1
|
Wang Z, Duan H, You X, Peng Q, Yuan N, Sha R, Xie Z, Feng Y. Deoxynivalenol triggers mitotic catastrophe and apoptosis in C2C12 myoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116607. [PMID: 38908055 DOI: 10.1016/j.ecoenv.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Deoxynivalenol (DON), commonly known as vomitoxin, is a mycotoxin produced by fungi and is frequently found as a contaminant in various cereal-based food worldwide. While the harmful effects of DON have been extensively studied in different tissues, its specific impact on the proliferation of skeletal muscle cells remains unclear. In this study, we utilized murine C2C12 myoblasts as a model to explore the influence of DON on their proliferation. Our observations indicated that DON exhibits dose-dependent toxicity, significantly inhibiting the proliferation of C2C12 cells. Through the application of RNA-seq analysis combined with gene set enrichment analysis, we identified a noteworthy downregulation of genes linked to the extracellular matrix (ECM) and condensed chromosome. Concurrently with the reduced expression of ECM genes, immunostaining analysis revealed notable changes in the distribution of fibronectin, a vital ECM component, condensing into clusters and punctate formations. Remarkably, the exposure to DON induced the formation of multipolar spindles, leading to the disruption of the normal cell cycle. This, in turn, activated the p53-p21 signaling pathway and ultimately resulted in apoptosis. These findings contribute significant insights into the mechanisms through which DON induces toxicity within skeletal muscle cells.
Collapse
Affiliation(s)
- Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Huimin Duan
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China.
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Ying Feng
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Kulcsár S, Turbók J, Kövér G, Balogh K, Zándoki E, Gömbös P, Ali O, Szabó A, Mézes M. The Effect of Combined Exposure of Fusarium Mycotoxins on Lipid Peroxidation, Antioxidant Defense, Fatty Acid Profile, and Histopathology in Laying Hens' Liver. Toxins (Basel) 2024; 16:179. [PMID: 38668604 PMCID: PMC11053819 DOI: 10.3390/toxins16040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Fumonisin B1, T-2 toxin, and deoxynivalenol are frequently detected in feed materials. The mycotoxins induce free radical formation and, thereby, lipid peroxidation. The effects of mycotoxin exposure at the EU recommended limit (T-2/HT-2 toxin: 0.25 mg/kg; DON = 3AcDON/15-AScDON: 5 mg/kg; fumonisin B1: 20 mg/kg) and double dose (T-2/HT-2 toxin: 0.5 mg/kg, DON/3-AcDON/15-AcDON: 10 mg, and FB1: 40 mg/kg feed) were investigated during short-term (3 days) per os exposure in the liver of laying hens. On day 1 higher while on day 3 lower MDA concentrations were found in the low-dose group compared to the control. Fatty acid composition also changed: the proportion of monounsaturated fatty acids increased (p < 0.05) and the proportion of polyunsaturated fatty acids decreased by day 3. These alterations resulted in a decrease in the index of unsaturation and average fatty acid chain length. Histopathological alterations suggested that the incidence and severity of liver lesions were higher in the mycotoxin-treated laying hens, and the symptoms correlated with the fatty acid profile of total phospholipids. Overall, the findings revealed that mycotoxin exposure, even at the EU-recommended limits, induced lipid peroxidation in the liver, which led to changes in fatty acid composition, matched with tissue damage.
Collapse
Affiliation(s)
- Szabina Kulcsár
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Janka Turbók
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (P.G.); (O.A.)
| | - György Kövér
- Department of Animal Science, Institute of Animal Breeding Sciences, Hungarian University of Agricultural and Life Sciences, H-7400 Kaposvár, Hungary;
| | - Krisztián Balogh
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Erika Zándoki
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| | - Patrik Gömbös
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (P.G.); (O.A.)
| | - Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (P.G.); (O.A.)
| | - András Szabó
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (J.T.); (P.G.); (O.A.)
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, H-2100 Gödöllő, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, H-7400 Kaposvár, Hungary; (E.Z.); (A.S.)
| |
Collapse
|
3
|
Hassan M, Wang Y, Rajput SA, Shaukat A, Yang P, Farooq MZ, Cheng Q, Ali M, Mi X, An Y, Qi D. Ameliorative Effects of Luteolin and Activated Charcoal on Growth Performance, Immunity Function, and Antioxidant Capacity in Broiler Chickens Exposed to Deoxynivalenol. Toxins (Basel) 2023; 15:478. [PMID: 37624235 PMCID: PMC10467115 DOI: 10.3390/toxins15080478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Deoxynivalenol (DON, Vomitoxin) is a threatening mycotoxin that mainly produces oxidative stress and leads to hepatotoxicity in poultry. Antioxidant dietary supplements dramatically boost immunity, safeguarding animals from DON poisoning. Luteolin (LUT) is an active plant-derived compound that poses influential antioxidants. This study explored the effectiveness of LUT in combination with activated charcoal (AC) in detoxifying DON in broilers. The 180 one-day broiler chickens were allocated into five different groups having six replicates in each group, provided with ad libitum feed during the trial period (28 days) as follows: in the control group, basal diet (feed with no supplementation of LUT, AC or DON); in group 2, a basal diet added with 10 mg/kg DON from contaminated culture (DON); in group 3, a basal diet augmented by 350 mg/kg LUT and DON 10 mg/kg (DON + LUT); in group 4, a basal diet supplemented by DON 10 mg/kg + AC 200 mg/kg (DON + AC); and in group 5, a basal diet supplemented by 10 mg/kg DON + 350 mg/kg LUT + 200 mg/kg AC (DON + LUT + AC). Concerning the control group, the DON-treated broilers demonstrated a significant decrease in growth performance (p < 0.05) and serum immunoglobulin (p < 0.05) contents, negatively changing the serum biochemical contents and enzymatic activities and an increase in histopathological liver lesions. Furthermore, DON substantially increased (p < 0.05) malondialdehyde (MDA) concentration and decreased total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels in the serum and liver. The intake of AC and LUT to the DON-contaminated diet decreased DON residue in the liver and potentially reduced the adverse effects of DON. Considering the results, supplementation of LUT with mycotoxin adsorbent has protective effects against mycotoxicosis caused by DON. It could be helpful for the development of novel treatments to combat liver diseases in poultry birds. Our findings may provide important information for applying LUT and AC in poultry production.
Collapse
Affiliation(s)
- Mubashar Hassan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.H.); (Y.W.); (Q.C.); (X.M.); (Y.A.)
| | - Yanan Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.H.); (Y.W.); (Q.C.); (X.M.); (Y.A.)
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan;
| | - Aftab Shaukat
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 540642, China;
| | - Ping Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.H.); (Y.W.); (Q.C.); (X.M.); (Y.A.)
| | - Muhammad Zahid Farooq
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
- Department of Animal Sciences, University of Veterinary and Animal Sciences (Jhang Campus), Lahore 54000, Pakistan
| | - Qianhui Cheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.H.); (Y.W.); (Q.C.); (X.M.); (Y.A.)
| | - Mehboob Ali
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiaomei Mi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.H.); (Y.W.); (Q.C.); (X.M.); (Y.A.)
| | - Yu An
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.H.); (Y.W.); (Q.C.); (X.M.); (Y.A.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.H.); (Y.W.); (Q.C.); (X.M.); (Y.A.)
| |
Collapse
|
4
|
Efremenko E, Senko O, Maslova O, Lyagin I, Aslanli A, Stepanov N. Destruction of Mycotoxins in Poultry Waste under Anaerobic Conditions within Methanogenesis Catalyzed by Artificial Microbial Consortia. Toxins (Basel) 2023; 15:205. [PMID: 36977096 PMCID: PMC10058804 DOI: 10.3390/toxins15030205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
To reduce the toxicity of modern feeds polluted by mycotoxins, various sorbents are added to them when feeding animals. A part of the mycotoxins is excreted from the body of animals with these sorbents and remains in the manure. As a result, bulk animal wastes containing mixtures of mycotoxins are formed. It is known that it is partially possible to decrease the initial concentration of mycotoxins in the process of anaerobic digestion (AD) of contaminated methanogenic substrates. The aim of this review was to analyze the recent results in destruction of mycotoxins under the action of enzymes present in cells of anaerobic consortia catalyzing methanogenesis of wastes. The possible improvement of the functioning of the anaerobic artificial consortia during detoxification of mycotoxins in the bird droppings is discussed. Particular attention was paid to the possibility of effective functioning of microbial enzymes that catalyze the detoxification of mycotoxins, both at the stage of preparation of poultry manure for methanogenesis and directly in the anaerobic process itself. The sorbents with mycotoxins which appeared in the poultry wastes composed one of the topics of interest in this review. The preliminary alkaline treatment of poultry excreta before processing in AD was considered from the standpoint of effectively reducing the concentrations of mycotoxins in the waste.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
5
|
Schrenk D, Bignami M, Bodin L, del Mazo JKCJ, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Dänicke S, Nebbia CS, Oswald IP, Rovesti E, Steinkellner H, Hoogenboom L(R. Assessment of information as regards the toxicity of deoxynivalenol for horses and poultry. EFSA J 2023; 21:e07806. [PMID: 36751491 PMCID: PMC9892893 DOI: 10.2903/j.efsa.2023.7806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In 2017, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks for animal health related to the presence of deoxynivalenol (DON) and its acetylated and modified forms in food and feed. No observed adverse effect levels (NOAELs) and lowest observed adverse effect levels (LOAELs) were derived for different animal species. For horses, an NOAEL of 36 mg DON/kg feed was established, the highest concentration tested and not showing adverse effects. For poultry, an NOAEL of 5 mg DON/kg feed for broiler chickens and laying hens, and an NOAEL of 7 mg DON/kg feed for ducks and turkeys was derived. The European Commission requested EFSA to review the information regarding the toxicity of DON for horses and poultry and to revise, if necessary, the established reference points (RPs). Adverse effect levels of 1.9 and 1.7 mg DON/kg feed for, respectively, broiler chickens and turkeys were derived from reassessment of existing studies and newly available literature, showing that DON causes effects on the intestines, in particular the jejunum, with a decreased villus height but also histological damage. An RP for adverse animal health effects of 0.6 mg/kg feed for broiler chickens and turkeys, respectively, was established. For horses, an adverse effect level of 5.6 mg DON/kg feed was established from studies showing reduced feed intake, with an RP for adverse animal health effects of 3.5 mg/kg feed. For ducks and laying hens, RPs remain unchanged. Based on mean and P95 (UB) exposure estimates performed in the previous Opinion, the risk of adverse health effects of feeds containing DON was considered a potential concern for broiler chickens and turkeys. For horses, the risk for adverse health effects from feed containing DON is low.
Collapse
|
6
|
Jia B, Yu S, Yu D, Liu N, Zhang S, Wu A. Mycotoxin deoxynivalenol affects myoblast differentiation via downregulating cytoskeleton and ECM-integrin-FAK-RAC-PAK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112850. [PMID: 34607188 DOI: 10.1016/j.ecoenv.2021.112850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
As a common mycotoxin, deoxynivalenol (DON) contaminates cereal grains and feed in field or during processing and storage. DON elicits a spectrum of adverse effects in animals including anorexia and growth retardation. Especially, the presence of DON has also been detected in muscle, suggesting that DON may has the potential to affect the development of muscle. However, the relevant research is very rare and the molecular mechanism remains unclear. Myoblasts differentiation into multinucleated myotubes is one of the crucial steps of skeletal muscle development. In the present study, we investigated the effects of DON on differentiation of myoblasts using murine C2C12 cells model. The results indicated that DON dose-dependent inhibited the formation of myotubes in C2C12 cells. After performing omics techniques, a total of 149 differentially expressed genes were identified. The expression of cytoskeleton proteins and extracellular matrix (ECM) proteins were downregulated by DON. Furthermore, DON significantly downregulated the expression of integrin αv and integrin β5, leading to inhibition of the ECM-integrin receptor interaction. The focal adhesion kinase (FAK) and phosphorylated forms, ras-related C3 botulinum toxin substrate (RAC) and p21-activated kinases 1 (PAK1) were also downregulated by DON. Taken together, our findings suggest that DON has the potent to affect the differentiation of myoblasts via downregulating of cytoskeleton and ECM-integrin-FAK-RAC-PAK signaling pathway.
Collapse
Affiliation(s)
- Bingxuan Jia
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
7
|
Effect of a Mycotoxin Binder (MMDA) on the Growth Performance, Blood and Carcass Characteristics of Broilers Fed Ochratoxin A and T-2 Mycotoxin Contaminated Diets. Animals (Basel) 2021; 11:ani11113205. [PMID: 34827937 PMCID: PMC8614287 DOI: 10.3390/ani11113205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The contamination of feed with mycotoxins is a global concern, resulting in adverse effects on productivity and animal health and, therefore, a great economic loss. Ochratoxin A and T-2 mycotoxins are among the mycotoxins that contaminate animal feed. These mycotoxins could adversely affect the health of broilers, and the most effective method to mitigate the toxic effects of mycotoxins is the use of detoxifying agents. In the present experiment, broiler chickens were allotted into five groups. Group 1 received a non-contaminated diet; group 2 received a non-contaminated diet + 3 g/kg of a mycotoxin binder (MMDA); group 3 received a non-contaminated diet + 0.5 mg/kg OTA + 1 mg/kg T-2 toxin; group 4 received a non-contaminated diet + 0.5 mg/kg OTA + 1 mg/kg T-2 toxin + 1 g/kg MMDA; and group 5 received a non-contaminated diet + 0.5 mg/kg OTA + 1 mg/kg T-2 toxin + 3 g/kg MMDA for 35 days. The results revealed that OTA and T-2 toxin negatively affected the productive parameters and some blood and carcass characteristics of broiler chickens. The addition of the detoxifying agent (MMDA at 1 or 3 g/kg feed) to contaminated diets alleviated the adverse effects observed on productivity and the broilers heath related parameters. Abstract The present study was conducted to evaluate the efficacy of the feed additive, a novel multicomponent mycotoxin detoxifying agent (MMDA) containing modified zeolite (clinoptilolite), Bacillus subtilis, B. licheniformis, Saccharomyces cerevisiae cell walls, and silymarin, as detoxifiers of 0.5 mg/kg (0.5 ppm) ochratoxin A (OTA) and 1 mg/kg (1 ppm) T-2 toxin on broiler chickens. A total of 240 1-old broiler chickens (Ross 308) were randomly distributed into five different dietary treatments: (1) control (non-contaminated diet); (2) non contaminated diet + 3 g/kg of MMDA; (3) non-contaminated diet + 0.5 mg/kg OTA + 1 mg/kg T-2 toxin; (4) non-contaminated diet + 0.5 mg/kg OTA + 1 mg/kg T-2 toxin + 1 g/kg MMDA; and (5) non-contaminated diet + 0.5 mg/kg OTA + 1 g/kg T-2 toxin + 3 g/kg MMDA. The results showed that, in the starter period, from 1 to 10 days, the presence of OTA and T-2 mycotoxins reduced the consumption of feed and the growth of the broilers, and no effects of the detoxifying product were observed in the productivity of the chickens, at any of the doses tested, compared to the contaminated control (treatment 3). However, in the growing period, the same negative effect of mycotoxins was registered, but a recovery was observed in the consumption of feed and in the weight of the broilers that consumed 3 g/kg of the MMDA mycotoxin binder, reaching similar values to those of chickens fed uncontaminated control diets. The presence of mycotoxins in feed led to a reduction in the concentration of total proteins and albumin in blood compared to controls, and the presence of the detoxifying product partially reversed this effect. The breast yield of the chickens fed with mycotoxins was lower than that of the animals fed with the control feed and was not affected by the presence of the product tested, at 1 or 3 g/kg. The weight of the different organs (liver, gizzard, kidneys, or spleen), the intestinal pH, the histology of the small intestine, and oral lesions were not affected by the experimental treatments. In summary, the productive parameters and some blood and carcass characteristics of broiler chickens were impaired by the dietary presence of OTA and T-2 toxin. The tested product included at 1 or 3 g/kg feed in contaminated diets improved performance and seems to be effective in partly counteracting the deleterious effects of the tested mycotoxins.
Collapse
|
8
|
Maidana LG, Gerez J, Hohmann MNS, Verri WA, Bracarense APFL. Lactobacillus plantarum metabolites reduce deoxynivalenol toxicity on jejunal explants of piglets. Toxicon 2021; 203:12-21. [PMID: 34600911 DOI: 10.1016/j.toxicon.2021.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
The deterioration of food and feed stuffs and toxic intestinal effects due to fungal colonization and concomitant production of mycotoxins is an increasing concern. The development of fungi resistance to many commonly used chemical preservatives adds further alarm. Therefore, effective detoxification methods would be useful in counteracting this problem. Biotransformation/adsorption of mycotoxins by lactic acid bacteria and their metabolites is a promising approach to minimize the deleterious effects of mycotoxins. The objective of the present study was to evaluate the beneficial effects of Lactobacillus plantarum metabolites in reducing deoxynivalenol intestinal toxicity. To achieve this aim, histological, morphometrical and oxidative stress analyses were performed in the intestinal mucosa of piglets exposed to deoxynivalenol alone or associated with two strains (SN1 and SN2) of L. plantarum subsp. plantarum metabolites. Metabolites were obtained after dichloromethane (D) or ethyl acetate (A) extraction. Jejunal explants were exposed to the following treatments for 2 and 4 h a) culture medium (control group); b) deoxynivalenol (DON, 10 μM); c) L. plantarum metabolites DSN1; d) L. plantarum metabolites DSN1+DON; e) L. plantarum metabolites DSN2; f) L. plantarum metabolites DSN2+DON; g) L. plantarum metabolites ASN1; h) L. plantarum metabolites ASN1+DON; i) L. plantarum metabolites ASN2; j) L. plantarum metabolites ASN2+DON. The metabolites were incubated 1 h previously to DON challenge (one and 3 h of exposure). Histological assessment showed DON-treated explants with villi fusion and atrophy, multifocal apical necrosis and cuboid or flattened enterocytes with 2 and 4 h of exposure, while LP metabolites groups individually or associated with DON remained like control. The density of goblet cells in villi and crypts was reduced in DON explants compared to control group with 2 and 4 h of exposure; on the other hand, a significant increase in this parameter was achieved in LP metabolites groups compared to DON. Morphometric evaluation showed no difference in villi height or crypts depth in any treated explants. Overall, oxidative stress response assessments showed that explants exposed to SN1 extracted with dichloromethane and ethyl acetate, and SN2 extracted with dichloromethane reduced superoxide anion production. In conclusion, L. plantarum metabolites induced beneficial effects in intestinal mucosa, reducing the toxic effects of DON on intestinal morphology and oxidative response.
Collapse
Affiliation(s)
- L G Maidana
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - J Gerez
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - M N S Hohmann
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Centro de Ciências Biológicas, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - W A Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Centro de Ciências Biológicas, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil
| | - A P F L Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Campus Universitário, Rodovia Celso Garcia Cid, Km 380, Londrina, Paraná, 86057-970, Brazil.
| |
Collapse
|
9
|
Riahi I, Ramos AJ, Pérez-Vendrell AM, Marquis V. A toxicokinetic study reflecting the absorption, distribution, metabolism and excretion of deoxynivalenol in broiler chickens. JOURNAL OF APPLIED ANIMAL RESEARCH 2021. [DOI: 10.1080/09712119.2021.1946403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Insaf Riahi
- Institute of Agrifood Research and Technology (IRTA Mas Bové), Animal Nutrition Department, Constanti, Spain
| | - Antonio J. Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Lleida, Spain
| | - Anna Maria Pérez-Vendrell
- Institute of Agrifood Research and Technology (IRTA Mas Bové), Animal Nutrition Department, Constanti, Spain
| | | |
Collapse
|
10
|
Gu C, Gao X, Guo D, Wang J, Wu Q, Nepovimova E, Wu W, Kuca K. Combined Effect of Deoxynivalenol (DON) and Porcine Circovirus Type 2 (Pcv2) on Inflammatory Cytokine mRNA Expression. Toxins (Basel) 2021; 13:toxins13060422. [PMID: 34199278 PMCID: PMC8231776 DOI: 10.3390/toxins13060422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
A host’s immune system can be invaded by mycotoxin deoxynivalenol (DON) poisoning and porcine circovirus type 2 (PCV2) infections, which affect the host’s natural immune function. Pro-inflammatory cytokines, IL-1β and IL-6, are important regulators in the process of natural immune response, which participate in inflammatory response and enhance immune-mediated tissue damage. Preliminary studies have shown that DON promotes PCV2 infection by activating the MAPK signaling pathway. Here, we explored whether the mRNA expression of IL-1β and IL-6, induced by the combination of DON and PCV2, would depend on the MAPK signaling pathway. Specific pharmacological antagonists U0126, SP600125 and SB203580, were used to inhibit the activities of ERK, JNK and p38 in the MAPK signaling pathway, respectively. Then, the mRNA expression of IL-1β and IL-6 in PK-15 cells was detected to explore the effect of the MAPK signaling pathway on IL-1β and IL-6 mRNA induced by DON and PCV2. The results showed that PK-15 cells treated with DON or PCV2 induced the mRNA expression of IL-1β and IL-6 in a time- and dose-dependent manner. The combination of DON and PCV2 has an additive effect on inducing the mRNA expression of IL-1β and IL-6. Additionally, both DON and PCV2 could induce the mRNA expression of IL-1β and IL-6 via the ERK and the p38 MAPK signal pathways, while PCV2 could induce it via the JNK signal pathway. Taken together, our results suggest that MAPKs play a contributory role in IL-1β and IL-6 mRNA expression when induced by both DON and PCV2.
Collapse
Affiliation(s)
- Chao Gu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Xiuge Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Dawei Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
| | - Jiacai Wang
- Shandong Vocational Animal Science and Veterinary College, 88 Shengli East Street, Weifang 261061, China;
| | - Qinghua Wu
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Center of Innovative Veterinary Drugs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (C.G.); (X.G.); (D.G.)
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- Correspondence: (W.W.); (K.K.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Kralove, Czech Republic; (Q.W.); (E.N.)
- Biomedical Research Center, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Correspondence: (W.W.); (K.K.)
| |
Collapse
|
11
|
Riahi I, Pérez-Vendrell AM, Ramos AJ, Brufau J, Esteve-Garcia E, Schulthess J, Marquis V. Biomarkers of Deoxynivalenol Toxicity in Chickens with Special Emphasis on Metabolic and Welfare Parameters. Toxins (Basel) 2021; 13:217. [PMID: 33803037 PMCID: PMC8002947 DOI: 10.3390/toxins13030217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium species, is the most widespread mycotoxin in poultry feed worldwide. Long term-exposure from low to moderate DON concentrations can produce alteration in growth performance and impairment of the health status of birds. To evaluate the efficacy of mycotoxin-detoxifying agent alleviating the toxic effects of DON, the most relevant biomarkers of toxicity of DON in chickens should be firstly determined. The specific biomarker of exposure of DON in chickens is DON-3 sulphate found in different biological matrices (plasma and excreta). Regarding the nonspecific biomarkers called also biomarkers of effect, the most relevant ones are the impairment of the productive parameters, the intestinal morphology (reduction of villus height) and the enlargement of the gizzard. Moreover, the biomarkers of effect related to physiology (decrease of blood proteins, triglycerides, hemoglobin, erythrocytes, and lymphocytes and the increase of alanine transaminase (ALT)), immunity (response to common vaccines and release of some proinflammatory cytokines) and welfare status of the birds (such as the increase of Thiobarbituric acid reactive substances (TBARS) and the stress index), has been reported. This review highlights the available information regarding both types of biomarkers of DON toxicity in chickens.
Collapse
Affiliation(s)
- Insaf Riahi
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Anna Maria Pérez-Vendrell
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Antonio J. Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio, Av. Rovira Roure 191, 25198 Lleida, Spain;
| | - Joaquim Brufau
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Enric Esteve-Garcia
- Animal Nutrition Department, Institute of Agrifood Research and Technology (IRTA Mas Bové), 43120 Constanti, Spain; (A.M.P.-V.); (J.B.); (E.E.-G.)
| | - Julie Schulthess
- Phileo by Lesaffre, 137 Rue Gabriel Péri, 59700 Marcq en Baroeul, France; (J.S.); (V.M.)
| | - Virginie Marquis
- Phileo by Lesaffre, 137 Rue Gabriel Péri, 59700 Marcq en Baroeul, France; (J.S.); (V.M.)
| |
Collapse
|