1
|
Zhao K, Zhou F, Lu Y, Gao T, Wang R, Xie M, Wang H. Hyperoside alleviates depressive-like behavior in social defeat mice by mediating microglial polarization and neuroinflammation via TRX1/NLRP1/Caspase-1 signal pathway. Int Immunopharmacol 2025; 145:113731. [PMID: 39647288 DOI: 10.1016/j.intimp.2024.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
The primary objective of this study was to investigate the potential pharmacological effects of Hyperoside (Hyp) extract on chronic social defeat stress (CSDS)-induced depression-like behavior in mice. We established CSDS mice to evaluate the antidepressant effects of Hyp. Additionally, We assessed the changes in neuroinflammatory factors in the TRX1/NLRP1/Caspase-1 signaling pathway using adeno-associated virus (AAV) and BV2 microglial cells. The expression levels of TRX1 protein and BDNF also increased by Hyp, while NLRP1 and Caspase-1 a significant decrease. Additionally, Hyp was found to inhibit TRX1 ubiquitination in the microglial inflammation model. In both in vivo and in vitro experiments, it was found that Hyp significantly promotes microglial polarization towards the M2 phenotype in the hippocampus and alleviates neuroinflammation, thereby improving depression-like behavior in CSDS mice. This is associated with the regulation of TRX1 ubiquitination, which inhibits the expression levels of NLRP1 and Caspase-1 proteins.
Collapse
Affiliation(s)
- Keke Zhao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Fangling Zhou
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Youyuan Lu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian Gao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Rui Wang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Mingxia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Hanqing Wang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Gu F, Zhang Y, Sun Y, Liu Y, Zhang L, Lu D. Roles and action mechanisms of NRIP1 in pre-eclampsia. Genes Genomics 2024; 46:1375-1385. [PMID: 39271534 DOI: 10.1007/s13258-024-01563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Pre-eclampsia (PE) is characterized by the onset of hypertension and proteinuria during pregnancy. Here, we aimed to explore the functions of nuclear receptor-interacting protein 1 (NRIP1) in PE mice and human placental JEG-3 cells. We evaluated its effects on JEG-3 cell proliferation, apoptosis, invasion, and inflammatory response and regulation of Wnt/β-catenin pathway. METHODS NRIP1 levels in human serum and placental tissues, JEG-3 cells, and mouse models were assessed via quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting. JEG-3 cell growth, apoptosis, migration, and invasion were evaluated via 5-ethynyl-2'-deoxyuridine, flow cytometry, and transwell assays. Levels of the inflammatory factors, matrix metalloproteinase (MMP)-2, tumor necrosis factor (TNF)-α, and interleukin (IL)-6, were determined via enzyme-linked immunosorbent assay. Wnt/β-catenin pathway was assessed via western blotting and qRT-PCR. Systolic blood pressure and proteinuria were measured using the non-invasive tail cuff method and Coomassie brilliant blue assay, respectively. TdT-mediated dUTP nick-end labeling assay was used to assess cell apoptosis in the placental tissues of PE mice. RESULTS NRIP1 levels were upregulated in the serum and placental tissues of patients with PE. In vitro experiments revealed that NRIP1-small interfering RNA (siRNA) increased the cell viability, migration, and invasion and reduced the cell apoptosis compared to the control siRNA. Moreover, NRIP1-siRNA activated the Wnt/β-catenin signaling pathway, as indicated by the increased Wnt3a, β-catenin, p-glycogen synthase kinase-3β, c-Myc, and cyclin D1 levels. Levels of the inflammatory factors, IL-6, TNF-α, and MMP-2, were decreased in the NRIP1-siRNA-treated group. Notably, NRIP1 downregulation improved the PE-like symptoms, inhibited the inflammatory responses, and reduced apoptosis in PE mice. CONCLUSION This study revealed the crucial roles of NRIP1 in PE. Our findings revealed that NRIP1 downregulation relieved PE symptoms by inhibiting cell proliferation, migration, and invasion via the Wnt/β-catenin pathway, thus providing a novel candidate for PE treatment.
Collapse
Affiliation(s)
- Fangle Gu
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Yanxin Zhang
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Yujie Sun
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Liying Zhang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, China.
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China.
| |
Collapse
|
3
|
Wei J, Chai Q, Qin Y, Li L, Guo C, Lu Z, Liu H. Hyperoside induces ferroptosis in chronic myeloid leukemia cells by targeting NRF2. Mol Med 2024; 30:224. [PMID: 39573995 PMCID: PMC11583796 DOI: 10.1186/s10020-024-01002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Hyperoside (quercetin-3-O-β-D-galactopyranoside) is a flavonol glycoside compound derived from plants in the Hypericum and Crataegus genera that reportedly exhibits an array of anti-inflammatory, antioxidant, and antitumor properties such that it has been used to treat various diseases. Whether it can serve as an effective treatment for chronic myeloid leukemia (CML) cells, however, has yet to be established. The present study was thus devised to assess the therapeutic effects of hyperoside on CML cells and to clarify the underlying mechanism of action. METHODS Cellular viability, proliferative activity, migration, and apoptotic death were respectively analyzed through CCK-8, EDU, transwell, and flow cytometry assays. RNA-seq and bioinformatics approaches were further employed to evaluate the mechanisms through which hyperoside influences CML cells, while analyses of reactive oxygen species (ROS) and free iron were detected with commercial kits. Transmission electron microscopy was used to assess mitochondrial morphology. Molecular docking, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) approaches were also used to explore the ability of hyperoside to target NRF2. RESULTS From a mechanistic perspective, hyperoside was able to inhibit SLC7A11/GPX4 signaling in a manner that was abrogated by the ferroptosis inhibitor ferrostatin-1. NRF2 was also closely associated with the inactivation of the SLC7A11/GPX4 axis mediated by hyperoside such that overexpressing NRF2 ablated the benefits associated with hyperoside treatment. CONCLUSIONS The present analyses indicate that hyperoside can target the NRF2/SLC7A11/GPX4 axis to induce ferroptotic CML cell death.
Collapse
MESH Headings
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Ferroptosis/drug effects
- Quercetin/pharmacology
- Quercetin/analogs & derivatives
- Molecular Docking Simulation
- Cell Line, Tumor
- Reactive Oxygen Species/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Apoptosis/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Junyi Wei
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Quanyou Chai
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Department of Cardiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuqiao Qin
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Long Li
- Department of Cardiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunling Guo
- Department of Cardiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhaoyang Lu
- Department of Cardiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Huimin Liu
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Rao T, Tong H, Li J, Huang J, Yin Y, Zhang J. Exploring the role and mechanism of hyperoside against cardiomyocyte injury in mice with myocardial infarction based on JAK2/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155319. [PMID: 38518637 DOI: 10.1016/j.phymed.2023.155319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is one of the most deadly diseases in the world. Hyperoside (Hyp) has been shown to have a protective effect on cardiovascular function through various signaling pathways, but whether it can protect myocardial infarction by regulating JAK2/STAT3 signaling pathway is unknown. AIM OF THE STUDY To investigate whether Hyp could protect the heart against myocardial infarction injury in mice by modulating JAK2/STAT3 signaling pathway and its potential mechanism. METHODS In vivo experiments, the myocardial infarction model was established by ligating the left anterior descending coronary artery (LAD) of male C57BL/6 mice permanently. The mice were divided into seven groups: sham group, MI group, MI+Hyp (9 mg/kg), MI+Hyp (18 mg/kg) group, MI+Hyp (36 mg/kg) group, MI+Captopril group (15 mg/kg) group and MI+Hyp (36 mg/kg)+AG490 (7.5 mg/kg) group. Each group of animals were given different concentrations of hyperoside, positive control drug or inhibitor of JAK2/STAT3 singaling. After 14 days of administration, the electrocardiogram (ECG), echocardiography and serum myocardial injury markers were examined; Slices of mouse myocardial tissue were assessed for histopathological changes by HE, Masson and Sirius Red staining. TTC and TUNEL staining were used to evaluate the myocardial infarction area and cardiomyocytes apoptosis respectively. The expression of JAK2/STAT3 signaling pathway, apoptosis and autophagy-related proteins were detected by western blot. In vitro experiments, rat H9c2 cardiomyocytes were deprived of oxygen and glucose (OGD) to stimulate myocardial ischemia. The experiment was divided into seven groups: Control group, OGD group, OGD+Hyp (20 μM) group, OGD+Hyp (40 μM) group, OGD+Hyp (80 μM), OGD+Captopril (10 μM) group and OGD+Hyp (80 μM)+AG490 (100 μM) group. Myocardial cell damage and redox index were measured 12 h after OGD treatment. ROS content in cardiomyocytes was detected by immunofluorescence. Cardiomyocytes apoptosis was detected by flow cytometry. The expressions of JAK2/STAT3 signaling pathway-related proteins, apoptosis and autophagy related proteins were detected by western blot. RESULTS In vivo, hyperoside could ameolirate ECG abnormality, increase cardiac function, reduce myocardial infarction size and significantly reduce myocardial fibrosis level and oxidation level. The experimental results in vitro showed that Hyp could reduce the ROS content in cardiomyocytes, decrease the level of oxidative stress and counteract the apoptosis induced by OGD injury . Both in vivo and in vitro experiments showed that hyperoside could increase phosphorylated JAK2 and STAT3, indicating that hyperoside could play a cardioprotective role by activating JAK2/STAT3 signaling pathway. It was also shown that hyperoside could increase the autophagy level of cardiomyocytes in vivo and in vitro. However the cardiomyocyte-protective effect of Hyp was abolished in combination with JAK2/ STAT3 signaling pathway inhibitor AG490. These results indicated that the protective effect of Hyp on cardiomyocyte injury was at least partially achieved through the activation of the JAK2/STAT3 signaling pathway. CONCLUSION Hyp can significantly improve cardiac function, ameliorate myocardial hypertrophy and myocardial remodeling in MI mice. The mechanism may be related to improving mitochondrial autophagy of cardiomyocytes to maintain the advantage of autophagy, and blocking apoptosis pathway through phagocytosis, thus suppressing apoptosis level of cardiomyocytes. These effects of Hyp are achieved, at least in part, by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Tingcai Rao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China; Department of School of Pharmacy, Chongqing Health Vocational College, NO.99 Xirong Road, Dazu, 404100, PR China
| | - Hua Tong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China
| | - Jing Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China; Department of Fuyang fifth People's Hospital, NO.227 Taihe Road, Yingquan District, Anhui Fuyang, 236000, PR China
| | - Jiahao Huang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China
| | - Junyan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, No.81 Meishan Road, Hefei, 230032, PR China.
| |
Collapse
|
5
|
Xing C, Lu Y, Liu G, Chen F, Hou Z, Zhang Y. The Expression of miR-377-3p in Patients with DKD and the Regulatory Mechanism of miR-377-3p on the Inflammatory Response of HK-2 Cells Through TGF-β. Diabetes Metab Syndr Obes 2024; 17:903-911. [PMID: 38414866 PMCID: PMC10898490 DOI: 10.2147/dmso.s449791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Objective The purpose of the study was to investigate the expression levels and correlation of inflammatory factors such as miR-377-3p and TGF-β in patients with diabetic kidney disease (DKD), and to investigate the regulatory mechanism of transfection of miR-377-3p on the inflammatory response of HK-2 cell induced by high glucose. Methods According to UACR, patients were divided into normal albuminuria group (Con, n = 29), microalbuminuria group (Micro, n = 31) and macroalbuminuria group (Macro, n = 30), analyzed the correlation and influencing factors between DKD and inflammatory factor. HK-2 cells were randomly divided into four groups: normal control group (NC), high glucose group (HG), miR-377-3p overexpression group (MIN), and miR-377-3p inhibition group (IN). After transfection of miR-377-3p mimics and inhibitors, the contents of TGF-β, IL-6 and IL-18 were detected by RT-PCR and Western blot. Results The levels of miR-377-3p, TGF-β, IL-6 and IL-18 in both Micro group and Macro group were significantly higher than those in Con group (P < 0.05); Pearson correlation analysis showed that miR-377-3p was positively correlated with UACR, TG, TGF-β, IL-6 and IL-18, and negatively correlated with GFR (P < 0.05). Cell experiment: RT-PCR and Western blot results showed that miR-377-3p, TGF-β, IL-6 and IL-18 in HG group were significantly higher than those in NC group (P < 0.05). After transfection with miR-377-3p inhibitor, the levels of miR-377-3p, TGF-β, IL-6 and IL-18 in IN group were significantly decreased compared with HG group and MIN group. Conclusion miR-377-3p expression was elevated both in serum of DKD patients and in HK-2 cells with high glucose induced injury, overexpression of miR-377-3p exacerbates the damage to HK-2 cells and promotes the progression of DKD. Silencing miR-377-3p can potentially regulate the levels of inflammatory factors in HK-2 cells by targeting downregulation of TGF-β expression, thereby mitigating the damage to HK-2 cells and delaying the development of diabetic kidney disease.
Collapse
Affiliation(s)
- Chenhao Xing
- Graduate School of Hebei North University, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Yamin Lu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Guangxia Liu
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Fang Chen
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zhan Hou
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Yiwen Zhang
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
6
|
Wei C, Wang C, Li R, Bai Y, Wang X, Fang Q, Chen X, Li P. The pharmacological mechanism of Abelmoschus manihot in the treatment of chronic kidney disease. Heliyon 2023; 9:e22017. [PMID: 38058638 PMCID: PMC10695975 DOI: 10.1016/j.heliyon.2023.e22017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Abelmoschus manihot (A.manihot) is a herbaceous flowering medicinal plant and flavonoids are its main pharmacological active ingredients. A.manihot is listed in the 2020 edition of the Chinese Pharmacopoeia for the treatment of chronic kidney disease (CKD). A.manihot significantly reduces proteinuria in CKD, and the effectiveness and safety of A.manihot in the treatment including primary glomerulonephropathy and diabetic kidney disease (DKD) have been proved by several randomized controlled trials (RCT). Emerging pharmacological studies have explored the potential active small molecules and the underlying mechanisms in A.manihot. The active constituents of A.manihot are mainly seven flavonoids, including hibifolin, hyperoside, isoquercetin, rutin, quercetin, myricetin, and quercetin-3-O-robinobioside. The mechanisms of action mainly include alleviating renal fibrosis, reducing the inflammatory response and decreasing the apoptosis of podocytes. In this review, we summarize the updated information of active components and molecular mechanisms of A.manihot on chronic kidney disease.
Collapse
Affiliation(s)
- Cuiting Wei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Run Li
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yunfeng Bai
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xue Wang
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Qingyun Fang
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese People's, Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese, People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
7
|
Wang K, Zhang H, Yuan L, Li X, Cai Y. Potential Implications of Hyperoside on Oxidative Stress-Induced Human Diseases: A Comprehensive Review. J Inflamm Res 2023; 16:4503-4526. [PMID: 37854313 PMCID: PMC10581022 DOI: 10.2147/jir.s418222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023] Open
Abstract
Hyperoside is a flavonol glycoside mainly found in plants of the genera Hypericum and Crataegus, and also detected in many plant species such as Abelmoschus manihot, Ribes nigrum, Rosa rugosa, Agrostis stolonifera, Apocynum venetum and Nelumbo nucifera. This compound exhibits a multitude of biological functions including anti-inflammatory, antidepressant, antioxidative, vascular protective effects and neuroprotective effects, etc. This review summarizes the quantification, original plant, chemical structure and property, structure-activity relationship, pharmacologic effect, pharmacokinetics, toxicity and clinical application of hyperoside, which will be significant for the exploitation for new drug and full utilization of this compound.
Collapse
Affiliation(s)
- Kaiyang Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Huhai Zhang
- Department of Nephrology, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Research Laboratory for Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
8
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
9
|
Liu L, Li Y, Zhang X. LncRNA LINC01018 Screens Type 2 Diabetes Mellitus and Regulates β Cell Function Through Modulating miR-499a-5p. Horm Metab Res 2023; 55:642-648. [PMID: 37187181 DOI: 10.1055/a-2077-5177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by hyperglycemia, which seriously endangers human health. The dysregulation of lncRNA LINC01018 in T2DM has been noticed in previous studies, but whether it served as a biomarker lacks validation. This study aimed to confirm the abnormal expression of LINC01018 in T2DM and reveals its specific function in regulating pancreatic β cell function. This study enrolled 77 T2DM patients and 41 healthy individuals and compared the plasma LINC01018 levels between two groups using PCR. The pancreatic β cell was induced with 25 mM glucose to mimic cell injury during T2DM. The effects of LINC01018 on β cell proliferation, dedifferentiation, and insulin production were evaluated by CCK8, western blotting, and ELISA. Moreover, the involvement of miR-499a-5p was also evaluated with luciferase reporter assay. Increased plasma LINC01018 was observed in T2DM patients compared with healthy individuals, which discriminates patients with high sensitivity and specificity. Upregulated LINC01018 was associated with patients' fasting blood glucose and weight loss. High glucose induced the increasing LINC01018 in pancreatic islet β cells and suppressed cell proliferation, insulin secretion, and promoted cell dedifferentiation. Silencing LINC01018 could alleviate the impaired function of β cells by high glucose, which was reversed by the knockdown by miR-499a-5p. Upregulated LINC01018 served as a potential diagnostic biomarker for T2DM and alleviated high glucose-induced β cell dysfunction via negatively modulating miR-499a-5p.
Collapse
Affiliation(s)
- Li Liu
- Department of General Practice, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Yuan Li
- Department of General Practice, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Xiaoqian Zhang
- Department of General Practice, Affiliated Hospital of Panzhihua University, Panzhihua, China
| |
Collapse
|
10
|
Mai J, He Q, Liu Y, Hou Y. Hyperoside Attenuates Sepsis-Induced Acute Lung Injury (ALI) through Autophagy Regulation and Inflammation Suppression. Mediators Inflamm 2023; 2023:1257615. [PMID: 37545738 PMCID: PMC10400302 DOI: 10.1155/2023/1257615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/21/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023] Open
Abstract
Background Sepsis mortality and morbidity are aggravated by acute lung injury (ALI) or acute respiratory distress syndrome. Published studies have discovered that hyperoside (HYP) has an anti-inflammatory and therapeutic effect in many diseases. However, whether HYP treatment can attenuate sepsis-induced ALI is still obscure. Methods In this study, a cecal ligation and puncture (CLP)-induced sepsis mouse model was constructed. The mouse lungs were harvested and assessed using proteomics, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay for pro-inflammatory cytokines. Human lung microvascular endothelial cells (HLMVECs) were induced with lipopolysaccharide (LPS) for the in vitro model. Results The results showed that HYP treatment attenuated sepsis-induced ALI through an increased survival rate, decreased inflammatory factor expression, and lung tissue apoptosis. At the same time, HYP pretreatment restored angiogenesis in CLP-induced mouse lung tissues. Proteomics detection showed that Atg13 played a vital role in HYP-mediated protection against sepsis-induced ALI. The in vitro experiment showed HYP treatment attenuated LPS-induced HLMVEC damage by regulating Atg13-mediated autophagy. Inhibiting autophagy or silencing Atg13 reversed the protective effect of HYP against sepsis-induced ALI. Conclusion Taken together, we conclude that HYP attenuated sepsis-induced ALI by regulating autophagy and inhibiting inflammation.
Collapse
Affiliation(s)
- Jingyin Mai
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200071, China
| | - Qingqing He
- Hospital Infection Management Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Liu
- Cardiovascular Department, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| | - Yuting Hou
- Department of Pharmacy, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200052, China
| |
Collapse
|
11
|
Tian H, Liang Q, Shi Z, Zhao H. Hyperoside Ameliorates Renal Tubular Oxidative Damage and Calcium Oxalate Deposition in Rats through AMPK/Nrf2 Signaling Axis. J Renin Angiotensin Aldosterone Syst 2023; 2023:5445548. [PMID: 36942317 PMCID: PMC10024623 DOI: 10.1155/2023/5445548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 03/13/2023] Open
Abstract
Background Nephrolithiasis is a common disease that seriously affects the health and life quality of patients. Despite the reported effect of hyperoside (Hyp) against nephrolithiasis, the specific mechanism has not been clarified. Therefore, this study is aimed at investigating the effect and potential mechanism of Hyp on renal injury and calcium oxalate (CaOx) crystal deposition. Methods Rat and cell models of renal calculi were constructed by ethylene glycol (EG) and CaOx induction, respectively. The renal histopathological damage, CaOx crystal deposition, and renal function damage of rats were assessed by HE staining, Pizzolato staining, and biochemical detection of blood and urine parameters. MTT and crystal-cell adhesion assays were utilized to determine the activity of HK-2 cells and crystal adhesion ability, biochemical detection and enzyme-linked immunosorbent assay (ELISA) to measure the levels of oxidative stress-related substances and inflammatory factors, and western blot to test the expression levels of proteins related to the AMPK/Nrf2 signaling pathway. Results Briefly speaking, Hyp could improve the renal histopathological injury and impaired renal function, reduce the deposition of CaOx crystals in the renal tissue of rats with renal calculi, and decrease the adhesion of crystals to CaOx-treated HK-2 cells. Besides, Hyp also significantly inhibited oxidative stress response. Furthermore, Hyp was associated with the downregulation of malondialdehyde, lactate dehydrogenase, and reactive oxygen species and upregulation of superoxide dismutase activity. Additionally, Hyp treatment also suppressed inflammatory response and had a correlation with declined levels of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor. Further exploration of mechanism manifested that Hyp might play a protective role through promoting AMPK phosphorylation and nuclear translation of Nrf2 to activate the AMPK/Nrf2 signaling pathway. Conclusion Hyp can improve renal pathological and functional damage, decrease CaOx crystal deposition, and inhibit oxidative stress and inflammatory response. Such effects may be achieved by activating the AMPK/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Hongyang Tian
- 1Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Qi Liang
- 2Department of Urology Surgery, Dalinghe Hospital Affiliated to Medical College of Jinzhou Medical University, Jinzhou 121000, China
| | - Zhen Shi
- 2Department of Urology Surgery, Dalinghe Hospital Affiliated to Medical College of Jinzhou Medical University, Jinzhou 121000, China
| | - Hang Zhao
- 3Department of Hepatobiliary Diseases, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| |
Collapse
|
12
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Jang E. Hyperoside as a Potential Natural Product Targeting Oxidative Stress in Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11081437. [PMID: 35892639 PMCID: PMC9331122 DOI: 10.3390/antiox11081437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Hyperoside (Hyp), also known as quercetin-3-O-galactoside or 3-O-β-D-galactopyranosyl, is a well-known flavonol glycoside that is abundant in various fruits, vegetables, and medicinal plants. Hyp has been suggested to exhibit a wide range of biological actions, including cardiovascular, renal, neuroprotective, antifungal, antifibrotic, and anticancer effects. Accumulating evidence supports the pharmacological activities of Hyp in improving liver pathophysiology. Hence, the present literature review aims to summarize preclinical data suggesting the beneficial effects and underlying mechanisms of Hyp. In addition, our study focuses on hepatic antioxidant defense signaling to assess the underlying mechanisms of the biological actions of Hyp that are closely associated with liver diseases. Experimental findings from an up-to-date search showed that Hyp possesses hepatoprotective, antiviral, antisteatotic, anti-inflammatory, antifibrotic, and anticancer activities in cellular and animal models related to liver dysfunction by enhancing antioxidant responses. In particular, hepatocellular antioxidant defense via activation of erythroid-related nuclear factor 2 by Hyp chiefly explains how this compound acts as a therapeutic agent in liver diseases. Thus, this review emphasizes the therapeutic potential of Hyp as a strong antioxidative substance that plays a crucial role in the regulation of various liver disorders during their pathogenesis.
Collapse
Affiliation(s)
- Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; or
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
14
|
Xu S, Chen S, Xia W, Sui H, Fu X. Hyperoside: A Review of Its Structure, Synthesis, Pharmacology, Pharmacokinetics and Toxicity. Molecules 2022; 27:molecules27093009. [PMID: 35566359 PMCID: PMC9101560 DOI: 10.3390/molecules27093009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Hyperoside is an active ingredient in plants, such as Hypericum monogynum in Hypericaceae, Crataegus pinnatifida in Rosaceae and Polygonum aviculare in Polygonaceae. Its pharmacologic effects include preventing cancer and protecting the brain, neurons, heart, kidneys, lung, blood vessels, bones, joints and liver, among others. Pharmacokinetic analysis of hyperoside has revealed that it mainly accumulates in the kidney. However, long-term application of high-dose hyperoside should be avoided in clinical practice because of its renal toxicity. This review summarises the structure, synthesis, pharmacology, pharmacokinetics and toxicity of hyperoside.
Collapse
Affiliation(s)
- Sijin Xu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Shuaipeng Chen
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Wenxin Xia
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
| | - Hong Sui
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.X.); (S.C.); (W.X.)
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan 750004, China
- Correspondence: (H.S.); (X.F.)
| |
Collapse
|
15
|
Huang M, Li J, Bai J, Du X, Guo H, Wang B, Xu J. NRIP1 aggravates lung injury caused by Pseudomonas aeruginosa in mice by increasing PIAS1 ubiquitination. Aging (Albany NY) 2022; 14:3529-3539. [PMID: 35460552 PMCID: PMC9085225 DOI: 10.18632/aging.204027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Recently, evidence has shown that nuclear receptor interacting protein 1 (NRIP1) is involved in acute lung injury (ALI) progression, but the specific mechanism remains unclear. Pseudomonas aeruginosa (PA)-treated TC-1 cells were transfected with pcDNA-NRIP1 or si-NRIP1, and we found that overexpression of NRIP1 inhibited cell viability and promoted cell apoptosis and secretion of inflammatory factors, and transfection of si-NRIP1 reversed these effects. Furthermore, online bioinformatics analysis and co-immunoprecipitation assay results indicated that NRIP1 could bind to Ubiquitin Conjugating Enzyme E2I (UBE2I), and promoted UBE2I expression. Next, the PA-treated TC-1 cells were transfected with si-NRIP1 alone or together with pcDNA-UBE2I, and we observed that transfection with si-NRIP1 inhibited UBE2I expression, promoted cell viability, and reduced cell apoptosis and inflammatory factor secretion, which could be reversed by UBE2I overexpression. Moreover, UBE2I could bind to protein inhibitor of activated signal transducer and activators of transcription 1 (PIAS1). Overexpression of NRIP1 promoted UBE2I expression and inhibited PIAS1 expression, and NRIP1 promoted PIAS1 ubiquitination and degradation by UBE2I. The PA-treated TC-1 cells were transfected with si-UBE2I alone or together with si-PIAS1, and the results indicated that transfection of si-UBE2I had the same effect as transfection of si-NRIP1. Finally, our in vivo findings indicated that the expression of NRIP1 and UBE2I was decreased, and PIAS1 expression was increased, in the lung tissues of mice with NRIP1 knocked-down, and the inflammatory infiltration in the lung tissue was reduced. In conclusion, our study demonstrates that NRIP1 aggravates PA-induced lung injury in mice by promoting PIAS1 ubiquitination.
Collapse
Affiliation(s)
- Miaoyi Huang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Jianying Li
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Jie Bai
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Xusheng Du
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Hua Guo
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Bo Wang
- Department of Respiratory Medicine, Xi'an Central Hospital, Xi'an 710004, China
| | - Jiru Xu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
16
|
Liu J, Zhang Y, Sheng H, Liang C, Liu H, Moran Guerrero JA, Lu Z, Mao W, Dai Z, Liu X, Zhang L. Hyperoside Suppresses Renal Inflammation by Regulating Macrophage Polarization in Mice With Type 2 Diabetes Mellitus. Front Immunol 2021; 12:733808. [PMID: 34925317 PMCID: PMC8678409 DOI: 10.3389/fimmu.2021.733808] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence reveals that both inflammation and lymphocyte dysfunction play a vital role in the development of diabetic nephropathy (DN). Hyperoside (HPS) or quercetin-3-O-galactoside is an active flavonoid glycoside mainly found in the Chinese herbal medicine Tu-Si-Zi. Although HPS has a variety of pharmacological effects, including anti-oxidative and anti-apoptotic activities as well as podocyte-protective effects, its underlying anti-inflammatory mechanisms remain unclear. Herein, we investigated the therapeutic effects of HPS on murine DN and the potential mechanisms responsible for its efficacy. We used C57BLKS/6J Lepdb/db mice and a high glucose (HG)-induced bone marrow-derived macrophage (BMDM) polarization system to investigate the potentially protective effects of HPS on DN. Our results showed that HPS markedly reduced diabetes-induced albuminuria and glomerular mesangial matrix expansion, accompanied with a significant improvement of fasting blood glucose level, hyperlipidaemia and body weight. Mechanistically, pretreatment with HPS effectively regulated macrophage polarization by shifting proinflammatory M1 macrophages (F4/80+CD11b+CD86+) to anti-inflammatory M2 ones (F4/80+CD11b+CD206+) in vivo and in bone marrow-derived macrophages (BMDMs) in vitro, resulting in the inhibition of renal proinflammatory macrophage infiltration and the reduction in expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) while increasing expression of anti-inflammatory cytokine Arg-1 and CD163/CD206 surface molecules. Unexpectedly, pretreatment with HPS suppressed CD4+ T cell proliferation in a coculture model of IL-4-induced M2 macrophages and splenic CD4+ T cells while promoting their differentiation into CD4+IL-4+ Th2 and CD4+Foxp3+ Treg cells. Taken together, we demonstrate that HPS ameliorates murine DN via promoting macrophage polarization from an M1 to M2 phenotype and CD4+ T cell differentiation into Th2 and Treg populations. Our findings may be implicated for the treatment of DN in clinic.
Collapse
Affiliation(s)
- Jialing Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanmei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongqin Sheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunling Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Huazhen Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | | | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| | - Lei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| |
Collapse
|