1
|
Żak-Bochenek A, Żebrowska-Różańska P, Bajzert J, Siwińska N, Madej JP, Kaleta-Kuratewicz K, Bochen P, Łaczmański Ł, Chełmońska-Soyta A. Comparison and characterization of the bacterial microbiota and SIgA production in different gastrointestinal segments in horses. Vet Res Commun 2024; 48:3605-3620. [PMID: 39180603 PMCID: PMC11538275 DOI: 10.1007/s11259-024-10489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024]
Abstract
In the gastrointestinal mucosa, there is a close cooperation between secretory immunoglobulin A (SIgA) and the composition of the microbiota, which aims to maintain homeostasis as well as act as a protective barrier. The purpose of this study was to determine the composition of microbiota and SIgA production in different parts of the digestive tract (small intestine, cecum, colon and rectum) of nine healthy horses and its reflection in the feces. For this purpose, we determined: the composition of the microbiome (by next-generation Sequencing of Hypervariable Regions V3-V4 and V7-V9 of the 16 S rRNA gene analysis), the amount of SIgA in the intestinal content samples (by ELISA), as well as the number of IgA-producing cells (IgA+) in the tissue samples (by immohistochemical analysis). Significant differences were observed between the small intestine and the large colon in the composition and diversity of the microbiome, as well as the number of IgA + cells in the mucosal lamina propria and the abundance of SIgA in the intestinal lumen. The small intestine in relation to the large colon is characterised by fewer IgA + cells, more SIgA in the intestinal contents and a less diverse microbiome. However, the cecum appears to be the third separate ecosystem, with a high number of IgA + cells and a diverse microbiome. The fecal sample reflects the current state of the large colon, both in terms of the microbiome and SIgA content; however, it is not known to what extent it may be influenced by dysbiosis in other parts of the digestive tract.
Collapse
Affiliation(s)
- Agnieszka Żak-Bochenek
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland.
| | - P Żebrowska-Różańska
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - J Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| | - N Siwińska
- Department of Internal Diseases and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| | - J P Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| | - K Kaleta-Kuratewicz
- Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 25, 50-375, Wrocław, Poland
| | - P Bochen
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Ł Łaczmański
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - A Chełmońska-Soyta
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. Norwida 31, 50-375, Wrocław, Poland
| |
Collapse
|
2
|
Bishop RC, Kemper AM, Clark LV, Wilkins PA, McCoy AM. Stability of Gastric Fluid and Fecal Microbial Populations in Healthy Horses under Pasture and Stable Conditions. Animals (Basel) 2024; 14:2979. [PMID: 39457909 PMCID: PMC11503871 DOI: 10.3390/ani14202979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Equine gastrointestinal microbial communities vary across the gastrointestinal tract and in response to diet or disease. Understanding the composition and stability of gastric fluid microbiota in healthy horses is a prerequisite to understanding changes associated with the development of disease. The objective of this study was to describe microbial communities in the gastric fluid and feces of healthy horses longitudinally. Horses were maintained on pasture (6 weeks), stabled (5 weeks), then returned to pasture. A consistent forage diet was provided throughout. Native gastric fluid and feces were collected weekly for full-length 16S ribosomal DNA sequencing and microbial profiling analysis. Fewer taxa were identified in the gastric fluid (770) than in the feces (5284). Species richness and diversity were significantly different between sample types (p < 0.001), but not between housing locations (p = 0.3). There was a significant effect of housing and horse on the Bray-Curtis compositional diversity of gastric (p = 0.005; p = 0.009) and fecal (p = 0.001; p = 0.001) microbiota. When horses moved from pasture to stable, the relative proportions of gastric fluid Lactobacillaceae increased and Streptococcaceae decreased, while fecal Firmicutes increased and Bacteriodota decreased. Within each housing condition, there was no significant week-to-week variation in gastric (p = 0.9) or fecal (p = 0.09) microbiota. Overall, these findings support the maintenance of stable gastric and fecal microbial populations under each management condition, providing a basis for further investigation of gastric fluid microbiota in diseases of the foregut.
Collapse
Affiliation(s)
- Rebecca C. Bishop
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Ann M. Kemper
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Lindsay V. Clark
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Pamela A. Wilkins
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Annette M. McCoy
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
3
|
Sävilammi T, Alakangas RR, Häyrynen T, Uusi-Heikkilä S. Gut Microbiota Profiling as a Promising Tool to Detect Equine Inflammatory Bowel Disease (IBD). Animals (Basel) 2024; 14:2396. [PMID: 39199930 PMCID: PMC11350833 DOI: 10.3390/ani14162396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Gastrointestinal disorders are common and debilitating in horses, but their diagnosis is often difficult and invasive. Fecal samples offer a non-invasive alternative to assessing the gastrointestinal health of horses by providing information about the gut microbiota and inflammation. In this study, we used 16S sequencing to compare the fecal bacterial diversity and composition of 27 healthy horses and 49 horses diagnosed with inflammatory bowel disease (IBD). We also measured fecal calprotectin concentration, a marker of intestinal inflammation, in healthy horses and horses with IBD. We found that microbiota composition differed between healthy horses and horses with IBD, although less than five percent of the variation in microbiota composition was explained by individual health status and age. Several differentially abundant bacterial taxa associated with IBD, age, or body condition were depleted from the most dominant Firmicutes phylum and enriched with the Bacteroidota phylum. An artificial neural network model predicted the probability of IBD among the test samples with 100% accuracy. Our study is the first to demonstrate the association between gut microbiota composition and chronic forms of IBD in horses and highlights the potential of using fecal samples as a non-invasive source of biomarkers for equine IBD.
Collapse
Affiliation(s)
- Tiina Sävilammi
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland; (T.S.); (R.-R.A.)
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Rinna-Riikka Alakangas
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland; (T.S.); (R.-R.A.)
| | - Tuomas Häyrynen
- Laukaa Horse Hospital, Ravitie 4, 41330 Vihtavuori, Finland;
| | - Silva Uusi-Heikkilä
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland; (T.S.); (R.-R.A.)
| |
Collapse
|
4
|
Boucher L, Leduc L, Leclère M, Costa MC. Current Understanding of Equine Gut Dysbiosis and Microbiota Manipulation Techniques: Comparison with Current Knowledge in Other Species. Animals (Basel) 2024; 14:758. [PMID: 38473143 DOI: 10.3390/ani14050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the importance of intestinal microbiota in horses and the factors influencing its composition have been the focus of many studies over the past few years. Factors such as age, diet, antibiotic administration, and geographic location can affect the gut microbiota. The intra- and inter-individual variability of fecal microbiota in horses complicates its interpretation and has hindered the establishment of a clear definition for dysbiosis. Although a definitive causal relationship between gut dysbiosis in horses and diseases has not been clearly identified, recent research suggests that dysbiosis may play a role in the pathogenesis of various conditions, such as colitis and asthma. Prebiotics, probiotics, and fecal microbiota transplantation to modulate the horse's gastrointestinal tract may eventually be considered a valuable tool for preventing or treating diseases, such as antibiotic-induced colitis. This article aims to summarize the current knowledge on the importance of intestinal microbiota in horses and factors influencing its composition, and also to review the published literature on methods for detecting dysbiosis while discussing the efficacy of gut microbiota manipulation in horses.
Collapse
Affiliation(s)
- Laurie Boucher
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Laurence Leduc
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcio Carvalho Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
5
|
Gomez D, Toribio R, Caddey B, Costa M, Vijan S, Dembek K. Longitudinal effects of oral administration of antimicrobial drugs on fecal microbiota of horses. J Vet Intern Med 2023; 37:2562-2572. [PMID: 37681574 PMCID: PMC10658497 DOI: 10.1111/jvim.16853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Antimicrobial drug-associated diarrhea (AAD) is the most common adverse effect in horses receiving antimicrobials. Little information on how oral administration of antimicrobials alters intestinal microbiota in horses is available. OBJECTIVE Investigate changes of the fecal microbiota in response to oral administration of antimicrobials. ANIMALS Twenty healthy horses. METHODS Prospective, longitudinal study. Horses were randomly assigned to 4 groups comprising 4 horses each: group 1 (metronidazole); group 2 (erythromycin); group 3 (doxycycline); group 4 (sulfadiazine/trimethoprim, SMZ-TMP); and group 5 (control). Antimicrobials were administered for 5 days. Fecal samples were obtained before (day 0) and at 1, 2, 3, 4, 5, 6, and 30 days of the study period. Fecal microbiota was characterized by high throughput sequencing of the V4 region of the 16S rRNA. RESULTS Horses remained healthy throughout the study. Richness and diversity in doxycycline, erythromycin, and metronidazole, but not SMZ-TMP groups, was significantly lower (P < .05) at multiple time points after administration of antimicrobials compared with samples from day 0. Main changes in the microbiota were observed during the time of antimicrobial administration (day 2-5; weighted and unweighted UniFrac PERMANOVA P < .05). Administration of erythromycin, doxycycline and, to a lesser extent, metronidazole produced a pronounced alteration in the microbiota compared with day 0 samples by decreasing the abundance of Treponema, Fibrobacter, and Lachnospiraceae and increasing Fusobacterium and Escherichia-Shigella. CONCLUSIONS AND CLINICAL IMPORTANCE Oral administration of antimicrobials alters the intestinal microbiota of healthy horses resembling horses with dysbiosis, potentially resulting in intestinal inflammation and predisposition to diarrhea.
Collapse
Affiliation(s)
- Diego Gomez
- Department of Clinical Studies, Ontario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Ramiro Toribio
- Department of Clinical SciencesThe Ohio State University, College of Veterinary MedicineColumbusOhioUSA
| | - Benjamin Caddey
- Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Marcio Costa
- Faculté de Médecine Vétérinaire – Département de Biomédecine VétérinaireUniversity of MontrealSaint‐HyacintheQuebecCanada
| | - Stephanie Vijan
- Department of Clinical SciencesThe Ohio State University, College of Veterinary MedicineColumbusOhioUSA
| | - Katarzyna Dembek
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
6
|
Ford T, McAdams ZL, Townsend KS, Martin LM, Johnson PJ, Ericsson AC. Effect of Sugar Beet Pulp on the Composition and Predicted Function of Equine Fecal Microbiota. BIOLOGY 2023; 12:1254. [PMID: 37759653 PMCID: PMC10525916 DOI: 10.3390/biology12091254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
The purpose of this study is to determine the effect of the partial replacement of dietary hay with sugar beet pulp (SBP) on the composition and predicted function of the fecal microbiota of healthy adult horses. Fecal samples were collected daily for 12 days from six adult horses after removal from pasture, including a five-day acclimation period, and a seven-day period following the introduction of SBP into their diet, and compared to six untreated horses over a comparable period. Fecal DNA was subjected to 16S rRNA amplicon sequencing and a longitudinal analysis was performed comparing the composition and predicted function. While no significant treatment-associated changes in the richness, alpha diversity, or beta diversity were detected, random forest regression identified several high-importance taxonomic features associated with change over time in horses receiving SBP. A similar analysis of the predicted functional pathways identified several high-importance pathways, including those involved in the production of L-methionine and butyrate. These data suggest that feeding SBP to healthy adult horses acutely increases the relative abundance of several Gram-positive taxa, including Cellulosilyticum sp., Moryella sp., and Weissella sp., and mitigates the predicted functional changes associated with removal from pasture. Large-scale studies are needed to assess the protective effect of SBP on the incidence of the gastrointestinal conditions of horses.
Collapse
Affiliation(s)
- Tamara Ford
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Zachary L. McAdams
- Molecular Pathogenesis and Therapeutics (MPT) Program, University of Missouri (MU), Columbia, MO 65201, USA
| | - Kile S. Townsend
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Lynn M. Martin
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Philip J. Johnson
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
| | - Aaron C. Ericsson
- College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65211, USA
- Molecular Pathogenesis and Therapeutics (MPT) Program, University of Missouri (MU), Columbia, MO 65201, USA
- MU Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine (CVM), University of Missouri (MU), Columbia, MO 65201, USA
| |
Collapse
|
7
|
Arnold CE, Pilla R. What Is the Microbiota and What Is Its Role in Colic? Vet Clin North Am Equine Pract 2023:S0749-0739(23)00016-0. [PMID: 37121786 DOI: 10.1016/j.cveq.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The fecal microbiome of the horse is reflective of the large colon and plays an important role in the health of the horse. The microbes of the gastrointestinal tract digest fiber and produce energy for the host. Healthy horses have Firmicutes, Bacteroidetes, and Verrucromicrobia as the most common phyla. During gastrointestinal disease such as colic or colitis, the microbiome shows less diversity and changes in bacterial community composition.
Collapse
Affiliation(s)
- Carolyn E Arnold
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Street, Amarillo, Texas 79106, USA.
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Wei Y, Zhou M, Fang W, Liu Q, Mao H, Chen B, Zhang T, Xu Y, Zhang W, Zheng Y, Hu X. Differences in the luminal and mucosal gut microbiomes and metabolomes of oriental rat snake (Ptyas mucosus). Appl Microbiol Biotechnol 2023; 107:3257-3271. [PMID: 37071138 DOI: 10.1007/s00253-023-12524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Previous studies regarding the gastrointestinal biogeography of microbiomes generally focused on longitudinal comparisons, whereas few studies have compared luminal and mucosal microbiomes. Investigations of the snake gut microbiome have attracted interest because of the unique digestive physiology and hibernation behavior, but adequate sampling methods must be developed. Here, we used an omics approach combining 16S rRNA gene sequencing with untargeted metabolomics to profile the luminal and mucosal gut microbiomes and metabolomes in oriental rat snakes, with the goal of revealing the heterogeneity and co-occurrence at these sites. The α-diversity of the gut microbiome was significantly higher at mucosal sites than at luminal sites. Microbial composition also differed according to sampling site, with significant differences in the abundances of dominant phyla and genera, as well as β-diversity clustering and distribution. Metabolome profiling revealed differences that were mainly related to cholinergic substances and nucleic acids. Analysis of variations in Kyoto Encyclopedia of Genes and Genomes functions of microbes and metabolites showed that the mucosal microbiome was more frequently involved in genetic information processing and cellular processes, whereas the luminal microbiome generally participated in metabolic regulation. Notably, we found a greater abundance of the opportunistic pathogen genus Escherichia-Shigella at luminal sites and higher levels of the lipid-regulator metabolite fenfluramine at mucosal sites. Despite the extensive differences between the two sampling sites, the results revealed similarities in terms of amplicon sequence variant composition and dominant core microbes. This pilot exploration of luminal and mucosal microbiomes and metabolites provides key insights to guide future research. KEY POINTS: • Snake luminal and mucosal microbiota was distinct in composition and function. • Metabolome profiling revealed differences related to different metabolites. • The pathogenic microbes are more likely to colonize the gut lumina.
Collapse
Affiliation(s)
- Yuting Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingfang Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenjie Fang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qiuhong Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tianxiang Zhang
- Institute of Wildlife Conservation, Jiangxi Academy of Forestry, Nanchang, 330045, China
| | - Yongtao Xu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Weiwei Zhang
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunlin Zheng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaolong Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
9
|
Runge KE, Bak M, Vestergaard A, Staerk-Østergaard J, Jacobsen S, Pihl TH. Serum amyloid A does not predict non-survival in hospitalised adult horses with acute colitis. Vet Rec 2023; 192:e2644. [PMID: 36780213 DOI: 10.1002/vetr.2644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/14/2023]
Abstract
BACKGROUND Predicting non-survival in horses with acute colitis improves early decision making. Therefore, this study aimed to determine the prognostic value of serum amyloid A (SAA) and other clinicopathological and clinical variables in adult horses with acute colitis. METHODS Clinical variables, SAA and other blood biomarkers, including plasma L-lactate (lactate), were assessed in 176 horses with acute colitis. A multivariate model for the prediction of non-survival was constructed. Icelandic horses were analysed separately. RESULTS Admission SAA was similar in survivors (median 548 mg/L; range 0-5453 mg/L) and non-survivors (396 mg/L; 0-5294) (p = 0.43). A model for non-survival included year of admission, lactate, heart rate, age and colic duration of more than 24 hours. Icelandic horses had a relative risk of 2.9 (95% confidence interval = 2.2-3.8) for acute colitis compared to other breeds. Lactate in Icelandic horses was higher than that in other breeds in both survivors (4.0 mmol/L, range 1.0-12.7 vs. 2.0, 0.7-12.5) and non-survivors (10.0, 1.5-26 vs. 5.4, 0.8-22) (p < 0.001). LIMITATIONS The prognostic value of repeated measurements of SAA could not be assessed in this study, as 71% of the non-surviving horses died within a day of admission. CONCLUSION Admission SAA did not predict non-survival. Breed needs consideration when lactate is evaluated as a predictor for non-survival in horses with colitis.
Collapse
Affiliation(s)
- Kira Elisabeth Runge
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Maj Bak
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Amalie Vestergaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Jacob Staerk-Østergaard
- Department of Veterinary and Animal Sciences, Animal Welfare and Disease Control, University of Copenhagen, Copenhagen, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Tina Holberg Pihl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
10
|
Elghandour MMMY, Maggiolino A, García EIC, Sánchez-Aparicio P, De Palo P, Ponce-Covarrubias JL, Pliego AB, Salem AZM. Effects of Microencapsulated Essential Oils on Equine Health: Nutrition, Metabolism and Methane Emission. Life (Basel) 2023; 13:life13020455. [PMID: 36836812 PMCID: PMC9963397 DOI: 10.3390/life13020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
This review examines the available data regarding the positive effects of microencapsulated essential oils (EOs) on the nutrition, metabolism, and possibly the methane emission of horses. A literature review was conducted on the effect of microencapsulated (EOs) on the health of horses. The information comprises articles published in recent years in indexed journals. The results indicate that mixtures of microencapsulated EOs may be beneficial to equine health due to their antimicrobial and antioxidant activity, as well as their effects on enteric methane production, nutrient absorption, and immune system enhancement. Moreover, encapsulation stabilizes substances such as EOs in small doses, primarily by combining them with other ingredients.
Collapse
Affiliation(s)
- Mona M. M. Y. Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
- Correspondence: (A.M.); (A.Z.M.S.)
| | | | - Pedro Sánchez-Aparicio
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - José Luis Ponce-Covarrubias
- Escuela Superior de Medicina Veterinaria y Zootecnia No. 3, Universidad Autónoma de Guerrero (UAGro), Técpan de Galeana 40900, Guerrero, Mexico
| | - Alberto Barbabosa Pliego
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
| | - Abdelfattah Z. M. Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Estado de México, Mexico
- Correspondence: (A.M.); (A.Z.M.S.)
| |
Collapse
|
11
|
MacNicol JL, Renwick S, Ganobis CM, Allen-Vercoe E, Weese JS, Pearson W. The influence of a probiotic/prebiotic supplement on microbial and metabolic parameters of equine cecal fluid or fecal slurry in vitro. J Anim Sci 2023; 101:skad034. [PMID: 36715114 PMCID: PMC9994591 DOI: 10.1093/jas/skad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The microbes that reside within the equine hindgut create a complex and dynamic ecosystem. The equine hindgut microbiota is intimately associated with health and, as such, represents an area which can be beneficially modified. Synbiotics, supplements that combine probiotic micro-organisms with prebiotic ingredients, are a potential means of influencing the hindgut microbiota to promote health and prevent disease. The objective of the current study was to evaluate the influence of an equine probiotic/prebiotic supplement on characteristics of the microbiota and metabolite production in vitro. Equine cecal fluid and fecal material were collected from an abattoir in QC, CAN. Five hundred milliliters of cecal fluid was used to inoculate chemostat vessels maintained as batch fermenters (chemostat cecal, N = 11) with either 0 g (control) or 0.44 g of supplement added at 12 h intervals. One hundred milliliters of cecal fluid (anaerobic cecal, N = 15) or 5% fecal slurry (anaerobic fecal, N = 6) were maintained in an anaerobic chamber with either 0 g (control) or 0.356 g of supplement added at the time of vessel establishment. Samples were taken from vessels at vessel establishment (0), 24, or 48 h of incubation. Illumina sequencing of the V4 region of the 16S rRNA gene and bioinformatics were performed for microbiome analysis. Metabolite data was obtained via NMR spectroscopy. All statistical analyses were run in SAS 9.4. There was no effect of treatment at 24 or 48h on alpha or beta diversity indices and limited taxonomic differences were noted. Acetate, propionate, and butyrate were higher in treated compared to untreated vessels in all methods. A consistent effect of supplementation on the metabolic profile with no discernable impact on the microbiota of these in vitro systems indicates inoculum microbe viability and a utilization of the provided fermentable substrate within the systems. Although no changes within the microbiome were apparent, the consistent changes in metabolites indicates a potential prebiotic effect of the added supplement and merits further exploration.
Collapse
Affiliation(s)
- Jennifer L MacNicol
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Simone Renwick
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Caroline M Ganobis
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Jeffery S Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Wendy Pearson
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
12
|
Zakia LS, Gomez DE, Caddey BB, Boerlin P, Surette MG, Arroyo LG. Direct and culture-enriched 16S rRNA sequencing of cecal content of healthy horses and horses with typhlocolitis. PLoS One 2023; 18:e0284193. [PMID: 37053174 PMCID: PMC10101396 DOI: 10.1371/journal.pone.0284193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Next generation sequencing has demonstrated that alpha diversity of the fecal microbiota is significantly altered in horses with typhlocolitis. The objective of this study was to evaluate the bacterial composition of the cecum content of horses with and without typhlocolitis through direct and culture-enriched 16S gene sequencing of six healthy horses and six horses with acute typhlocolitis; a case-control study design. Cecal content was collected after euthanasia. An aliquot was used for direct 16S gene sequencing. Another was serially diluted with brain heart infusion (BHI) and plated onto five different agar media. All culture medias, except for MacConkey, were incubated anaerobically. Bacterial colonies were harvested in bulk and used for DNA extraction, 16S PCR amplification, and sequenced using the Illumina MiSeq platform. Predominant phyla in healthy and diseased horses were Firmicutes, followed by Bacteroidetes in all cultured medias, except for MacConkey agar, in which Proteobacteria was the dominant phylum. Greater bacterial richness was identified in sequenced cecal contents as compared to cultured plates (P < 0.05). Culture-enriched molecular profiling combined with 16S rRNA gene sequencing offer an alternative method for the study of the gut microbiota of horses. For direct cecum content 16S gene amplification, the alpha diversity indices were lower in diarrheic horses compared to healthy horses (P < 0.05). A higher relative abundance of Fusobacteriota was found in 2/6 samples from diarrheic horses. The role of Fusobacteriota in equine colitis deserves investigation.
Collapse
Affiliation(s)
- Luiza S Zakia
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin B Caddey
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Chaucheyras-Durand F, Sacy A, Karges K, Apper E. Gastro-Intestinal Microbiota in Equines and Its Role in Health and Disease: The Black Box Opens. Microorganisms 2022; 10:microorganisms10122517. [PMID: 36557769 PMCID: PMC9783266 DOI: 10.3390/microorganisms10122517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Horses are large non-ruminant herbivores and rely on microbial fermentation for energy, with more than half of their maintenance energy requirement coming from microbial fermentation occurring in their enlarged caecum and colon. To achieve that, the gastro-intestinal tract (GIT) of horses harbors a broad range of various microorganisms, differing in each GIT segment, which are essential for efficient utilization of feed, especially to use nutrients that are not or little degraded by endogenous enzymes. In addition, like in other animal species, the GIT microbiota is in permanent interplay with the host's cells and is involved in a lot of functions among which inflammation, immune homeostasis, and energy metabolism. As for other animals and humans, the horse gut microbiome is sensitive to diet, especially consumption of starch, fiber, and fat. Age, breeds, stress during competitions, transportation, and exercise may also impact the microbiome. Because of its size and its complexity, the equine GIT microbiota is prone to perturbations caused by external or internal stressors that may result in digestive diseases like gastric ulcer, diarrhea, colic, or colitis, and that are thought to be linked with systemic diseases like laminitis, equine metabolic syndrome or obesity. Thus, in this review we aim at understanding the common core microbiome -in terms of structure and function- in each segment of the GIT, as well as identifying potential microbial biomarkers of health or disease which are crucial to anticipate putative perturbations, optimize global practices and develop adapted nutritional strategies and personalized nutrition.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702 Blagnac, France
- UMR MEDIS, INRAE, Université Clermont-Auvergne, 63122 Saint-Genès Champanelle, France
| | | | - Kip Karges
- Lallemand Specialities Inc., Milwaukee, WI 53218, USA
| | | |
Collapse
|
14
|
Li Y, Ma Q, Shi X, Liu G, Wang C. Integrated multi-omics reveals novel microbe-host lipid metabolism and immune interactions in the donkey hindgut. Front Immunol 2022; 13:1003247. [PMID: 36466834 PMCID: PMC9716284 DOI: 10.3389/fimmu.2022.1003247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/04/2022] [Indexed: 09/07/2023] Open
Abstract
Evidence has shown that gut microbiota play a key role in host metabolism and health; however, little is known about the microbial community in the donkey hindgut as well as the interactions that occur between gut microbes and the host. This study aimed to explore the gut microbiome differences by analyzing the microbial community and differentially expressed genes (DEGs) related to lipid metabolism and the immune system along the donkey hindgut. The hindgut tissues (cecum, ventral colon, and dorsal colon) were separated, and the contents of each section were collected from six male donkeys for multi-omics analysis. There were significant differences in terms of dominant bacteria among the three sections, especially between the cecum and dorsal colon sites. For instance, species belonging to Prevotella and Treponema were most abundant in the cecum, while the Clostridiales_bacterium, Streptococcus_equinus, Ruminococcaceae_bacterium, etc., were more abundant in the dorsal colon. Apart from propionate, the concentrations of acetate, isobutyrate, valerate and isovalerate were all lower in the cecum than in the dorsal colon (p < 0.05). Furthermore, we identified some interesting DEGs related to lipid metabolism (e.g., ME1, MBOAT1, ACOX1, ACOX2 and LIPH) and the immune system (e.g., MUC3B, mucin-2-like, IL17RC, IL1R2, IL33, C1QA, and MMP9) between the cecum and dorsal colon and found that the PPAR pathway was mainly enriched in the cecum. Finally, we found a complex relationship between the gut microbiome and gene expression, especially with respect to the immune system, and combined with protein-protein interaction (PPI) data, suggesting that the PPAR pathway might be responsible, at least in part, for the role of the hindgut microbiota in the donkeys' gut homeostasis. Our data provide an in-depth understanding of the interaction between the microbiota and function in the healthy equine hindgut and may also provide guidance for improving animal performance metrics (such as product quality) and equine welfare.
Collapse
Affiliation(s)
| | | | | | | | - Changfa Wang
- Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
15
|
Schwaiger K, Storch J, Bauer C, Bauer J. Abundance of selected bacterial groups in healthy calves and calves developing diarrhea during the first week of life: Are there differences before the manifestation of clinical symptoms? Front Microbiol 2022; 13:958080. [PMID: 36386688 PMCID: PMC9641020 DOI: 10.3389/fmicb.2022.958080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background Diarrhea is still the most common and economically most significant disease of newborn calves. Objective Analysis of the development of selected bacterial groups in the feces of neonatal calves and its significance regarding diarrhea. Animals A total of 150 newborn Simmental calves reared in 13 Bavarian farms were included in the study. Methods Fecal samples of calves taken at 0/6/12/24/48/72/168 hours (h) since birth were analyzed qualitatively and quantitatively for aerobic and anaerobic bacteria, such as Enterobacteriaceae, E. coli, enterococci, and lactobacilli, using cultural, biochemical, and molecular-biological methods. Concurrently, the health status of the animals was recorded. The bacterial levels of healthy and diarrheic animals were compared using statistical methods. In addition, feces samples from calves that developed diarrhea were examined by ELISA for the presence of rotaviruses, coronaviruses, E. coli F5, and Cryptosporidium (Cr.) parvum. Results Fifty-seven out of 150 calves (37.3 %) that were examined developed diarrhea within the first week of life. In the feces of calves with diarrhea on day 1 of life, the levels of aerobes, Enterobacteriaceae, and E. coli were significantly increased (p < 0.05), while no significant differences in enterococci and lactobacilli were found. In animals with the onset of diarrhea on day 2 after birth, the load of lactobacilli was significantly reduced up to 24 h before the manifestation of clinical symptoms compared to healthy calves. For enterococci, this was only the case on the day of the onset of diarrhea. In addition, the ratios of aerobic and anaerobic bacteria, Enterobacteriaceae or E. coli to lactobacilli, of calves with diarrhea starting on day 2 after birth are significantly higher than those of healthy calves. The detection frequency of specific pathogens in diarrheic calves increased over the first week of life. Conclusion The results suggest that the incidence of neonatal diarrhea in calves is favored by low levels of lactobacilli in the feces. From this, the hypothesis can be derived that, in addition to an optimal supply of colostrum, the earliest possible administration of lactobacilli might reduce neonatal diarrhea in calves. However, this must be verified in a subsequent feeding experiment.
Collapse
Affiliation(s)
- Karin Schwaiger
- Unit of Food Hygiene and Technology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Karin Schwaiger
| | - Julia Storch
- Veterinary Office Landratsamt Fürstenfeldbruck, Fürstenfeldbruck, Germany
| | - Christoph Bauer
- Department of Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Freising, Germany
| | - Johann Bauer
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Ayoub C, Arroyo LG, MacNicol JL, Renaud D, Weese JS, Gomez DE. Fecal microbiota of horses with colitis and its association with laminitis and survival during hospitalization. J Vet Intern Med 2022; 36:2213-2223. [PMID: 36271677 DOI: 10.1111/jvim.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The association of microbiota with clinical outcomes and the taxa associated with colitis in horses remains generally unknown. OBJECTIVES Describe the fecal microbiota of horses with colitis and investigate the association of the fecal microbiota with the development of laminitis and survival. ANIMALS Thirty-six healthy and 55 colitis horses subdivided into laminitis (n = 15) and non-laminitis (n = 39, 1 horse with chronic laminitis was removed from this comparison) and survivors (n = 27) and nonsurvivors (n = 28). METHODS Unmatched case-control study. The Illumina MiSeq platform targeting the V4 region of the 16S ribosomal RNA gene was used to assess the microbiota. RESULTS The community membership (Jaccard index) and structure (Yue and Clayton index) were different (analysis of molecular variance [AMOVA]; P < .001) between healthy and colitis horses. The linear discriminant analysis effect size (LEfSe; linear discriminant analysis [LDA] >3; P < .05) and random forest analyses found Enterobacteriaceae, Lactobacillus, Streptococcus, and Enterococcus enriched in colitis horses, whereas Treponema, Faecalibacterium, Ruminococcaceae, and Lachnospiraceae were enriched in healthy horses. The community membership and structure of colitis horses with or without laminitis was (AMOVA; P > .05). Enterobacteriaceae, Streptococcus, and Lactobacillus were enriched in horses with laminitis (LDA > 3; P < .05). The community membership (AMOVA; P = .008) of surviving and nonsurviving horses was different. Nonsurviving horses had an enrichment of Enterobacteriaceae, Pseudomonas, Streptococcus, and Enterococcus (LDA >3; P < .05). CONCLUSION AND CLINICAL IMPORTANCE Differences in the microbiota of horses with colitis that survive or do not survive are minor and, similarly, the microbiota differences in horses with colitis that do or do not develop laminitis are minor.
Collapse
Affiliation(s)
- Cosette Ayoub
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer L MacNicol
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - David Renaud
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Diego E Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Collier AJ, Gomez DE, Monteith G, Plattner BL, Verbrugghe A, Webb J, Weese JS, Blois SL. Investigating fecal microbial transplant as a novel therapy in dogs with inflammatory bowel disease: A preliminary study. PLoS One 2022; 17:e0276295. [PMID: 36256653 PMCID: PMC9578606 DOI: 10.1371/journal.pone.0276295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND There are limited studies investigating the use of fecal microbial transplant (FMT) in dogs with inflammatory bowel disease (IBD). The aim of this preliminary study was to assess the feasibility of adding FMT to standard therapy (corticosteroids and a hypoallergenic diet) for dogs with IBD and to and to describe the changes in measured outcomes after 30 days of treatment. METHODS Thirteen client-owned dogs with IBD were enrolled in this double blinded, randomized clinical trial. All dogs received corticosteroid therapy and a hypoallergenic diet; dogs were randomized to receive either placebo or FMT. Measured outcomes included the canine chronic enteropathy clinical activity index (CCECAI) at 1 week and 1 month after enrolment. Fecal microbiota were analyzed after extracting DNA from fecal samples and profiling using 16S amplicon sequencing. Dogs in the placebo group not responding to treatment after 1 month were offered FMT. RESULTS The CCECAI significantly decreased over time in both groups (p = 0.001). There were no significant differences between the CCECAI of the placebo and FMT group at each time point (F test from ANOVA, p = 0.40). No adverse effects were reported in the 30 days following FMT. CONCLUSIONS The addition of FMT to standard therapy for IBD was feasible. No significant differences were observed in the CCECAI between groups at each time point. Large scale clinical trials can be performed using these methods to evaluate the longer term effect of FMT on clinical signs, microbial diversity, and other outcomes.
Collapse
Affiliation(s)
- Allison J. Collier
- Department of Clinical Studies, Ontario Veterinary College, Guelph, Ontario, Canada
- * E-mail:
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Gabrielle Monteith
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Brandon L. Plattner
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Jinelle Webb
- Mississauga Oakville Veterinary Emergency Hospital, Mississauga, Ontario, Canada
| | - J. Scott Weese
- Department of Clinical Studies, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Shauna L. Blois
- Department of Clinical Studies, Ontario Veterinary College, Guelph, Ontario, Canada
| |
Collapse
|
18
|
Fecal Microbiota Comparison between Healthy Teaching Horses and Client-Owned Horses. J Equine Vet Sci 2022; 118:104105. [PMID: 36058504 DOI: 10.1016/j.jevs.2022.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to compare the fecal microbiota of 2 healthy teaching horse herds with that of client-owned horses from the same geographic areas. The fecal microbiota of client-owned horses from Ontario Canada (n = 15) and Florida, USA (n = 11) was compared with that teaching horses from the University of Guelph, Ontario, Canada (n = 10) and the University of Florida, Florida, USA (n = 15). The fecal microbiota was characterized by sequencing of bacterial DNA using the V4 hypervariable region of the 16S rRNA gene. The diversity (inverse Simpson index) of the fecal microbiota was significantly higher in teaching than client owned horses from the same geographical area (P < 0.05). The community membership (Jaccard Index) and structure (Yue and Clayton index) of teaching horses was also significantly different from that of client owned horses from the same geographical area (AMOVA P < 0.001). The bacterial membership and structure of the fecal microbiota of Ontario and Florida teaching horses were significantly different, while the bacterial membership, but not the structure of Ontario and Florida client owned horses was significantly different (AMOVA P < 0.001). In all 4 groups of healthy horses, Lachnospiraceae, Ruminococcaceae, Bacteroidales, Clostridiales, and Treponema were detected in high relative abundance. The fecal microbiota of healthy horses from teaching herds kept in the same environment with identical management practices differs significantly from that of horses housed in different facilities with dissimilar management practices. Our results suggest an effect of the environment and management practices on the gastrointestinal microbiota. Researchers should attempt to include healthy horses from the same farm with similar management as control groups when comparing with diseased horses.
Collapse
|
19
|
Navarro MA, Arroyo LG, Uzal FA. Special section on diseases of the equine gastrointestinal tract. J Vet Diagn Invest 2022; 34:353. [PMID: 35291888 PMCID: PMC9254069 DOI: 10.1177/10406387221081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Mauricio A Navarro
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.,California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, San Bernardino, CA, USA
| | - Luis G Arroyo
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, University of California-Davis, San Bernardino Laboratory, San Bernardino, CA, USA
| |
Collapse
|
20
|
Liepman RS, Swink JM, Habing GG, Boyaka PN, Caddey B, Costa M, Gomez DE, Toribio RE. Effects of Intravenous Antimicrobial Drugs on the Equine Fecal Microbiome. Animals (Basel) 2022; 12:1013. [PMID: 35454258 PMCID: PMC9030835 DOI: 10.3390/ani12081013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alterations in the gastrointestinal microbiota after antimicrobial therapy in horses can result in loss of colonization resistance and changes in bacterial metabolic function. It is hypothesized that these changes facilitate gastrointestinal inflammation, pathogen expansion and the development of diarrhea. The objectives of this study were to determine the effect of intravenous administration of antimicrobial drugs (ceftiofur, enrofloxacin, oxytetracycline) on equine fecal bacterial communities over time, to investigate whether those changes are detectable after 5 days of treatment and whether they persist over time (30 days). Sixteen horses were randomly assigned into 4 treatment groups: group 1 (enrofloxacin, n = 4); group 2 (ceftiofur sodium, n = 4); group 3 (oxytetracycline, n = 4); group 4 (0.9% saline solution, placebo, n = 4). Antimicrobial therapy was administered for 5 days. Fecal samples were obtained before (day 0) and at 3, 5 and 30 days of the study period. Bacterial DNA was amplified using specific primers to the hypervariable region V1−V3 of the 16S rRNA gene using a 454 FLX-Titanium pyrosequencer. Antimicrobial therapy failed to cause any changes in physical examination parameters, behavior, appetite or fecal output or consistency throughout the study in any horse. There was a significant effect of treatment on alpha diversity indices (richness) over the treatment interval for ceftiofur on days 0 vs. 3 (p < 0.05), but not for other antimicrobials (p > 0.05). Microbial composition was significantly different (p < 0.05) across treatment group and day, but not for interactions between treatment and day, regardless of taxonomic level and beta-diversity distance metric. The most significant antimicrobial effects on relative abundance were noted after intravenous administration of ceftiofur and enrofloxacin. The relative abundance of Fibrobacteres was markedly lower on day 3 compared to other days in the ceftiofur and enrofloxacin treatment groups. There was an increase in Clostridia and Lachnospiraceae from day 0 to days 3 and 5 in ceftiofur and enrofloxacin treated groups. These findings showed the negative effect of antimicrobial drugs on bacterial communities associated with gut health (Fibrobacteres and Lachnospiraceae) and indicate that changes in specific taxa could predispose horses to gastrointestinal inflammation and the development of diarrhea.
Collapse
Affiliation(s)
- Rachel S. Liepman
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| | - Jacob M. Swink
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| | - Greg G. Habing
- Department of Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Benjamin Caddey
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Marcio Costa
- Department of Veterinary Biomedical Sciences, Faculté de Médecine Vétérinaire, University of Montreal, Saint Hyacinthe, QC J2S 2M2, Canada;
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Ramiro E. Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| |
Collapse
|
21
|
Gomez DE, Li L, Goetz H, MacNicol J, Gamsjaeger L, Renaud DL. Calf Diarrhea Is Associated With a Shift From Obligated to Facultative Anaerobes and Expansion of Lactate-Producing Bacteria. Front Vet Sci 2022; 9:846383. [PMID: 35392114 PMCID: PMC8981386 DOI: 10.3389/fvets.2022.846383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/29/2022] Open
Abstract
Diarrhea is the leading cause of morbidity, mortality and antimicrobial drug use in calves during the first month of age. Alteration in the bacterial communities of the gastrointestinal tract occurs during diarrhea. Diarrheic calves often develop anion gap (AG) acidosis associated with increased concentrations of unmeasured anions including D- and L-lactate. However, studies investigating the association between gut microbiota alterations and the development of acid-base disorders in diarrheic calves are lacking. We investigated the fecal bacterial alterations of calves with diarrhea and its association with changes in blood pH, and AG. Blood and fecal samples from healthy and diarrheic veal calves were taken 7 days after arrival to the farm. The fecal microbiota of healthy and diarrheic calves was assessed by sequencing of 16S ribosomal RNA gene amplicons. Blood gas analysis was completed using an i-Stat analyzer. In healthy calves, higher richness, evenness, and diversity were observed compared to diarrheic calves. Phocaeicola, Bacteroides, Prevotella, Faecalibacterium, Butyricicoccus, Ruminococcaceae and Lachnospiraceae were enriched in healthy compared with diarrheic calves. Enterococcus, Ligilactobacillus, Lactobacilus, Gallibacterium Streptococcus, and Escherichia/Shigella were enriched in diarrheic calves. In diarrheic calves, an increased abundance of lactate-producing bacteria including Lactobacillus, Streptococcus, Veillonella, Ligilactobacillus and Olsenella was detected. Diarrheic calves had a lower pH and bicarbonate concentration and a higher AG concentration than healthy calves. Together, these results indicate that calf diarrhea is associated with a shift from obligated to facultative anaerobes and expansion of lactate-producing bacteria which are related to acidemia, low bicarbonate and increase AG. Our results highlight the importance of the gastrointestinal microbiota on the clinicopathological changes observed in diarrheic calves.
Collapse
|
22
|
Costa M, Di Pietro R, Bessegatto JA, Pereira PFV, Stievani FC, Gomes RG, Lisbôa JAN, Weese JS. Evaluation of changes in microbiota after fecal microbiota transplantation in 6 diarrheic horses. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2021; 62:1123-1130. [PMID: 34602643 PMCID: PMC8439339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to characterize the fecal microbiota of horses with acute and chronic diarrhea before and after fecal microbiota transplantation (FMT). Six client-owned horses with acute and chronic diarrhea received FMT from 2 healthy donor horses. Microbiota analysis using next-generation sequencing was performed on fecal samples collected before and 2 and 7 d after FMT. Signs of diarrhea improved in 4 horses, whereas the remaining 2 horses did not survive. There was a significant difference in the number of bacterial species between donors and recipients (P < 0.05). The Order Lactobacillales and the genera Lactobacillus, Intestinimonas, and Streptococcus were increased in the microbiota of diarrheic horses, and Saccharofermentans genus increased in healthy donors. The results suggest that FMT from the healthy donors was not effective over a 7-day period as it did not change the fecal microbiota of the diarrheic horses. Further research to improve the efficacy of FMT in horses is needed.
Collapse
Affiliation(s)
- Marcio Costa
- Department of Biomedical Sciences, Université de Montréal, Montreal, Quebec (Costa, Di Pietro); Department of Clinical Studies, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Bessegatto, Pereira, Stievani, Gomes, Lisbôa); Department of Clinical Studies, Universidade Filadelfia, Londrina, Paraná, Brazil (Stievani); Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario (Weese)
| | - Rebecca Di Pietro
- Department of Biomedical Sciences, Université de Montréal, Montreal, Quebec (Costa, Di Pietro); Department of Clinical Studies, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Bessegatto, Pereira, Stievani, Gomes, Lisbôa); Department of Clinical Studies, Universidade Filadelfia, Londrina, Paraná, Brazil (Stievani); Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario (Weese)
| | - José Antonio Bessegatto
- Department of Biomedical Sciences, Université de Montréal, Montreal, Quebec (Costa, Di Pietro); Department of Clinical Studies, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Bessegatto, Pereira, Stievani, Gomes, Lisbôa); Department of Clinical Studies, Universidade Filadelfia, Londrina, Paraná, Brazil (Stievani); Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario (Weese)
| | - Priscilla Fajardo Valente Pereira
- Department of Biomedical Sciences, Université de Montréal, Montreal, Quebec (Costa, Di Pietro); Department of Clinical Studies, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Bessegatto, Pereira, Stievani, Gomes, Lisbôa); Department of Clinical Studies, Universidade Filadelfia, Londrina, Paraná, Brazil (Stievani); Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario (Weese)
| | - Fernanda C Stievani
- Department of Biomedical Sciences, Université de Montréal, Montreal, Quebec (Costa, Di Pietro); Department of Clinical Studies, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Bessegatto, Pereira, Stievani, Gomes, Lisbôa); Department of Clinical Studies, Universidade Filadelfia, Londrina, Paraná, Brazil (Stievani); Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario (Weese)
| | - Roberta Gaberlini Gomes
- Department of Biomedical Sciences, Université de Montréal, Montreal, Quebec (Costa, Di Pietro); Department of Clinical Studies, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Bessegatto, Pereira, Stievani, Gomes, Lisbôa); Department of Clinical Studies, Universidade Filadelfia, Londrina, Paraná, Brazil (Stievani); Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario (Weese)
| | - Júlio A N Lisbôa
- Department of Biomedical Sciences, Université de Montréal, Montreal, Quebec (Costa, Di Pietro); Department of Clinical Studies, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Bessegatto, Pereira, Stievani, Gomes, Lisbôa); Department of Clinical Studies, Universidade Filadelfia, Londrina, Paraná, Brazil (Stievani); Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario (Weese)
| | - J Scott Weese
- Department of Biomedical Sciences, Université de Montréal, Montreal, Quebec (Costa, Di Pietro); Department of Clinical Studies, Universidade Estadual de Londrina, Londrina, Paraná, Brazil (Bessegatto, Pereira, Stievani, Gomes, Lisbôa); Department of Clinical Studies, Universidade Filadelfia, Londrina, Paraná, Brazil (Stievani); Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario (Weese)
| |
Collapse
|
23
|
Qin S, Huang Z, Wang Y, Pei L, Shen Y. Probiotic potential of Lactobacillus isolated from horses and its therapeutic effect on DSS-induced colitis in mice. Microb Pathog 2021; 165:105216. [PMID: 34600098 DOI: 10.1016/j.micpath.2021.105216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a refractory disease that endangers both humans and animals. In recent times, Lactobacillus have been used to treat animal diseases. It may be a good choice to try to isolate Lactobacillus with probiotic potential to treat IBD. Equine, as a kind of hindgut fermentation animal has rich intestinal microflora, but data regarding this is scarce. The isolation of Lactobacillus with probiotic potential from equine may become a new method for the treatment of IBD. Four isolates of Lactobacillus were isolated from fresh feces of healthy male adult horses and analyzed their biological characteristics. According to the phylogenetic analysis, A2.5 and A7.1 were identified as Pediococcus pentosaceus, A3 as Lactobacillus plantarum, and B8.2 as Weissella cibaria. All four isolates showed tolerance to the environment of acid, bile salt concentration and simulated artificial gastrointestinal fluid. The hydrophobic rate and self-aggregation rate of A3 were close to 100%, and the adhesion rate was 28.85 ± 0.74%. Four isolates were negative in hemolysis test and sensitive to common antibiotics and different isolates had different sensitivity to antibiotics. The four isolates had antibacterial and antioxidant activities which can reflect their probiotic potential. Furthermore, they could regulate the LPS (Lipopolysaccharides) stimulated Caco-2 cells. We chose A3 as the treatment strain to intervene Dextran sulfate sodium salt (DSS)-induced mice. The results showed that compared with DSS group, DSS + A3 group exhibited reduced Disease activity index (DAI), increased colon length, reduced pathological score and regulated cytokine secretion at the level of gene expression. In this study, four isolates of Lactobacillus with probiotic potential were isolated, and Lactobacillus plantarum A3 with reduced ulcerative colitis in mice was screened. It might provide a potential treatment for IBD.
Collapse
Affiliation(s)
- Songkang Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghao Huang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingli Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lulu Pei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Hashimoto-Hill S, Alenghat T. Inflammation-Associated Microbiota Composition Across Domestic Animals. Front Genet 2021; 12:649599. [PMID: 34239536 PMCID: PMC8257562 DOI: 10.3389/fgene.2021.649599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Domestic animals represent important resources for understanding shared mechanisms underlying complex natural diseases that arise due to both genetic and environmental factors. Intestinal inflammation, particularly inflammatory bowel disease (IBD), is a significant health challenge in humans and domestic animals. While the etiology of IBD is multifactorial, imbalance of symbiotic gut microbiota has been hypothesized to play a central role in disease pathophysiology. Advances in genomic sequencing and analytical pipelines have enabled researchers to decipher the composition of the intestinal microbiota during health and in the context of naturally occurring diseases. This review compiles microbiome genomic data across domestic species and highlights a common occurrence of gut microbiome dysbiosis during idiopathic intestinal inflammation in multiple species, including dogs, cats, horses, cows, and pigs. Current microbiome data obtained from animals with intestinal inflammation are mostly limited to taxonomical analyses in association with broad clinical phenotype. In general, a pathogen or pathosymbiont were not detected. Rather, functional potential of the altered microbiota has been suggested to be one of the key etiologic factors. Among the domestic species studied, canine analyses are currently the most advanced with incorporation of functional profiling of microbiota. Canine IBD parallels features of the disease in humans, thus canines represent a strong natural model for human IBD. While deeper analyses of metagenomic data, coupled with host molecular analyses are needed, comparative studies across domestic species can reveal shared microbial alterations and regulatory mechanisms that will improve our understanding of intestinal inflammation in both animals and humans.
Collapse
Affiliation(s)
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
25
|
Ma X, Zhang Y, Xu T, Qian M, Yang Z, Zhan X, Han X. Early-Life Intervention Using Exogenous Fecal Microbiota Alleviates Gut Injury and Reduce Inflammation Caused by Weaning Stress in Piglets. Front Microbiol 2021; 12:671683. [PMID: 34177852 PMCID: PMC8222923 DOI: 10.3389/fmicb.2021.671683] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) could shape the structure of intestinal microbiota in animals. This study was conducted to explore the changes that happen in the structure and function of microbiota caused by weaning stress, and whether early-life FMT could alleviate weaning stress through modifying intestinal microbiota in weaned piglets. Diarrheal (D) and healthy (H) weaned piglets were observed, and in the same farm, a total of nine litters newborn piglets were randomly allocated to three groups: sucking normally (S), weaned at 21 d (W), and early-life FMT + weaned at 21 d (FW). The results demonstrated that differences of fecal microbiota existed in group D and H. Early-life FMT significantly decreased diarrhea incidence of weaned piglets. Intestinal morphology and integrity were improved in the FW group. Both ZO-1 and occludin (tight junction proteins) of jejunum were greatly enhanced, while the zonulin expression was significantly down-regulated through early-life FMT. The expression of IL-6 and TNF-α (intestinal mucosal inflammatory cytokines) were down-regulated, while IL-10 (anti-inflammatory cytokines) was up-regulated by early-life FMT. In addition, early-life FMT increased the variety of the intestinal microbial population and the relative amounts of some beneficial bacteria such as Spirochaetes, Akkermansia, and Alistipes. Functional alteration of the intestinal microbiota revealed that lipid biosynthesis and aminoacyl-tRNA biosynthesis were enriched in the FW group. These findings suggested that alteration of the microbiota network caused by weaning stress induced diarrhea, and early-life FMT alleviated weaning stress in piglets, which was characterized by decreased diarrhea incidence, improved intestinal morphology, reduced intestinal inflammation, and modified intestinal bacterial composition and function.
Collapse
Affiliation(s)
- Xin Ma
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchen Zhang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Tingting Xu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mengqi Qian
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhiren Yang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Hainan, China
| | - Xiuan Zhan
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xinyan Han
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Hainan, China
| |
Collapse
|
26
|
Hesta M, Costa M. How Can Nutrition Help with Gastrointestinal Tract-Based Issues? Vet Clin North Am Equine Pract 2021; 37:63-87. [PMID: 33820610 DOI: 10.1016/j.cveq.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Many horses are fed differently than their wild ancestors. They often have limited access to pasture and are fed conserved forage and concentrates rich in starch and sugars, in only 2 meals per day. Feeding practices in contrast to natural feeding behavior can lead to gastrointestinal issues. Standard nutritional evaluation is warranted because of its important role in prevention and in treatment and management of diseases. When medical and nutritional treatments are combined, success rates are higher. New techniques to characterize equine microbiota have been used, allowing for microbiota manipulation to prevent and treat intestinal diseases.
Collapse
Affiliation(s)
- Myriam Hesta
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B9820, Belgium.
| | - Marcio Costa
- Department of Veterinary Biomedical Sciences, University of Montreal, Saint-Hyacinthe, Canada
| |
Collapse
|
27
|
Compo NR, Mieles-Rodriguez L, Gomez DE. Fecal Bacterial Microbiota of Healthy Free-Ranging, Healthy Corralled, and Chronic Diarrheic Corralled Rhesus Macaques ( Macaca mulatta). Comp Med 2021; 71:152-165. [PMID: 33814032 DOI: 10.30802/aalas-cm-20-000080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A clinical challenge to nearly every primate facility in North America is chronic idiopathic diarrhea (CID), the pathogenesis of which has yet to be fully elucidated. However, wild macaques appear resistant to CID, a trend that we observed in the free-ranging population of the Caribbean Primate Research Center. The gastrointestinal microbiota has been shown to have a significant role in the pathogenesis of disease and in maintaining normal health and development of the gut. In humans, chronic diarrhea is associated with alteration of the gut microbiota, which has lower bacterial diversity than does the microbiota of healthy humans. The current study was designed to describe and compare the fecal bacterial microbiota of healthy corralled, CID corralled, and healthy, free-ranging macaques. Fresh fecal samples were collected from healthy corralled (HC; n = 30) and CID (n = 27) rhesus macaques and from healthy macaques from our free-ranging colony (HF; n = 43). We excluded macaques that had received antibiotics during the preceding 60 d (90 d for healthy animals). Bacterial DNA was extracted, and the V4 region of the 16S rRNA gene was sequenced and compared with known databases. The relative abundance of Proteobacteria was higher in CID animals than HC animals, but otherwise few differences were found between these 2 groups. HF macaques were differentially enriched with Christensenellaceae and Helicobacter, which are highly associated with a 'healthy' gut in humans, as compared to corralled animals, whereas CID animals were enriched with Proteobacteria, which are associated with dysbiosis in other species. These results indicate that environment has a greater influence than health status on the gut microbiota. Furthermore, the current data provided targets for future studies on potential clinical interventions, such as probiotics and fecal transplants.
Collapse
Affiliation(s)
- Nicole R Compo
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, Sabana Seca, Puerto Rico; SoBran Bioscience, Norfolk, Virginia;,
| | - Luis Mieles-Rodriguez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, Sabana Seca, Puerto Rico
| | - Diego E Gomez
- Department of Large Animal Clinical Studies, College of Veterinary Medicine, University of Florida, Gainesville, Florida; Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|