understanding of the mechanisms by which metabolic reprogramming is regulated in cancer may provide potential new strategies for cancer targeting. Recent studies suggest that deregulated transcription factors have been observed in various human cancers and significantly impact metabolism and signaling in cancer. In this review, we highlight the key transcription factors that are involved in metabolic control, dissect the crosstalk between signaling and transcription factors in metabolic reprogramming, and offer therapeutic strategies targeting deregulated transcription factors for cancer treatment.
Collapse
Affiliation(s)
- Rajni Kant
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Mohammad Anas
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Vasudevarao Penugurti
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27101, USA.
| |
Collapse
|
11
|
Pardo JC, Sanhueza T, Ruiz de Porras V, Etxaniz O, Rodriguez H, Martinez-Cardús A, Grande E, Castellano D, Climent MA, Lobato T, Estudillo L, Jordà M, Carrato C, Font A. Prognostic Impact of CD36 Immunohistochemical Expression in Patients with Muscle-Invasive Bladder Cancer Treated with Cystectomy and Adjuvant Chemotherapy. J Clin Med 2022; 11:jcm11030497. [PMID: 35159947 PMCID: PMC8836680 DOI: 10.3390/jcm11030497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Neoadjuvant chemotherapy followed by a cystectomy is the standard treatment in muscle-invasive bladder cancer (MIBC). However, the role of chemotherapy in the adjuvant setting remains controversial, and therefore new prognostic and predictive biomarkers are needed to improve the selection of MIBC patients. While lipid metabolism has been related to several biological processes in many tumours, including bladder cancer, no metabolic biomarkers have been identified as prognostic in routine clinical practice. In this multicentre, retrospective study of 198 patients treated with cystectomy followed by platinum-based adjuvant chemotherapy, we analysed the immunohistochemical expression of CD36 and correlated our findings with clinicopathological characteristics and survival. CD36 immunostaining was positive in 30 patients (15%) and associated with more advanced pathologic stages (pT3b-T4; p = 0.015). Moreover, a trend toward lymph node involvement in CD36-positive tumours, especially in earlier disease stages (pT1-T3; p = 0.101), was also observed. Among patients with tumour progression during the first 12 months after cystectomy, disease-free survival was shorter in CD36-positive tumours than in those CD36-negative (6.51 months (95% CI 5.05–7.96) vs. 8.74 months (95% CI 8.16–9.32); p = 0.049). Our results suggest an association between CD36 immunopositivity and more aggressive features of MIBC and lead us to suggest that CD36 could well be a useful prognostic marker in MIBC.
Collapse
Affiliation(s)
- Juan Carlos Pardo
- Medical Oncology Department, Catalan Institute of Oncology, Ctra. Can Ruti- Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (O.E.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; (V.R.d.P.); (A.M.-C.); (T.L.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (H.R.); (M.J.)
| | - Tamara Sanhueza
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (T.S.); (C.C.)
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; (V.R.d.P.); (A.M.-C.); (T.L.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (H.R.); (M.J.)
| | - Olatz Etxaniz
- Medical Oncology Department, Catalan Institute of Oncology, Ctra. Can Ruti- Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (O.E.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; (V.R.d.P.); (A.M.-C.); (T.L.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (H.R.); (M.J.)
| | - Helena Rodriguez
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (H.R.); (M.J.)
| | - Anna Martinez-Cardús
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; (V.R.d.P.); (A.M.-C.); (T.L.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (H.R.); (M.J.)
| | - Enrique Grande
- Medical Oncology Department, Hospital Universitario Ramon y Cajal, 28034 Madrid, Spain;
- Medical Oncology Department, MD Anderson Cancer Center, 28033 Madrid, Spain
| | - Daniel Castellano
- Medical Oncology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
| | - Miquel A. Climent
- Medical Oncology Department, Instituto Valenciano de Oncologia, 46009 Valencia, Spain;
| | - Tania Lobato
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; (V.R.d.P.); (A.M.-C.); (T.L.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (H.R.); (M.J.)
| | - Lidia Estudillo
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), CIBERONC, 28029 Madrid, Spain;
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (H.R.); (M.J.)
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (T.S.); (C.C.)
| | - Albert Font
- Medical Oncology Department, Catalan Institute of Oncology, Ctra. Can Ruti- Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (O.E.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), 08916 Badalona, Spain; (V.R.d.P.); (A.M.-C.); (T.L.)
- Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (H.R.); (M.J.)
- Correspondence:
| |
Collapse
|