1
|
Karthick Rajan D, Mohan K, Rajarajeswaran J, Divya D, Thanigaivel S, Zhang S. Toxic effects of organophosphate pesticide monocrotophos in aquatic organisms: A review of challenges, regulations and future perspectives. ENVIRONMENTAL RESEARCH 2024; 244:117947. [PMID: 38109962 DOI: 10.1016/j.envres.2023.117947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
In recent times, usage of pesticide, herbicides and synthetic fertilizers in farming lands has made the environment worse. The pesticide residues and toxic byproducts from agricultural lands were found to contaminate the aquatic ecosystem. The misuse of synthetic pesticide not only affects the environment, but also affects the health status of aquatic organisms. The organophosphate pesticide pollutants are emerging contaminants, which threatens the terrestrial and aquatic ecosystem. Monocrotophos (MCP) is an organophosphate insecticide, utilized on crops including rice, maize, sugarcane, cotton, soybeans, groundnuts and vegetables. MCP is hydrophilic in nature and their solubilizing properties reduce the soil sorption which leads to groundwater contamination. The half-life period of MCP is 17-96 and the half-life period of technical grade MCP is 2500 days if held stable at 38 °C in a container. MCP causes mild to severe confusion, anxiety, hyper-salivation, convulsion and respiratory distress in mammals as well as aquatic animals. The MCP induced toxicity including survival rate, behavioural changes, reproductive toxicity and genotoxicity in different aquatic species have been discussed in this review. Furthermore, the ultimate aim of this review is to highlight the international regulations, future perspectives and challenges involved in using the MCP.
Collapse
Affiliation(s)
- Durairaj Karthick Rajan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, PR China.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India.
| | - Jayakumar Rajarajeswaran
- Department of Nanobiomaterials, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Dharmaraj Divya
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamilnadu, 630003, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur Campus, 603 203, Tamilnadu, India
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, PR China
| |
Collapse
|
2
|
Pereira JF, Oliveira ALM, Sartori D, Yamashita F, Mali S. Perspectives on the Use of Biopolymeric Matrices as Carriers for Plant-Growth Promoting Bacteria in Agricultural Systems. Microorganisms 2023; 11:microorganisms11020467. [PMID: 36838432 PMCID: PMC9963413 DOI: 10.3390/microorganisms11020467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The subject of this review is to discuss some aspects related to the use of biopolymeric matrices as carriers for plant-growth promoting bacteria (PGPB) in agricultural systems as a possible technological solution for the establishment of agricultural production practices that result in fewer adverse impacts on the environment, reporting some promising and interesting results on the topic. Results from the encapsulation of different PGPB on alginate, starch, chitosan, and gelatin matrices are discussed, systematizing some advances made in this area of knowledge in recent years. Encapsulation of these bacteria has been shown to be an effective method for protecting them from unsuitable environments, and these new products that can act as biofertilizers and biopesticides play an important role in the establishment of a sustainable and modern agriculture. These new products are technological solutions for replacing deleterious chemical fertilizers and pesticides, maintaining soil fertility and stability, and improving crop productivity and food security. Finally, in the near future, scale-up studies will have to provide new information about the large-scale production of these materials as well as their application in the field under different biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Jéssica F. Pereira
- Department of Biochemistry and Biotechnology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
| | - André Luiz M. Oliveira
- Department of Biochemistry and Biotechnology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
| | - Daniele Sartori
- Department of Biochemistry and Biotechnology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
| | - Fabio Yamashita
- Department of Food Science and Technology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
| | - Suzana Mali
- Department of Biochemistry and Biotechnology, State University of Londrina—UEL, Londrina 86057-970, PR, Brazil
- Correspondence: ; Tel.: +55-43-3371-4270; Fax: +55-43-3371-5470
| |
Collapse
|
3
|
Raj A, Kumar A. Recent advances in assessment methods and mechanism of microbe-mediated chlorpyrifos remediation. ENVIRONMENTAL RESEARCH 2022; 214:114011. [PMID: 35985484 DOI: 10.1016/j.envres.2022.114011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP) is one of the Organophosphorus pesticides (OPs) primarily used in agriculture to safeguard crops from pests and diseases. The pervasive use of chlorpyrifos is hazardous to humans and the environment as it inhibits the receptor for acetylcholinesterase activity, leading to abnormalities linked to the central nervous system. Hence, there is an ardent need to develop an effective and sustainable approach to the on-site degradation of chlorpyrifos. The role of microbes in the remediation of pesticides is considered the most effective and eco-friendly approach, as they have strong degradative potential due to their gene and enzymes naturally adapted to these sites. Several reports have previously been published on exploring the role of microbes in the degradation of CP. However, detection of CP as an environmental contaminant is an essential prerequisite for developing an efficient microbial-mediated biodegradation method with less harmful intermediates. Most of the articles published to date discuss the fate and impact of CP in the environment along with its degradation mechanism but still fail to discuss the analytical portion. This review is focused on the latest developments in the field of bioremediation of CP along with its physicochemical properties, toxicity, fate, and conventional (UV-Visible spectrophotometer, FTIR, NMR, GC-MS, etc) and advanced detection methods (Biosensors and immunochromatography-based methods) from different environmental samples. Apart from it, this review explores the role of metagenomics, system biology, in-silico tools, and genetic engineering in facilitating the bioremediation of CP. One of the objectives of this review is to educate policymakers with scientific data that will enable the development of appropriate strategies to reduce pesticide exposure and the harmful health impacts on both Human and other environmental components. Moreover, this review provides up-to-date developments related to the sustainable remediation of CP.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
4
|
Malviya D, Thosar R, Kokare N, Pawar S, Singh UB, Saha S, Rai JP, Singh HV, Somkuwar RG, Saxena AK. A Comparative Analysis of Microbe-Based Technologies Developed at ICAR-NBAIM Against Erysiphe necator Causing Powdery Mildew Disease in Grapes ( Vitis vinifera L.). Front Microbiol 2022; 13:871901. [PMID: 35663883 PMCID: PMC9159358 DOI: 10.3389/fmicb.2022.871901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Globally, Erysiphe necator causing powdery mildew disease in grapevines (Vitis vinifera L.) is the second most important endemic disease, causing huge economic losses every year. At present, the management of powdery mildew in grapes is largely dependent upon the use of chemical fungicides. Grapes are being considered as one of the high pesticide-demanding crops. Looking at the residual impact of toxic chemical pesticides on the environment, animal, and human health, microbe-based strategies for control of powdery mildew is an emerging technique. It offers an environment-friendly, residue-free, and effective yet safer approach to control powdery mildew disease in grapes. The mode of action is relatively diverse as well as specific to different pathosystems. Hence, the aim of this study was to evaluate the microbe-based technologies, i.e., Eco-pesticide®, Bio-Pulse®, and Bio-Care 24® developed at the Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, against grape powdery mildew and to integrate these technologies with a safer fungicide (sulfur) to achieve better disease control under organic systems of viticulture. The experiments were conducted at four different locations, namely, the vineyards of ICAR-NRCG, Rajya Draksha Bagayatdar Sangh (MRDBS), and two farmers' fields at Narayangaon and Junnar in the Pune district of Maharashtra. A significantly lower percent disease index (PDI) was recorded on the leaves of grape plants treated with Eco-Pesticide®/sulfur (22.37) followed by Bio-Pulse®/sulfur (22.62) and Bio-Care 24®/sulfur (24.62) at NRCG. A similar trend was observed with the lowest PDI on bunches of Eco-pesticide® /sulfur-treated plants (24.71) followed by Bio-Pulse®/sulfur (24.94) and Bio-Care®/sulfur (26.77). The application of microbial inoculants singly or in combination with sulfur has a significant positive impact on the qualitative parameters such as pH, total soluble solids (TSS), acidity, berry diameter, and berry length of the grapes at different locations. Among all the treatments, the Bio-Pulse®/sulfur treatment showed the highest yield per vine (15.02 kg), which was on par with the treatment Eco-Pesticide®/sulfur (14.94). When compared with the yield obtained from the untreated control, 2.5 to 3 times more yield was recorded in the plants treated with either of the biopesticides used in combination with sulfur. Even in the case of individual inoculation, the yield per vine was approximately two times higher than the untreated control and water-treated plants across the test locations. Results suggested that microbial technologies not only protect grapevines from powdery mildew but also enhance the quality parameters with increased yield across the test locations.
Collapse
Affiliation(s)
- Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Ratna Thosar
- ICAR-National Research Centre for Grapes, Pune, India
| | | | - Shital Pawar
- ICAR-National Research Centre for Grapes, Pune, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Sujoy Saha
- ICAR-National Research Centre for Grapes, Pune, India
| | - Jai P Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Harsh V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - R G Somkuwar
- ICAR-National Research Centre for Grapes, Pune, India
| | - Anil K Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
5
|
Ghani MU, Asghar HN, Niaz A, Ahmad Zahir Z, Nawaz MF, Häggblom MM. Efficacy of rhizobacteria for degradation of profenofos and improvement in tomato growth. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:463-473. [PMID: 34304658 DOI: 10.1080/15226514.2021.1952927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides are widely used for managing pathogens and pests for sustainable agricultural output to feed around seven billion people worldwide. After their targeted role, residues of these compounds may build up and persist in soils and in the food chain. This study evaluated the efficiency of bacterial strains capable of plant growth promotion and biodegradation of profenofos. To execute this, bacteria were isolated from an agricultural area with a history of repeated application of profenofos. The profenofos degrading bacterial strains with growth-promoting characteristics were identified based on biochemical and molecular approaches through partial 16S ribosomal rRNA gene sequencing. The results revealed that one strain, Enterobacter cloacae MUG75, degraded over 90% profenofos after 9 days of incubation. Similarly, plant growth was significantly increased in plants grown in profenofos (100 mg L-1) contaminated soil inoculated with the same strain. The study demonstrated that inoculation of profenofos degrading bacterial strains increased plant growth and profenofos degradation. Novelty statementPesticides are extensively applied in the agriculture sector to overcome pest attacks and to increase food production to fulfill the needs of the growing world population. Residues of these pesticides can persist in the environment for long periods, may enter the groundwater reservoirs and cause harmful effects on living systems highlighting the need for bioremediation of pesticide-contaminated environments. Microbes can use pesticides as a source of carbon and energy and convert them into less toxic and non-toxic products. Application of profenofos degrading rhizobacteria in interaction with the plants in the rhizosphere can remediate the pesticide-contaminated soils and minimize their uptake into the food chain. Hence, this approach can improve soil health and food quality without compromising the environment.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah Niaz
- Pesticide Residue Laboratory, Kala Shah Kaku, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farrakh Nawaz
- Department of Forestry and Range Management, University of Agriculture, Faisalabad, Pakistan
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). BIOLOGY 2021; 10:biology10060475. [PMID: 34072072 PMCID: PMC8229920 DOI: 10.3390/biology10060475] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Plant growth-promoting rhizobacteria (PGPR) are an eco-friendly alternative to the use of chemicals in agricultural production and crop protection. However, the efficacy of PGPR as bioinoculants can be diminished by a low capacity to colonize spaces in the rhizosphere. In this work, we review pioneering and recent developments on several important functions that rhizobacteria exhibit in order to compete, colonize, and establish themselves in the plant rhizosphere. Therefore, the use of highly competitive strains in open field trials should be a priority, in order to have consistent and better results in agricultural production activities. Abstract The application of plant growth-promoting rhizobacteria (PGPR) in the field has been hampered by a number of gaps in the knowledge of the mechanisms that improve plant growth, health, and production. These gaps include (i) the ability of PGPR to colonize the rhizosphere of plants and (ii) the ability of bacterial strains to thrive under different environmental conditions. In this review, different strategies of PGPR to colonize the rhizosphere of host plants are summarized and the advantages of having highly competitive strains are discussed. Some mechanisms exhibited by PGPR to colonize the rhizosphere include recognition of chemical signals and nutrients from root exudates, antioxidant activities, biofilm production, bacterial motility, as well as efficient evasion and suppression of the plant immune system. Moreover, many PGPR contain secretion systems and produce antimicrobial compounds, such as antibiotics, volatile organic compounds, and lytic enzymes that enable them to restrict the growth of potentially phytopathogenic microorganisms. Finally, the ability of PGPR to compete and successfully colonize the rhizosphere should be considered in the development and application of bioinoculants.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
- Correspondence:
| | - Carlos Alberto Urtis-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico;
| | - Pedro Damián Loeza-Lara
- Licenciatura en Genómica Alimentaria, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo 59103, Mexico;
| | - Ma. del Carmen Orozco-Mosqueda
- Facultad de Agrobiología “Presidente Juárez”, Universidad Michoacana de San Nicolás de Hidalgo, Melchor Ocampo, Uruapan 60170, Mexico;
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|