1
|
Zhang R, Wang W, Zhang Z, Wang D, Ding H, Liu H, Zang S, Zhou R. Genome-wide re-sequencing reveals selection signatures for important economic traits in Taihang chickens. Poult Sci 2024; 103:104240. [PMID: 39217661 PMCID: PMC11402622 DOI: 10.1016/j.psj.2024.104240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Taihang chickens is precious genetic resource with excellent adaptability and disease resistance, as well as high-quality eggs and meat. However, the genetic mechanism underlying important economic traits remain largely unknown. To address this gap, we conducted whole-genome resequencing of 66 Taihang and 15 White Plymouth rock chicken (Baiyu). The population structure analysis revealed that Taihang chickens and Baiyu are 2 independent populations. The genomic regions with strong selection signals and some candidate genes related to economic and appearance traits were identified. Additionally, we found a continuously selected 1.2 Mb region on chromosome 2 that is closely related to disease resistance. Therefore, our findings were helpful in further understanding the genetic architecture of the Taihang chickens and provided a worthy theoretical basis and technological support to improve high-quality Taihang chickens.
Collapse
Affiliation(s)
- Ran Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Wenjun Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Zhenhong Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Hong Ding
- Hebei Institute of Animal Science and Veterinary Medicine, Baoding, Hebei Province, 071000, P.R. China
| | - Huage Liu
- Hebei Institute of Animal Science and Veterinary Medicine, Baoding, Hebei Province, 071000, P.R. China
| | - Sumin Zang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei Province, 071001, P.R. China.
| |
Collapse
|
2
|
Wang Z, Yu X, Yang S, Zhao M, Wang L. Non-Targeted Metabolomics of Serum Reveals Biomarkers Associated with Body Weight in Wumeng Black-Bone Chickens. Animals (Basel) 2024; 14:2743. [PMID: 39335332 PMCID: PMC11429424 DOI: 10.3390/ani14182743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Growth performance is an important economic trait of broilers but the related serum metabolomics remains unclear. In this study, we utilized non-targeted metabolomics using ultra-high-performance liquid phase tandem mass spectrometry (UHPLC-MS/MS) to establish metabolite profiling in the serum of Chinese Wumeng black-bone chickens. The biomarker metabolites in serum associated with growth performance of chickens were identified by comparing the serum metabolome differences between chickens that significantly differed in their weights at 160 days of age when fed identical diets. A total of 766 metabolites were identified including 13 differential metabolite classes such as lipids and lipid-like molecules, organic acids and their derivatives, and organoheterocyclic compounds. The results of difference analysis using a partial least squares discriminant analysis (PLS-DA) model indicated that the low-body-weight group could be differentiated based on inflammatory markers including prostaglandin a2, kynurenic acid and fatty acid esters of hydroxy fatty acids (FAHFA), and inflammation-related metabolic pathways including tryptophan and arachidonic acid metabolism. In contrast, the sera of high-body-weight chickens were enriched for riboflavin and 2-isopropylmalic acid and for metabolic pathways including riboflavin metabolism, acetyl group transfer into mitochondria, and the tricarboxylic acid (TCA) cycle. These results provide new insights into the practical application of improving the growth performance of local chickens.
Collapse
Affiliation(s)
- Zhong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Xuan Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Shenghong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Mingming Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| | - Liqi Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Liu Y, Sun D, Xu C, Liu X, Tang M, Ying S. In-depth transcriptome profiling of Cherry Valley duck lungs exposed to chronic heat stress. Front Vet Sci 2024; 11:1417244. [PMID: 39104549 PMCID: PMC11298465 DOI: 10.3389/fvets.2024.1417244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Amidst rising global temperatures, chronic heat stress (CHS) is increasingly problematic for the poultry industry. While mammalian CHS responses are well-studied, avian-specific research is lacking. This study uses in-depth transcriptome sequencing to evaluate the pulmonary response of Cherry Valley ducks to CHS at ambient temperatures of 20°C and a heat-stressed 29°C. We detailed the CHS-induced gene expression changes, encompassing mRNAs, lncRNAs, and miRNAs. Through protein-protein interaction network analysis, we identified central genes involved in the heat stress response-TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and PLCB2. Subsequent functional enrichment analysis of the differentially expressed genes and RNA targets revealed significant engagement in immune responses and regulatory processes. KEGG pathway analysis underscored crucial immune pathways, specifically those related to intestinal IgA production and Toll-like receptor signaling, as well as Salmonella infection and calcium signaling pathways. Importantly, we determined six miRNAs-miR-146, miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p-as potential key regulators within the ceRNA network. These findings enhance our comprehension of the physiological adaptation of ducks to CHS and may provide a foundation for developing strategies to improve duck production under thermal stress.
Collapse
Affiliation(s)
- Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongyue Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Congcong Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijia Ying
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
4
|
Zhao X, Wen J, Zhang X, Zhang J, Zhu T, Wang H, Yang W, Cao G, Xiong W, Liu Y, Qu C, Ning Z, Qu L. Significant genomic introgression from grey junglefowl (Gallus sonneratii) to domestic chickens (Gallus gallus domesticus). J Anim Sci Biotechnol 2024; 15:45. [PMID: 38556896 PMCID: PMC10983685 DOI: 10.1186/s40104-024-01006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Chicken is one of the most numerous and widely distributed species around the world, and many studies support the multiple ancestral origins of domestic chickens. The research regarding the yellow skin phenotype in domestic chickens (regulated by BCO2) likely originating from the grey junglefowl serves as crucial evidence for demonstrating the multiple origins of chickens. However, beyond the BCO2 gene region, much remains unknown about the introgression from the grey junglefowl into domestic chickens. Therefore, in this study, based on whole-genome data of 149 samples including 4 species of wild junglefowls and 13 local domestic chicken breeds, we explored the introgression events from the grey junglefowl to domestic chickens. RESULTS We successfully detected introgression regions besides BCO2, including two associated with growth trait (IGFBP2 and TKT), one associated with angiogenesis (TIMP3) and two members of the heat shock protein family (HSPB2 and CRYAB). Our findings suggest that the introgression from the grey junglefowl may impact the growth performance of chickens. Furthermore, we revealed introgression events from grey junglefowl at the BCO2 region in multiple domestic chicken breeds, indicating a phenomenon where the yellow skin phenotype likely underwent strong selection and was retained. Additionally, our haplotype analysis shed light on BCO2 introgression event from different sources of grey junglefowl into domestic chickens, possibly suggesting multiple genetic flows between the grey junglefowl and domestic chickens. CONCLUSIONS In summary, our findings provide evidences of the grey junglefowl contributing to the genetic diversity of domestic chickens, laying the foundation for a deeper understanding of the genetic composition within domestic chickens, and offering new perspectives on the impact of introgression on domestic chickens.
Collapse
Affiliation(s)
- Xiurong Zhao
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junhui Wen
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinxin Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Zhu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huie Wang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production and Construction Corps, Tarim University, Alar, 843300, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, 100107, China
| | - Guomin Cao
- Animal husbandry station of Fangchenggang, Fangchenggang, Guangxi Province, 538001, China
| | - Wenjie Xiong
- Animal Disease Prevention and Control Center of Fangchenggang, Fangchenggang, Guangxi Province, 538001, China
| | - Yong Liu
- Beijing Agricultural Effect Poultry Industry Co., Ltd., Beijing, 101100, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, Anhui, 236037, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Xi Y, Wu Q, Zeng Y, Qi J, Li J, He H, Xu H, Hu J, Yan X, Bai L, Han C, Hu S, Wang J, Liu H, Li L. Identification of the genetic basis of the duck growth rate in multiple growth stages using genome-wide association analysis. BMC Genomics 2023; 24:285. [PMID: 37237371 DOI: 10.1186/s12864-023-09302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The genetic locus responsible for duck body size has been fully explained before, but the growth trait-related genetic basis is still waiting to be explored. For example, the genetic site related to growth rate, an important economic trait affecting marketing weight and feeding cost, is still unclear. Here, we performed genome wide association study (GWAS) to identify growth rate-associated genes and mutations. RESULT In the current study, the body weight data of 358 ducks were recorded every 10 days from hatching to 120 days of age. According to the growth curve, we evaluated the relative and absolute growth rates (RGR and AGR) of 5 stages during the early rapid growth period. GWAS results for RGRs identified 31 significant SNPs on autosomes, and these SNPs were annotated by 24 protein-coding genes. Fourteen autosomal SNPs were significantly associated with AGRs. In addition, 4 shared significant SNPs were identified as having an association with both AGR and RGR, which were Chr2: 11483045 C>T, Chr2: 13750217 G>A, Chr2: 42508231 G>A and Chr2: 43644612 C>T. Among them, Chr2: 11483045 C>T, Chr2: 42508231 G>A, and Chr2: 43644612 C>T were annotated by ASAP1, LYN and CABYR, respectively. ASAP1 and LYN have already been proven to play roles in the growth and development of other species. In addition, we genotyped every duck using the most significant SNP (Chr2: 42508231 G>A) and compared the growth rate difference among each genotype population. The results showed that the growth rates of individuals carrying the Chr2: 42508231 A allele were significantly lower than those without this allele. Moreover, the results of the Mendelian randomization (MR) analysis supported the idea that the growth rate and birth weight had a causal effect on the adult body weight, with the growth rate having a greater effect size. CONCLUSION In this study, 41 SNPs significantly related to growth rate were identified. In addition, we considered that the ASAP1 and LYN genes are essential candidate genes affecting the duck growth rate. The growth rate also showed the potential to be used as a reliable predictor of adult weight, providing a theoretical reference for preselection.
Collapse
Affiliation(s)
- Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Qifan Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Yutian Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Junpeng Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Xiping Yan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, People's Republic of China.
| |
Collapse
|
6
|
Kader Esen V, Esen S. Association of the IGF1 5′UTR Polymorphism in Meat-Type Sheep Breeds Considering Growth, Body Size, Slaughter, and Meat Quality Traits in Turkey. Vet Sci 2023; 10:vetsci10040270. [PMID: 37104425 PMCID: PMC10146731 DOI: 10.3390/vetsci10040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
This investigation was conducted to determine how the growth and carcass traits of meat-type sheep breeds raised in Turkey are associated with IGF1 5′UTR polymorphisms. Overall, 202 lambs from five breeds were evaluated. We identified eight nucleotide changes (seven substitutions and one deletion) in three variants of IGF1 5′UTR by SSCP analysis and nucleotide sequencing. It was found that the P1 variants had a unique deletion (g.171328230 delT), while the P2 variants were identified by SNPs rs401028781, rs422604851, and g.171328404C > Y. The P3 variants possessed one heterozygous substitution (g.171328260G > R) and three homozygous substitutions (g.171328246T > A, g.171328257T > G, g.171328265T > C) not observed in P1 or P2. Based on the growth and production traits, a statistically significant difference was found only in chest width at weaning (p < 0.01) and leg circumferences at yearling (p < 0.05). The P1 variants showed a leaner profile with a higher Musculus longissimus dorsi, but the differences were not significant (p > 0.05). The P2 variants had a higher percentage of rack (p < 0.01) and loin (p > 0.05). Moreover, there was no discernible difference between variants, even though the P3 variants had a higher percentage of neck and leg and the P1 variants had a higher percentage of the shoulder. It is concluded that nucleotide changes in IGF1 5′UTR could be exploited utilizing a marker-assisted selection technique to increase growth and production attributes, as well as carcass quality traits.
Collapse
Affiliation(s)
- Vasfiye Kader Esen
- Department of Breeding and Genetics, Sheep Breeding Research Institute, Balıkesir 10200, Turkey
| | - Selim Esen
- Balikesir Directorate of Provincial Agriculture and Forestry, Republic of Turkey Ministry of Agriculture and Forestry, Balikesir 10470, Turkey
| |
Collapse
|
7
|
Ogunpaimo OJ, Ojoawo HT, Wheto MY, Adebambo AO, Adebambo OA. Association of insulin-like growth factor 1 (IGF1) gene polymorphism with the reproductive performance of three dual-purpose chicken breeds. Transl Anim Sci 2021; 5:txab215. [PMID: 34988376 PMCID: PMC8706822 DOI: 10.1093/tas/txab215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
The study was designed to investigate the association of Insulin-like growth factor 1 (IGF1) gene polymorphism with the reproductive performance of FUNAAB-Alpha, Sasso, and Kuroiler dual-purpose chicken breeds. To achieve this, a total of 250 healthy hens were selected at 12 wk of age and were intensively managed in cages for 52 wk. Blood sample was taken from each chicken at the 34th week and genomic DNA was extracted using Qiagentm DNA extraction kit, PCR was used to amplify the DNA fragments, and the PCR products were electrophoresed. Amplicons obtained were digested with restriction enzyme hinf1, and were further electrophoresed on 1.5% agarose gel. Data obtained were analyzed using the General linear model of SAS (2002) version 9.0 to determine the effect of IGF1 gene polymorphism and the distribution of alleles within the breeds. Results show polymorphism of the IGF1 gene and the restriction analysis indicated two alleles; A 58% and C 42% with the identification of genotypes AA, AC, and CC, and genotypic frequency of 22%, 43%, and 35%, respectively. Significant associations were observed between the polymorphism of the IGF1 gene, age of the bird at first lay, and weight of the hen at first lay. Chickens with haplotype CC came earlier into lay compared to those with the other two haplotypes (AA and AC). Therefore, the study suggests that haplotype CC could be used as a genetic marker to select for an improved laying performance in chickens.
Collapse
Affiliation(s)
- Olaiwola J Ogunpaimo
- Directorate of University Farms, Federal University of Agriculture, Abeokuta, Ogun State, PMB 2240, Nigeria
| | - Henry T Ojoawo
- Center of Excellence in Agricultural Development and Sustainable Environment, Federal University of Agriculture, Abeokuta, Ogun State, PMB 2240, Nigeria
| | - Mathew Y Wheto
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, PMB 2240, Nigeria
| | - Ayotunde O Adebambo
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, PMB 2240, Nigeria
| | - Olufunmilayo A Adebambo
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, PMB 2240, Nigeria
| |
Collapse
|