1
|
Chen B, Silvaraju S, Almunawar SNA, Heng YC, Lee JKY, Kittelmann S. Limosilactobacillus allomucosae sp. nov., a novel species isolated from wild boar faecal samples as a potential probiotic for domestic pigs. Syst Appl Microbiol 2024; 47:126556. [PMID: 39467427 DOI: 10.1016/j.syapm.2024.126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Six strains, WILCCON 0050, WILCCON 0051, WILCCON 0052, WILCCON 0053, WILCCON 0054, WILCCON 0055T, were isolated from four different faecal samples of wild boars on Pulau Ubin, Singapore, Singapore. Based on core genome phylogenetic analysis, the six strains formed a distinct clade within the genus Limosilactobacillus (Lm.), with the most closely related type strain being Lm. mucosae DSM 13345T. The minimum ANI, dDDH, and AAI values within these six strains were 97.8%, 78.8%, and 98.6%, respectively. In contrast, the ANI, dDDH, and AAI values with Lm. mucosae DSM 13345T were lower, ranging between 94.8-95.1%, 57.1-59.0%, and 95.9-97.0%, respectively. While ANI and AAI were close to the thresholds of 95% and 97% for bacterial species delineation, respectively, dDDH was significantly lower than the threshold value of 70%. Based on our phylogenomic, phenotypic and chemotaxonomic analyses, we propose a novel species with the name Limosilactobacillus allomucosae sp. nov., with WILCCON 0055T (DSM 117632T = LMG 33563T) as the designated type strain. In vitro investigations revealed the strains' ability to break down raffinose-family oligosaccharides, and to utilize prebiotics such as xylo-oligosaccharides and galacturonic acid, thereby enhancing fibre digestion and nutrient absorption. Moreover, strong auto-aggregation properties, as well as resistance to low pH and porcine bile were observed, suggesting their potential survival and persistence during passage through the gut. The high bile tolerance of these strains appears to be attributed to their ability to deconjugate a wide range of conjugated bile compounds. In silico analysis indicated a strong potential for mucin-binding activity, which aids their colonization in the gut. These characteristics indicate the potential suitability of strains of Lm. allomucosae as probiotics for domestic pigs.
Collapse
Affiliation(s)
- Binbin Chen
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | | | | | - Yu Chyuan Heng
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Jolie Kar Yi Lee
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore.
| |
Collapse
|
2
|
Xiao X, Cui T, Qin S, Wang T, Liu J, Sa L, Wu Y, Zhong Y, Yang C. Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers. Poult Sci 2024; 103:104280. [PMID: 39305612 PMCID: PMC11437764 DOI: 10.1016/j.psj.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Lactobacillus plantarum (L. plantarum) has been globally regarded as antibiotic alternative in animal farming in the past few years. However, the potential function of L. plantarum in broilers has not been systemically explored. In this study, a total of 560 one-day-old yellow-feathered broilers were randomly divided into 3 groups, fed with basal diet and drank with L. plantarum HJZW08 (LP) at the concentration of 0 (CON), 1000 × 10^5 (LP1000), and 2000 × 10^5 CFU/L (LP2000) for 70 d. Results showed that the body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), immunoglobulin A (IgA), IgY, and anti-inflammatory interleukin 10 (IL-10) were markedly improved (P < 0.05), while the levels of pro-inflammatory IL-2, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in serum were decreased (P < 0.05) in the LP2000 group comparing with the CON group. Besides, LP treatment groups prominently increased the levels and activities of antioxidant enzymes and decreased the content of malondialdehyde (MDA). Additionally, the levels of isobutyric acid in the LP1000 and LP2000 groups and isovaleric acid in the LP2000 group were significantly improved. More importantly, the α-diversity and microbial structure of intestinal microbiota were pronounced altered by LP supplementation. The results showed that only the relative abundance of Actinobacteriota was significantly increased in the LP2000 group, while 6 kinds of bacteria on genus level were significantly changed. For further validation, linear discriminant analysis with effect size (LEfSe) plots revealed that 8 amplicon sequence variants (ASVs) were predominant in the CON group, while Bacteroides and other beneficial species such as Lactimicrobium massiliense (ASV4 and ASV36), Intestinimonas butyriciproducens (ASV71), and Barnesiella viscericola (ASV152 and ASV571) were enriched in the LP groups. Taken together, dietary supplementation with LP obviously enhanced the immune status, antioxidant capacity, and stabilized the cecal microbiota and SCFAs, contributing to the improvement of growth performance of broilers. Our study laid good foundation for the application of probiotic Lactobacillus in animal industry in the future.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Tao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Lihan Sa
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China.
| |
Collapse
|
3
|
Zhu Y, Cai H, Yan Z, Shen H, Fang S, Wang D, Liao S, Qi N, Lv M, Lin X, Hu J, Song Y, Chen X, Yin L, Zhang J, Li J, Sun M. Alleviating Pentatrichomonas hominis-induced damage in IPEC-J2 cells: the beneficial influence of porcine-derived lactobacilli. Vet Res Commun 2024; 48:2331-2342. [PMID: 38771449 DOI: 10.1007/s11259-024-10414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Pentatrichomonas hominis is a common intestinal parasitic protozoan that causes abdominal pain and diarrhea, and poses a zoonotic risk. Probiotics, known for enhancing immunity and pathogen resistance, hold promise in combating parasitic infections. This study aimed to evaluate two porcine-derived probiotics, Lactobacillus reuteri LR1 and Lactobacillus plantarum LP1, against P. hominis infections in pigs. Taxonomic identity was confirmed through 16 S rRNA gene sequencing, with L. reuteri LR1 belonging to L. reuteri species and L. plantarum LP1 belonging to L. plantarum species. Both probiotics exhibited robust in vitro growth performance. Co-culturing intestinal porcine epithelial cell line (IPEC-J2) with these probiotics significantly improved cell viability compared with the control group. Pre-incubation probiotics significantly enhanced the mRNA expression of anti-oxidative response genes in IPEC-J2 cells compared with the PHGD group, with L. reuteri LR1 and L. plantarum LP1 significantly up-regulating CuZn-SOD、CAT and Mn-SOD genes expression (p < 0.05). The anti-oxidative stress effect of L. reuteri LR1 was significantly better than that of L. plantarum LP1 (p < 0.05). Furthermore, pre-incubation with the probiotics alleviated the P. hominis-induced inflammatory response. L. reuteri LR1 and L. plantarum LP1 significantly down-regulated IL-6、IL-8 and TNF-α gene expression(p < 0.05) compared with the PHGD group. The probiotics also mitigated P. hominis-induced apoptosis. L. reuteri LR1 and L. plantarum LP1 significantly down-regulated Caspase3 and Bax gene expression (p < 0.05), significantly up-regulated Bcl-2 gene expression (p < 0.05) compared with the PHGD group. Among them, L. plantarum LP1 showed better anti-apoptotic effect. These findings highlight the probiotics for mitigating P. hominis infections in pigs. Their ability to enhance anti-oxidative responses, alleviate inflammation, and inhibit apoptosis holds promise for therapeutic applications. Simultaneously, probiotics can actively contribute to inhibiting trichomonal infections, offering a novel approach for preventing and treating diseases such as P. hominis. Further in vivo studies are required to validate these results and explore their potential in animal and human health.
Collapse
Affiliation(s)
- Yibin Zhu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haiming Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, Guangdong, China
| | - Hanqin Shen
- Guangdong Jingjie Inspection and Testing Co., Ltd, Xinxing, 527400, Guangdong, China
| | - Siyun Fang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, Guangdong, China
| | - Dingai Wang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd, Xinxing, 527400, Guangdong, China
| | - Shenquan Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nanshan Qi
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Minna Lv
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuhui Lin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junjing Hu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yongle Song
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiangjie Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lijun Yin
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianfei Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Juan Li
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Mingfei Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Yoon KN, Lee HG, Yeom SJ, Kim SS, Park JH, Song BS, Yi SW, Do YJ, Oh B, Oh SI, Eun JB, Park SH, Lee JH, Kim HB, Lee JH, Hur TY, Kim JK. Lactiplantibacillus argentoratensis AGMB00912 alleviates salmonellosis and modulates gut microbiota in weaned piglets: a pilot study. Sci Rep 2024; 14:15466. [PMID: 38965336 PMCID: PMC11224356 DOI: 10.1038/s41598-024-66092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
This study aimed to evaluate the efficacy of Lactiplantibacillus argentoratensis AGMB00912 (LA) in reducing Salmonella Typhimurium infection in weaned piglets. The investigation focused on the influence of LA on the gut microbiota composition, growth performance, and Salmonella fecal shedding. The results indicated that LA supplementation significantly improved average daily gain and reduced the prevalence and severity of diarrhea. Fecal analysis revealed reduced Salmonella shedding in the LA-supplemented group. Furthermore, LA notably altered the composition of the gut microbiota, increasing the levels of beneficial Bacillus and decreasing those of harmful Proteobacteria and Spirochaetes. Histopathological examination showed less intestinal damage in LA-treated piglets than in the controls. The study also observed that LA affected metabolic functions related to carbohydrate, amino acid, and fatty acid metabolism, thereby enhancing gut health and resilience against infection. Short-chain fatty acid concentrations in the feces were higher in the LA group, suggesting improved gut microbial activity. LA supplementation enriched the population of beneficial bacteria, including Streptococcus, Clostridium, and Bifidobacterium, while reducing the number of harmful bacteria, such as Escherichia and Campylobacter. These findings indicate the potential of LA as a probiotic alternative for swine nutrition, offering protective effects to the gut microbiota against Salmonella infection.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han Gyu Lee
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Seo-Joon Yeom
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sang-Su Kim
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jong-Heum Park
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Beom-Seok Song
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Won Yi
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Byungkwan Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Jae-Kyung Kim
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
5
|
Kong Q, Shang Z, Nawaz S, Liu S, Li J. The Whole-Genome Sequencing and Probiotic Profiling of Lactobacillus reuteri Strain TPC32 Isolated from Tibetan Pig. Nutrients 2024; 16:1900. [PMID: 38931255 PMCID: PMC11206325 DOI: 10.3390/nu16121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Gut microbiota are the microbial organisms that play a pivotal role in intestinal health and during disease conditions. Keeping in view the characteristic functions of gut microbiota, in this study, Lactobacillus reuteri TPC32 (L. reuteri TPC32) was isolated and identified, and its whole genome was analyzed by the Illumina MiSeq sequencing platform. The results revealed that L. reuteri TPC32 had high resistance against acid and bile salts with fine in vitro antibacterial ability. Accordingly, a genome sequence of L. reuteri TPC32 has a total length of 2,214,495 base pairs with a guanine-cytosine content of 38.81%. Based on metabolic annotation, out of 2,212 protein-encoding genes, 118 and 101 were annotated to carbohydrate metabolism and metabolism of cofactors and vitamins, respectively. Similarly, drug-resistance and virulence genes were annotated using the comprehensive antibiotic research database (CARD) and the virulence factor database (VFDB), in which vatE and tetW drug-resistance genes were annotated in L. reuteri TPC32, while virulence genes are not annotated. The early prevention of L. reuteri TPC32 reduced the Salmonella typhimurium (S. Typhimurium) infection in mice. The results show that L. reuteri TPC32 could improve the serum IgM, decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the 16S rRNA analysis, the L. reuteri TPC32 results affect the recovery of intestinal microbiota from disease conditions and promote the multiplication of beneficial bacteria. These results provide new insights into the biological functions and therapeutic potential of L. reuteri TPC32 for treating intestinal inflammation.
Collapse
Affiliation(s)
- Qinghui Kong
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China; (Q.K.); (Z.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhenda Shang
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China; (Q.K.); (Z.S.)
- Xizang Plateau Feed Processing Engineering Research Center, Nyingchi 860000, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Suozhu Liu
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China; (Q.K.); (Z.S.)
- Xizang Plateau Feed Processing Engineering Research Center, Nyingchi 860000, China
| | - Jiakui Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China; (Q.K.); (Z.S.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
6
|
Sugiharto S, Zulpa Y, Agusetyaningsih I, Widiastuti E, Wahyuni HI, Yudiarti T, Sartono TA. Physiological responses and intestinal conditions of broiler chickens treated with encapsulated Acalypha australis L. leaf extract and chitosan. Vet World 2024; 17:994-1000. [PMID: 38911072 PMCID: PMC11188897 DOI: 10.14202/vetworld.2024.994-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 06/25/2024] Open
Abstract
Background and Aim The ban on antibiotic growth promoters adversely affects the physiological condition and health of poultry. The aim of this study was to determine the effect of encapsulated Acalypha australis L. leaf extract, chitosan, or a combination of both on the physiological and intestinal conditions of broiler chickens. Materials and Methods A total of 280 Cobb broiler chicks were randomly distributed into four groups: Basal feed without additives (CNTL), basal feed with 0.01% encapsulated A. australis leaf extract (EALE), 0.01% chitosan (CHIT), and 0.01% EALE and 0.01% chitosan (EACH). Sample collection and data measurement were conducted on day 36. Results There was a tendency (p = 0.08) for EACH bird to have a higher body weight than the other groups. Feed consumption was higher (p < 0.05) in EACH than in EALE and CHIT. Feed conversion ratio (FCR) was lower (p < 0.05) in EALE, CHIT, and EACH than in CNTL. Erythrocyte numbers were lower (p < 0.05) in EALE than in CNTL and EACH. Hematocrit was lower (p < 0.05) in EALE and CHIT groups than in the other two groups. There was a tendency (p = 0.09) for heterophils to be higher in EACH than in CNTL. Thrombocyte counts were lower (p < 0.05) in EACH group than in the other groups. Serum globulin levels were higher (p < 0.05) in EACH than in CNTL and CHIT. The albumin-to-globulin ratio was higher (p < 0.05) in CNTL than in EALE and EACH. Coliform bacteria tended to be lower (p = 0.05) in the cecum of EACH broilers than that of other broilers. Similarly, the ratio of Lactic acid bacteria to coliforms tended to be higher (p = 0.08) in the cecum of EACH group than that in the other groups. Treatments did not influence the intestinal morphology of broiler chickens (p > 0.05). Conclusion A combination of EALE and chitosan as feed additives enhanced the final body weight and feed efficiency (FCR) of broilers. These additives also increased the levels of heterophils, serum globulin, the ratio of LAB to coliforms, and reduced thrombocytes, albumin-to-globulin ratio, and cecal coliform bacteria. Hence, EALE and chitosan blend improved the growth performance, immune status, and intestinal health of broiler chickens.
Collapse
Affiliation(s)
- Sugiharto Sugiharto
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Indonesia
| | - Yuki Zulpa
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Indonesia
| | - Ikania Agusetyaningsih
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Indonesia
| | - Endang Widiastuti
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Indonesia
| | - Hanny Indrat Wahyuni
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Indonesia
| | - Turrini Yudiarti
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Indonesia
| | - Tri Agus Sartono
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Indonesia
| |
Collapse
|
7
|
Gao M, Liao C, Fu J, Ning Z, Lv Z, Guo Y. Probiotic cocktails accelerate baicalin metabolism in the ileum to modulate intestinal health in broiler chickens. J Anim Sci Biotechnol 2024; 15:25. [PMID: 38369501 PMCID: PMC10874562 DOI: 10.1186/s40104-023-00974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Baicalin and probiotic cocktails are promising feed additives with broad application prospects. While probiotic cocktails are known to enhance intestinal health, the potential synergistic impact of combining baicalin with probiotic cocktails on the gut health of broiler chickens remains largely unexplored. Therefore, this study aims to investigate the influence of the combined administration of baicalin and probiotic cocktails on the composition of ileal and cecal microbiota in broiler chickens to elucidate the underlying mechanisms responsible for the health-promoting effects. RESULTS A total of 320 1-day-old male Arbor Acres broilers were divided into 4 groups, each with 8 replicates of 10 chicks per replicate. Over a period of 42 d, the birds were fed a basal diet or the same diet supplemented with 37.5 g/t baicalin (BC), 1,000 g/t probiotic cocktails (PC), or a combination of both BC (37.5 g/t) and PC (1,000 g/t). The results demonstrated that BC + PC exhibited positive synergistic effects, enhancing intestinal morphology, immune function, and barrier function. This was evidenced by increased VH/CD ratio, sIgA levels, and upregulated expression of occludin and claudin-1 (P < 0.05). 16S rRNA analysis indicated that PC potentiated the effects of BC, particularly in the ileum, where BC + PC significantly increased the α-diversity of the ileal microbiota, altered its β-diversity, and increased the relative abundance of Flavonifractor (P < 0.05), a flavonoid-metabolizing bacterium. Furthermore, Flavonifractor positively correlated with chicken ileum crypt depth (P < 0.05). While BC + PC had a limited effect on cecal microbiota structure, the PC group had a very similar microbial composition to BC + PC, suggesting that the effect of PC at the distal end of the gut overshadowed those of BC. CONCLUSIONS We demonstrated the synergistic enhancement of gut health regulation in broiler chickens by combining baicalin and probiotic cocktails. Probiotic cocktails enhanced the effects of baicalin and accelerated its metabolism in the ileum, thereby influencing the ileal microbiota structure. This study elucidates the interaction mechanism between probiotic cocktails and plant extract additives within the host microbiota. These findings provide compelling evidence for the future development of feed additive combinations.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Kovačić I, Burić P, Žunec A, Bilić J, Prgić A, Čanak I, Iveša N, Štifanić M, Frece J. The Effect of Lactiplantibacillus plantarum I-Enriched Diet on the Phenolic Content and Antioxidant Capacity of Queen Scallop ( Aequipecten opercularis Linnaeus, 1758) Extracts. Microorganisms 2023; 11:2723. [PMID: 38004734 PMCID: PMC10673489 DOI: 10.3390/microorganisms11112723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
The use of probiotics in the diet of bivalves poses a great potential in aquaculture as an alternative to antibiotics. The aim of this study was to assess the effect of Lactiplantibacillus plantarum I on the phenolic content and antioxidant capacity (AC) of queen scallop extracts after one month of feeding. Total phenols (TP) ranged from 28.17 ± 3.11 to 58.58 ± 8.57 mg GAE/100 g, total non-flavonoids (TNF) from 23.33 ± 3.66 to 36.56 ± 9.91 mg GAE/100 g, and total flavonoids (TF) from 10.56 ± 5.57 to 30.16 ± 1.69 mg CE/100 g. AC was assessed via three different methods: the ferric-reducing ability of plasma assay (FRAP), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic) acid assay (ABTS), and 2,2-diphenyl-1-picryhydrazyl assay (DPPH). FRAP values ranged from 0.13 ± 0.03 to 0.17 ± 0.02 µM AA/g, ABTS from 0.68 ± 0.11 to 2.79 ± 0.34 µM AA/g, and DPPH from 1.75 ± 0.17 to 2.98 ± 0.53 µM AA/g. Among all extracts, the best phenolic content and AC were observed in water extracts from queen scallops. The bivalves treated with the Lactiplantibacillus plantarum I-enriched diet showed higher AC according to the FRAP assay in all extracts. A significant correlation was observed between AC and TP and TNF in control and Lactiplantibacillus plantarum I-treated scallops.
Collapse
Affiliation(s)
- Ines Kovačić
- Faculty of Educational Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia;
| | - Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia; (A.Ž.); (N.I.); (M.Š.)
| | - Ante Žunec
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia; (A.Ž.); (N.I.); (M.Š.)
| | - Josipa Bilić
- METRIS Research Centre, Istrian University of Applied Sciences, Preradovićeva 9D, 52100 Pula, Croatia;
| | - Anamarija Prgić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia;
| | - Iva Čanak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.Č.); (J.F.)
| | - Neven Iveša
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia; (A.Ž.); (N.I.); (M.Š.)
| | - Mauro Štifanić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia; (A.Ž.); (N.I.); (M.Š.)
| | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.Č.); (J.F.)
| |
Collapse
|
9
|
Li Y, Li X, Nie C, Wu Y, Luo R, Chen C, Niu J, Zhang W. Effects of two strains of Lactobacillus isolated from the feces of calves after fecal microbiota transplantation on growth performance, immune capacity, and intestinal barrier function of weaned calves. Front Microbiol 2023; 14:1249628. [PMID: 37727287 PMCID: PMC10505964 DOI: 10.3389/fmicb.2023.1249628] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Weaning stress seriously affects the welfare of calves and causes huge economic losses to the cattle breeding industry. Probiotics play an important role in improving animal growth performance, enhancing immune function, and improving gut microbiota. The newly isolated strains of Lactobacillus reuteri L81 and Lactobacillus johnsonii L29 have shown potential as probiotics. Here, we studied the probiotic properties of these two strains on weaned calves. Methods Forty calves were randomly assigned to four groups before weaning, with 10 calves in each group, control group (Ctrl group), L. reuteri L81 supplementation group (2 g per day per calf), L. johnsonii L29 supplementation group (2 g per day per calf), L. reuteri L81 and L. johnsonii L29 composite group (2 g per day per calf), and the effects of Lactobacillus reuteri L81 and Lactobacillus johnsonii L29 supplementation on growth performance, immune status, antioxidant capacity, and intestinal barrier function of weaned calves were evaluated. Results The results showed that probiotics supplementation increased the average daily weight gain of calves after weaning, reduced weaning diarrhea index (p < 0.05), and increased serum IgA, IgM, and IgG levels (p < 0.05). L. reuteri L81 supplementation significantly decreased IL-6, increased IL-10 and superoxide dismutase (SOD) levels at 21 d after weaning (p < 0.05). Moreover, probiotics supplementation significantly decreased serum endotoxin (ET), diamine oxidase (DAO), and D-lactic acid (D-LA) levels at different time points (p < 0.05). In addition, supplementation with L. reuteri L81 significantly reduced the crypt depth and increased the ratio of villus height to crypt depth (p < 0.05) in the ileum, increased gene expression of tight junction protein ZO-1, Claudin-1 and Occludin in jejunum and ileum mucosa, reduced the gene expression of INF- γ in ileum mucosa and IL-8 in jejunum mucosa, and increased the abundance of beneficial bacteria, including Bifidobacterium, Lactobacillus, Oscillospira, etc. Discussion verall, these results showed that the two strains isolated from cattle feces after low concentration fecal microbiota transplantation improved the growth performance, immune performance, antioxidant capacity, and intestinal barrier function of weaned calves, indicating their potential as supplements to alleviate weaning diarrhea in calves.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xin Li
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ruiqing Luo
- Xinjiang Tianshan Junken Animal Husbandry Co., Ltd.,Shihezi, China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Ali MS, Lee EB, Hsu WH, Suk K, Sayem SAJ, Ullah HMA, Lee SJ, Park SC. Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens 2023; 12:874. [PMID: 37513721 PMCID: PMC10383198 DOI: 10.3390/pathogens12070874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotics are being used as feed/food supplements as an alternative to antibiotics. It has been demonstrated that probiotics provide several health benefits, including preventing diarrhea, irritable bowel syndrome, and immunomodulation. Alongside probiotic bacteria-fermented foods, the different structural components, such as lipoteichoic acids, teichoic acids, peptidoglycans, and surface-layer proteins, offer several advantages. Probiotics can produce different antimicrobial components, enzymes, peptides, vitamins, and exopolysaccharides. Besides live probiotics, there has been growing interest in consuming inactivated probiotics in farm animals, including pigs. Several reports have shown that live and killed probiotics can boost immunity, modulate intestinal microbiota, improve feed efficiency and growth performance, and decrease the incidence of diarrhea, positioning them as an interesting strategy as a potential feed supplement for pigs. Therefore, effective selection and approach to the use of probiotics might provide essential features of using probiotics as an important functional feed for pigs. This review aimed to systematically investigate the potential effects of lactic acid bacteria in their live and inactivated forms on pigs.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Walter H Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50014, USA
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Song D, Lee J, Kim K, Oh H, An J, Chang S, Cho H, Park S, Jeon K, Yoon Y, Yoo Y, Cho Y, Cho J. Effects of dietary supplementation of Pediococcus pentosaceus strains from kimchi in weaned piglet challenged with Escherichia coli and Salmonella enterica. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:611-626. [PMID: 37332280 PMCID: PMC10271919 DOI: 10.5187/jast.2023.e31] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/20/2023]
Abstract
Escherichia coli (E. coli) and Salmonella enterica (SE) infections in pigs are major source associated with enteric disease such as post weaning diarrhea. The aim of this study was to investigate the effects of Pediococcus pentosaceus in weaned piglets challenged with pathogen bacteria. In Experiment.1 90 weaned piglets with initial body weights of 8.53 ± 0.34 kg were assigned to 15 treatments for 2 weeks. The experiments were conducted two trials in a 2 × 5 factorial arrangement of treatments consisting of two levels of challenge (challenge and non-challenge) with E. coli and SE, respectively and five levels of probiotics (Control, Lactobacillus plantarum [LA], Pediococcus pentosaceus SMFM2016-WK1 [38W], Pediococcus acidilactici K [PK], Lactobacillus reuteri PF30 [PF30]). In Experiment.2 a total of 30 weaned pigs (initial body weight of 9.84 ± 0.85 kg) were used in 4 weeks experiment. Pigs were allocated to 5 groups in a randomized complete way with 2 pens per group and 3 pigs per pen. Supplementation of LA and 38W improved (p < 0.05) growth performance, intestinal pathogen bacteria count, fecal noxious odor and diarrhea incidence. In conclusion, supplementation of 38W strains isolated from white kimchi can act as probiotics by inhibiting E. coli and SE.
Collapse
Affiliation(s)
- Dongcheol Song
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia (UGA), Athens, GA 30602, United States
| | - Kangheun Kim
- Department of Food Marketing and safety, Kunkuk University, Seoul 05030, Korea
| | - Hanjin Oh
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Kyeongho Jeon
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yoonjeong Yoo
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Younghyun Cho
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
12
|
Rossi L, Dell’Anno M, Turin L, Reggi S, Lombardi A, Alborali GL, Filipe J, Riva F, Riccaboni P, Scanziani E, Dall’Ara P, Demartini E, Baldi A. Tobacco Seed-Based Oral Vaccination against Verocytotoxic O138 Escherichia coli as Alternative Approach to Antibiotics in Weaned Piglets. Antibiotics (Basel) 2023; 12:antibiotics12040715. [PMID: 37107076 PMCID: PMC10134994 DOI: 10.3390/antibiotics12040715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Post-weaning diarrhoea and enterotoxaemia caused by Escherichia coli are serious threats in the pig (Sus scrofa domesticus) livestock industry and are responsible for economic losses related to mortality, morbidity and stunted growth. The aim of this study was to evaluate the effect of an engineered tobacco seeds-based edible vaccine in O138 Escherichia coli-challenged piglets throughout a multidisciplinary approach. Thirty-six weaned piglets were enrolled and randomly divided into two experimental groups, a control (C; n = 18) group and a tobacco edible vaccination group (T, n = 18), for 29 days of trial. At days 0, 1, 2, 5 and 14, piglets of the T group were fed with 10 g of the engineered tobacco seeds line expressing F18 and VT2eB antigens, while the C group received wild-type tobacco seeds. After 20 days, 6 piglets/group were orally challenged with the Escherichia coli O138 strain (creating four subgroups: UC = unchallenged control, CC = challenged control, UT = unchallenged tobacco, CT = challenged tobacco) and fed with a high protein diet for 3 consecutive days. Zootechnical, clinical, microbiological, histological and immunological parameters were assayed and registered during the 9 days of post-challenge follow up. At 29 days post-challenge, the CT group displayed a lower average of the sum of clinical scores compared to the CC group (p < 0.05), while the CC group showed a higher average sum of the faecal score (diarrhoea) (p < 0.05) than the CT group. A decreased number of days of shedding of the pathogenic strain was observed in the CT compared to the CC group (p < 0.05). Specific anti-F18 IgA molecules were significantly higher in the CT group compared to the CC group’s faecal samples during the post-challenge period (p < 0.01). In conclusion, edible vaccination with engineered tobacco seeds showed a protective effect on clinical symptoms and diarrhoea incidence during the post-challenge period, characterized by a limited time of pathogenic strain shedding in faeces.
Collapse
Affiliation(s)
- Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Matteo Dell’Anno
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Serena Reggi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Angela Lombardi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Giovanni Loris Alborali
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), 25124 Brescia, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Pietro Riccaboni
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Paola Dall’Ara
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Eugenio Demartini
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
13
|
You C, Xu Q, Chen J, Xu Y, Pang J, Peng X, Tang Z, Sun W, Sun Z. Effects of Different Combinations of Sodium Butyrate, Medium-Chain Fatty Acids and Omega-3 Polyunsaturated Fatty Acids on the Reproductive Performance of Sows and Biochemical Parameters, Oxidative Status and Intestinal Health of Their Offspring. Animals (Basel) 2023; 13:ani13061093. [PMID: 36978634 PMCID: PMC10044250 DOI: 10.3390/ani13061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of the study was to investigate the comparative effects of different combinations of sodium butyrate (SB), medium-chain fatty acids (MCFAs), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the reproductive performances of sows, as well as on the biochemical parameters, oxidative statuses, and intestinal health of the sucking piglets. A total of 30 sows were randomly allocated to five treatments: (1) control diet (CON); (2) CON with 1 g/kg of coated SB and 7.75 g/kg of coated MCFAs (SM); (3) CON with 1 g/kg of coated SB and 68.2 g/kg of coated n-3 PUFAs (SP); (4) CON with 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFAs (MP); (5) CON with 1 g/kg of coated SB, 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFA (SMP). The results showed that sows fed the SP, MP, and SMP diets had shorter weaning-to-estrus intervals than those fed the CON diet (p < 0.01). The piglets in the SM, SP, and MP groups showed higher increases in the plasma catalase and glutathione peroxidase activities than those of the CON group (p < 0.01). The diarrhea incidence of piglets in the SM, SP and SMP groups was lower than that of piglets in the CON group (p < 0.01). Additionally, the addition of SM, SP, MP, and SMP to the sow diets increased the contents of immunoglobulin A, immunoglobulin G, fat, and proteins in the colostrum (p < 0.01), as well as the plasma total superoxide dismutase activities (p < 0.01) in the suckling piglets, whereas it decreased the mRNA expressions of tumor necrosis factor-α, interleukin-1β, and toll-like receptor 4 in the jejunum mucosa of the piglets. The relative abundances of Prevotella, Coprococcus, and Blautia in the colonic digesta of the piglets were increased in the SM group (p < 0.05), and the relative abundances of Faecalibacterium increased in the SMP group (p < 0.05), compared with the CON group. The relative abundances of Collinsella, Blautia, and Bulleidia in the MP group were higher than those in the CON group (p < 0.05). Collectively, dietary combinations of fatty acids with different chain lengths have positive effects on the growth performances and intestinal health of suckling piglets.
Collapse
Affiliation(s)
- Caiyun You
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Qingqing Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jinchao Chen
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Effects of Exposure to Low Zearalenone Concentrations Close to the EU Recommended Value on Weaned Piglets’ Colon. Toxins (Basel) 2023; 15:toxins15030206. [PMID: 36977097 PMCID: PMC10055674 DOI: 10.3390/toxins15030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Pigs are the most sensitive animal to zearalenone (ZEN) contamination, especially after weaning, with acute deleterious effects on different health parameters. Although recommendations not to exceed 100 µg/kg in piglets feed exists (2006/576/EC), there are no clear regulations concerning the maximum limit in feed for piglets, which means that more investigations are necessary to establish a guidance value. Due to these reasons, the present study aims to investigate if ZEN, at a concentration lower than the EC recommendation for piglets, might affect the microbiota or induce changes in SCFA synthesis and can trigger modifications of nutritional, physiological, and immunological markers in the colon (intestinal integrity through junction protein analysis and local immunity through IgA production). Consequently, the effect of two concentrations of zearalenone were tested, one below the limit recommended by the EC (75 µg/kg) and a higher one (290 µg/kg) for comparison reasons. Although exposure to contaminated feed with 75 µg ZEN/kg feed did not significantly affect the observed parameters, the 290 µg/kg feed altered several microbiota population abundances and the secretory IgA levels. The obtained results contribute to a better understanding of the adverse effects that ZEN can have in the colon of young pigs in a dose-dependent manner.
Collapse
|
15
|
Lan Q, Lian Y, Peng P, Yang L, Zhao H, Huang P, Ma H, Wei H, Yin Y, Liu M. Association of gut microbiota and SCFAs with finishing weight of Diannan small ear pigs. Front Microbiol 2023; 14:1117965. [PMID: 36778880 PMCID: PMC9911695 DOI: 10.3389/fmicb.2023.1117965] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Finishing weight is a key economic trait in the domestic pig industry. Evidence has linked the gut microbiota and SCFAs to health and production performance in pigs. Nevertheless, for Diannan small ear (DSE) pigs, a specific pig breed in China, the potential effect of gut microbiota and SCFAs on their finishing weight remains unclear. Herein, based on the data of the 16S ribosomal RNA gene and metagenomic sequencing analysis, we found that 13 OTUs could be potential biomarkers and 19 microbial species were associated with finishing weight. Among these, carbohydrate-decomposing bacteria of the families Streptococcaceae, Lactobacillaceae, and Prevotellaceae were positively related to finishing weight, whereas the microbial taxa associated with intestinal inflammation and damage exhibited opposite effects. In addition, interactions of these microbial species were found to be linked with finishing weight for the first time. Gut microbial functional annotation analysis indicated that CAZymes, such as glucosidase and glucanase could significantly affect finishing weight, given their roles in increasing nutrient absorption efficiency. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologies (KOs) and KEGG pathways analysis indicated that glycolysis/gluconeogenesis, phosphotransferase system (PTS), secondary bile acid biosynthesis, ABC transporters, sulfur metabolism, and one carbon pool by folate could act as key factors in regulating finishing weight. Additionally, SCFA levels, especially acetate and butyrate, had pivotal impacts on finishing weight. Finishing weight-associated species Prevotella sp. RS2, Ruminococcus sp. AF31-14BH and Lactobacillus pontis showed positive associations with butyrate concentration, and Paraprevotella xylaniphila and Bacteroides sp. OF04-15BH were positively related to acetate level. Taken together, our study provides essential knowledge for manipulating gut microbiomes to improve finishing weight. The underlying mechanisms of how gut microbiome and SCFAs modulate pigs' finishing weight required further elucidation.
Collapse
Affiliation(s)
- Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuju Lian
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peiya Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Long Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Hongjiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China,*Correspondence: Yulong Yin, ✉
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China,Kunpeng Institute of Modern Agriculture at Foshan, Foshan, China,Mei Liu, ✉
| |
Collapse
|
16
|
Caprarulo V, Turin L, Hejna M, Reggi S, Dell’Anno M, Riccaboni P, Trevisi P, Luise D, Baldi A, Rossi L. Protective effect of phytogenic plus short and medium-chain fatty acids-based additives in enterotoxigenic Escherichia coli challenged piglets. Vet Res Commun 2023; 47:217-231. [PMID: 35616772 PMCID: PMC9873745 DOI: 10.1007/s11259-022-09945-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/20/2022] [Indexed: 01/28/2023]
Abstract
Post Weaning Diarrhea (PWD) is the most important multifactorial gastroenteric disease of the weaning in pig livestock. Phytogenic (PHY) natural extracts are largely studied as alternatives to antibiotic treatments in combating the global concern of the antimicrobial resistance. The aim of this study was to evaluate the protective effect of innovative phytogenic premix with or without short and medium chain fatty acids (SCFA and MCFA) in O138 Escherichia coli challenged piglets. Twenty-seven weaned piglets were allotted into four groups fed different diets according to the following dietary treatments: CTRL (n = 13) group fed basal diet, PHY1 (n = 7) fed the basal diet supplemented with 0.2% of phytogenic premix, PHY2 (n = 7) fed the basal diet supplemented with 0.2% of phytogenic premix added with 2000 ppm of SCFA and MCFA. After 6 days of experimental diet feeding, animals were challenged (day 0) with 2 × 109 CFU of E. coli and CTRL group was divided at day 0 into positive (challenged CTRL + ; n = 6) and negative control group (unchallenged CTRL-; n = 7). Body weights were recorded at -14, -6, 0, 4 and 7 days and the feed intake was recorded daily. E. coli shedding was monitored for 4 days post-challenge by plate counting. Fecal consistency was registered daily by a four-point scale (0-3; diarrhea > 1) during the post-challenge period. Tissue samples were obtained for gene expression and histological evaluations at day 7 from four animals per group. Lower average feed intake was observed in CTRL + compared to PHY2 and CTRL during the post-challenge period. Infected groups showed higher E. coli shedding compared to CTRL- during the 4 days post-challenge (p < 0.01). PHY2 showed lower frequency of diarrhea compared to PHY1 and CTRL + from 5 to 7 days post-challenge. No significant alterations among groups were observed in histopathological evaluation. Duodenum expression of occludin tended to be lower in challenged groups compared to CTRL- at 7 days post-challenge (p = 0.066). In conclusion, dietary supplementation of PHY plus SCFA and MCFA revealed encouraging results for diarrhea prevention and growth performance in weaned piglets.
Collapse
Affiliation(s)
- Valentina Caprarulo
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Lauretta Turin
- grid.4708.b0000 0004 1757 2822Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy
| | - Monika Hejna
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Serena Reggi
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Matteo Dell’Anno
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Pietro Riccaboni
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
| | - Paolo Trevisi
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
| | - Diana Luise
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
| | - Antonella Baldi
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Luciana Rossi
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| |
Collapse
|
17
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
18
|
Impact of Feeding Probiotics on Blood Parameters, Tail Fat Metabolites, and Volatile Flavor Components of Sunit Sheep. Foods 2022; 11:foods11172644. [PMID: 36076827 PMCID: PMC9455658 DOI: 10.3390/foods11172644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Sheep crude tail fat has unique nutritional values and is used as a raw material for high-quality natural oil. The purpose of this study was to investigate the effects of probiotics on the metabolites and flavor of sheep crude tail fat. In this study, 12 Sunit sheep were randomly divided into an experimental group (LTF, basal feed + Lactiplantibacillusplantarum powder) and a control group (CTF, basal feed). The results of sheep crude tail fat analysis showed that blood lipid parameters were significantly lower and the expression of fatty acid synthase and stearoyl-CoA desaturase genes higher in the LTF group than in the CTF group (p < 0.05). Metabolomic analysis via liquid chromatography−mass spectrometry showed that the contents of metabolites such as eicosapentaenoic acid, 16-hydroxypalmitic acid, and L-citrulline were higher in the LTF group (p < 0.01). Gas chromatography−mass spectrometry detection of volatile flavor compounds in the tail fat showed that nonanal, decanal, and 1-hexanol were more abundant in the LTF group (p < 0.05). Therefore, Lactiplantibacillus plantarum feeding affected blood lipid parameters, expression of lipid metabolism-related genes, tail fat metabolites, and volatile flavor compounds in Sunit sheep. In this study, probiotics feeding was demonstrated to support high-value sheep crude tail fat production.
Collapse
|
19
|
Ebrahimi Monfared K, Gharachorloo M, Jafarpour A, Varvani J. Effect of storage and packaging conditions on physicochemical and bioactivity of matcha‐enriched muesli containing probiotic bacteria. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kiamehr Ebrahimi Monfared
- Ph D Student of the Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Maryam Gharachorloo
- Associate Professor of the Department of Food Science and Technology, Science and Research Branch Islamic Azad University Tehran Iran
| | - Afshin Jafarpour
- Assistant Professor of the Department of Food Science and Technology, Garmsar Branch Islamic Azad University Garmsar Iran
| | - Javad Varvani
- Associate Professor of the Department of Environment, Arak Branch Islamic Azad University Arak Iran
| |
Collapse
|
20
|
Wang Y, Li X, Li K, Huang Y, Yang H, Zhu P, Chi Z, Xu Y, Li Q. Signature of dissolved organic matter and microbial communities based on different oxygen levels response during distillers dried grains with solubles plus sugarcane pith co-fermentations. BIORESOURCE TECHNOLOGY 2022; 349:126868. [PMID: 35183724 DOI: 10.1016/j.biortech.2022.126868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The objective of this study was to investigate the relationship between dissolved organic matter (DOM) and microbial communities during the co-fermentation of distillers dried grains with solubles (DDGS) and sugarcane pith at different oxygen levels. In aerobic fermentation (AF), the content of DOM decreased from 32.61 mg/g to 14.14 mg/g, and decreased from 32.61 mg/g to 30.83 mg/g in anaerobic fermentation (ANF). Phenols and alcohols were consumed first in AF, while lipids and proteins were consumed first in ANF. Degradation rates of cellulose, hemicellulose and lignin in AF (6.67%, 39.93%, 36.50%) were higher than those in ANF (0.69%, 18.36%, 9.12%). Firmicutes, Actinobacteriota and Ascomycota were the main phyla in community. Distance-based redundancy analysis showed that pH, organic matter (OM) and DOM were the main driving factors of microbial community succession.
Collapse
Affiliation(s)
- Yiwu Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaolan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Kecheng Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongxiang Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
21
|
Yang G, Lu Q, Cui L, Zong M, Guo Y, Liu L, Pan D, Wu Z. The fatty acid profiles of the mixed fermented milk and its anti-inflammation properties in LPS-induced Raw 264.7 cell model. Food Funct 2022; 13:2465-2474. [DOI: 10.1039/d1fo03553c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increasing knowledge of probiotics has shown that co-cultures of probiotics can achieve better fermentation and beneficial effects, and adding LAB to fermented milk fat products can increase the production of...
Collapse
|
22
|
Dell’Anno M, Giromini C, Reggi S, Cavalleri M, Moscatelli A, Onelli E, Rebucci R, Sundaram TS, Coranelli S, Spalletta A, Baldi A, Rossi L. Evaluation of Adhesive Characteristics of L. plantarum and L. reuteri Isolated from Weaned Piglets. Microorganisms 2021; 9:1587. [PMID: 34442665 PMCID: PMC8400209 DOI: 10.3390/microorganisms9081587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
Limosilactobacillus reuteri and Lactiplantibacillus plantarum strains, previously isolated from weaned piglets, were considered for the evaluation of their adhesive characteristics. Lactobacilli were treated with LiCl in order to remove the surface protein layer, and probiotic activity was compared with those of untreated strains. The autoaggregation, co-aggregation to E. coli F18+, and adhesive abilities of LiCl-treated Limosilactobacillus reuteri and Lactiplantibacillus plantarum were significantly inhibited (p < 0.05) compared with the respective untreated strain. The hydrophobic and basic phenotypes were observed due to the strong affinity to chloroform and low adherence to ethyl acetate. In particular, L. plantarum showed higher hydrophobicity compared to L. reuteri, which may reflect their different colonizing ability. After treatment with LiCl to remove surface proteins, the adherence capabilities of L. reuteri and L. casei on IPEC-J2 cells decreased significantly (p < 0.001) and L. reuteri adhered more frequently. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that both L. reuteri and L. plantarum had several bands ranging from 20 to 100 kDa. Two-dimensional gel electrophoresis showed an acidic profile of the surface-layer polypeptides for both bacterial strains, and more studies are needed to characterize their profile and functions. The results confirm the pivotal role of surface proteins in the probiotic potential of L. reuteri and L. plantarum.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Carlotta Giromini
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Mariagrazia Cavalleri
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Alessandra Moscatelli
- Department of Biosciences, Università Degli Studi di Milano, 20133 Milan, Italy; (A.M.); (E.O.)
| | - Elisabetta Onelli
- Department of Biosciences, Università Degli Studi di Milano, 20133 Milan, Italy; (A.M.); (E.O.)
| | - Raffaella Rebucci
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Tamil Selvi Sundaram
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Simona Coranelli
- Biotecnologie B.T. Srl, Todi, 06059 Perugia, Italy; (S.C.); (A.S.)
| | - Ambra Spalletta
- Biotecnologie B.T. Srl, Todi, 06059 Perugia, Italy; (S.C.); (A.S.)
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| |
Collapse
|