1
|
Wu SW, Hsieh CY, Liu BH, Lin XJ, Yu FY. Novel antibody- and aptamer-based approaches for sensitive detection of mycotoxin fusaric acid in cereal. Food Chem 2025; 463:141245. [PMID: 39298849 DOI: 10.1016/j.foodchem.2024.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
This study presents the first successful generation of polyclonal antibodies (pAbs) and oligonucleotide aptamers specifically targeting fusaric acid (FA). Utilizing these pAbs and aptamers, three highly sensitive and specific assays were developed for the detection of FA in cereals with limits of detection (LOD) ranging from 5 to 50 ng/g: an antibody-based enzyme-linked immunosorbent assay (ELISA), an aptamer-based enzyme-linked aptamer-sorbent assay (ELASA), and a hybrid enzyme-linked aptamer-antibody sandwich assay (ELAAA). The recovery rates of FA in spiked cereal samples ranged from 87 % to 112 % across all assays. Analysis of 15 cereal feed samples revealed FA contamination levels of 459 to 1743 ng/g (ELISA), 427 to 1960 ng/g (ELASA), and 381 to 1987 ng/g (ELAAA). These results were further validated by HPLC analysis, confirming high consistency within developed assays. Overall, the ELISA, ELASA, and ELAAA are promising tools for the rapid detection of FA, significantly contributing to food safety monitoring.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Chia-Yu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Xin-Jie Lin
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Papatsiros VG, Eliopoulos C, Voulgarakis N, Arapoglou D, Riahi I, Sadurní M, Papakonstantinou GI. Effects of a Multi-Component Mycotoxin-Detoxifying Agent on Oxidative Stress, Health and Performance of Sows. Toxins (Basel) 2023; 15:580. [PMID: 37756006 PMCID: PMC10537862 DOI: 10.3390/toxins15090580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
This in vivo study aimed to investigate the effects of a multi-component mycotoxin-detoxifying agent, containing clays (bentonite, sepiolite), phytogenic feed additives (curcumin, silymarin) and postbiotics (yeast cell wall, hydrolyzed yeast) on the antioxidant capacity, health and reproductive performance of pregnant and lactating sows challenged by mycotoxins. Eighty (80) primiparous sows (mean age 366 ± 3 days) per each of the two trial farms were divided into two groups in each farm: a) T1 (control group): 40 sows received the contaminated feed and b) T2 group (experimental group): 40 sows received the contaminated feed plus the mycotoxin-detoxifying agent, one month before farrowing until the end of the lactation period. Thiobarbituric acid reactive substances (TBARS), protein carbonyls (CARBS) and total antioxidant capacity (TAC) were evaluated as biomarkers of oxidative stress. Clinical and reproductive parameters were recorded. Our results indicate that the administration of a multi-component mycotoxin-detoxifying agent's administration in sow feed has beneficial effects on oxidative stress biomarkers and can improve sows' health and performance.
Collapse
Affiliation(s)
- Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Nikolaos Voulgarakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Insaf Riahi
- BIŌNTE Animal Nutrition, 43204 Reus, Spain; (I.R.); (M.S.)
| | | | | |
Collapse
|
3
|
Damiano S, Longobardi C, Ferrara G, Piscopo N, Riccio L, Russo V, Meucci V, De Marchi L, Esposito L, Florio S, Ciarcia R. Oxidative Status and Histological Evaluation of Wild Boars' Tissues Positive for Zearalenone Contamination in the Campania Region, Southern Italy. Antioxidants (Basel) 2023; 12:1748. [PMID: 37760051 PMCID: PMC10525666 DOI: 10.3390/antiox12091748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by fungi belonging to the genera Fusarium spp. and commonly found in feed and food. It is frequently related to reproductive disorders in farm animals and, occasionally, to hyperestrogenic syndromes in humans. Nowadays, knowledge about ZEN effects on wild boars (Sus scrofa) is extremely scarce, despite the fact that they represent one of the most hunted game species in Italy. The aim of this study was to investigate how ZEN affects the liver, kidney, and muscle oxidative status and morphology of wild boars hunted in various locations throughout the province of Avellino, Campania Region, Southern Italy, during the 2021-2022 hunting season. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, as well as the malondialdehyde (MDA) levels, were assessed by colorimetric assays; tissue morphology was evaluated by hematoxylin-eosin and Masson's stains. Our data showed that ZEN contamination might result in oxidative stress (OS) and some histopathological alterations in wild boars' livers and kidneys rather than in muscles, emphasizing the importance of developing a wildlife monitoring and management strategy for dealing not only with the problem of ZEN but the surveillance of mycotoxins in general.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Consiglia Longobardi
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Nadia Piscopo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Lorenzo Riccio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Valentina Meucci
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | - Lucia De Marchi
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | - Luigi Esposito
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| |
Collapse
|
4
|
Soffa DR, Stewart JW, Pack ED, Arneson AG, De Vita R, Knight JW, Fausnacht DW, Rhoads RP, Clark SG, Schmale DG, Rhoads ML. Short-term consumption of the mycotoxin zearalenone by pubertal gilts causes persistent changes in the histoarchitecture of reproductive tissues. J Anim Sci 2023; 101:skac421. [PMID: 36574505 PMCID: PMC9890450 DOI: 10.1093/jas/skac421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/27/2022] [Indexed: 12/28/2022] Open
Abstract
Consumption of zearalenone (ZEN) detrimentally affects tissues and systems throughout the body, and these deleterious effects are especially pronounced in swine. The objectives of this project were to determine the effects of short-term consumption of ZEN (at concentrations that could be found on-farm) on growth, carcass weight, liver weight, and reproductive tissues of pubertal gilts, and to determine if the effects are transient or persistent. Cross-bred gilts (107.25 ± 2.69 kg) were randomly assigned to one of three feed treatments: 1) solvent only for 21 d (CON; n = 10), 2) ZEN for 7 d followed by 14 d of solvent (ZEN-7; 6 mg/d; n = 10), and 3) ZEN for 21 d (ZEN-21; 6 mg/d; n = 10). Body weights were collected at the beginning and end of the experiment (189.1 ± 0.8 and 211.1 ± 0.8 d of age, respectively). Carcass weights and tissues were collected at harvest. There were no treatment-based differences in growth, carcass, liver, or reproductive tissue weights. Histological analyses revealed differences based on treatment and the interaction between treatment and luteal status. The thickness of the ampullary muscularis declined with ZEN exposure (P < 0.05), while the isthmic epithelial cell height (P < 0.01) and uterine endometrial thickness (P < 0.02) increased. Interestingly, the thickness of the isthmic muscularis, uterine myometrium, and epithelial cell height only differed in the presence of a corpus luteum. Uterine epithelial cell height in the luteal phase was lowest in ZEN-7 pigs (P < 0.01). The isthmic muscularis in the luteal phase was thinner in pigs from both ZEN treatments (P < 0.01). Conversely, the luteal-stage myometrium was thicker in pigs from both ZEN treatments (P < 0.01). The discovery of these tissue-based differences during the luteal phase is particularly concerning since this corresponds with the time when embryos would be affected by the functional competency of the oviduct and uterus. The results of this work demonstrate that short-term consumption of ZEN produces microscopic, but not macroscopic alterations in reproductive organs which are likely to have negative effects on their subsequent function and that these differences persist even after ZEN consumption ceases. Taken together, these results indicate that it is insufficient to rely solely on outwardly visible symptoms as indicators of zearalenone exposure, as detrimental effects on reproductive tissues were found in the absence of phenotypic and morphologic changes.
Collapse
Affiliation(s)
- Dallas R Soffa
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jacob W Stewart
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Erica D Pack
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alicia G Arneson
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Raffaella De Vita
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - James W Knight
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Dane W Fausnacht
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sherrie G Clark
- Department of Large Animal Clinical Science, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle L Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
5
|
Llorens Castelló P, Sacco MA, Aquila I, Moltó Cortés JC, Juan García C. Evaluation of Zearalenones and Their Metabolites in Chicken, Pig and Lamb Liver Samples. Toxins (Basel) 2022; 14:toxins14110782. [PMID: 36422956 PMCID: PMC9692590 DOI: 10.3390/toxins14110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Zearalenone (ZON), zearalanone (ZAN) and their phase I metabolites: α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalalanol (α-ZAL) and β-zearalalanol (β-ZAL) are compounds with estrogenic activity that are metabolized and distributed by the circulatory system in animals and can access the food chain through meat products from livestock. Furthermore, biomonitoring of zearalenones in biological matrices can provide useful information to directly assess mycotoxin exposure; therefore, their metabolites may be suitable biomarkers. The aim of this study was to determine the presence of ZON, ZAN and their metabolites in alternative biological matrices, such as liver, from three different animals: chicken, pig and lamb, in order to evaluate their exposure. A solid-liquid extraction procedure coupled to a GC-MS/MS analysis was performed. The results showed that 69% of the samples were contaminated with at least one mycotoxin or metabolite at varying levels. The highest value (max. 152.62 ng/g of β-ZOL) observed, and the most contaminated livers (42%), were the chicken liver samples. However, pig liver samples presented a high incidence of ZAN (33%) and lamb liver samples presented a high incidence of α-ZOL (40%). The values indicate that there is exposure to these mycotoxins and, although the values are low (ranged to 0.11-152.6 ng/g for α-ZOL and β-ZOL, respectively), analysis and continuous monitoring are necessary to avoid exceeding the regulatory limits and to control the presence of these mycotoxins in order to protect animal and human health.
Collapse
Affiliation(s)
- Paula Llorens Castelló
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Matteo Antonio Sacco
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, “Magna Graecia”, Università degli Studi “Magna Graecia” di Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Aquila
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, “Magna Graecia”, Università degli Studi “Magna Graecia” di Catanzaro, 88100 Catanzaro, Italy
| | - Juan Carlos Moltó Cortés
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Cristina Juan García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence:
| |
Collapse
|
6
|
Fang M, Hu W, Liu B. Protective and detoxifying effects conferred by selenium against mycotoxins and livestock viruses: A review. Front Vet Sci 2022; 9:956814. [PMID: 35982930 PMCID: PMC9378959 DOI: 10.3389/fvets.2022.956814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Animal feed can easily be infected with molds during production and storage processes, and this can lead to the production of secondary metabolites, such as mycotoxins, which eventually threaten human and animal health. Furthermore, livestock production is also not free from viral infections. Under these conditions, the essential trace element, selenium (Se), can confer various biological benefits to humans and animals, especially due to its anticancer, antiviral, and antioxidant properties, as well as its ability to regulate immune responses. This article reviews the latest literature on the antagonistic effects of Se on mycotoxin toxicity and viral infections in animals. We outlined the systemic toxicity of mycotoxins and the primary mechanisms of mycotoxin-induced toxicity in this analysis. In addition, we pay close attention to how mycotoxins and viral infections in livestock interact. The use of Se supplementation against mycotoxin-induced toxicity and cattle viral infection was the topic of our final discussion. The coronavirus disease 2019 (COVID-19) pandemic, which is currently causing a health catastrophe, has altered our perspective on health concerns to one that is more holistic and increasingly embraces the One Health Concept, which acknowledges the interdependence of humans, animals, and the environment. In light of this, we have made an effort to present a thorough and wide-ranging background on the protective functions of selenium in successfully reducing mycotoxin toxicity and livestock viral infection. It concluded that mycotoxins could be systemically harmful and pose a severe risk to human and animal health. On the contrary, animal mycotoxins and viral illnesses have a close connection. Last but not least, these findings show that the interaction between Se status and host response to mycotoxins and cattle virus infection is crucial.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
- *Correspondence: Manxin Fang
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
7
|
Bai J, Zhou Y, Luo X, Hai J, Si X, Li J, Fu H, Dai Z, Yang Y, Wu Z. Roles of stress response-related signaling and its contribution to the toxicity of zearalenone in mammals. Compr Rev Food Sci Food Saf 2022; 21:3326-3345. [PMID: 35751400 DOI: 10.1111/1541-4337.12974] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEA) is a mycotoxin frequently found in cereal crops and cereal-derived foodstuffs worldwide. It affects plant productivity, and is also a serious hazard to humans and animals if being exposed to food/feed contaminated by ZEA. Studies over the last decade have shown that the toxicity of ZEA in animals is mainly mediated by the various stress responses, such as endoplasmic reticulum (ER) stress, oxidative stress, and others. Accumulating evidence shows that oxidative stress and ER stress signaling are actively implicated in and contributes to the pathophysiology of various diseases. Biochemically, the deleterious effects of ZEA are associated with apoptosis, DNA damage, and lipid peroxidation by regulating the expression of genes implicated in these biological processes. Despite these findings, the underlying mechanisms responsible for these alterations remain unclear. This review summarized the characteristics, metabolism, toxicity and the deleterious effects of ZEA exposure in various tissues of animals. Stress response signaling implicated in the toxicity as well as potential therapeutic options with the ability to reduce the deleterious effects of ZEA in animals were highlighted and discussed.
Collapse
Affiliation(s)
- Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yusong Zhou
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xin Luo
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jia Hai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China.,Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing, P. R. China
| |
Collapse
|
8
|
Janik-Karpinska E, Ceremuga M, Wieckowska M, Szyposzynska M, Niemcewicz M, Synowiec E, Sliwinski T, Bijak M. Direct T-2 Toxicity on Human Skin-Fibroblast Hs68 Cell Line-In Vitro Study. Int J Mol Sci 2022; 23:ijms23094929. [PMID: 35563320 PMCID: PMC9105691 DOI: 10.3390/ijms23094929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
T-2 toxin is produced by different Fusarium species, and it can infect crops such as wheat, barley, and corn. It is known that the T-2 toxin induces various forms of toxicity such as hepatotoxicity, nephrotoxicity, immunotoxicity, and neurotoxicity. In addition, T-2 toxin possesses a strong dermal irritation effect and can be absorbed even through intact skin. As a dermal irritant agent, it is estimated to be 400 times more toxic than sulfur mustard. Toxic effects can include redness, blistering, and necrosis, but the molecular mechanism of these effects still remains unknown. This in vitro study focused on the direct toxicity of T-2 toxin on human skin-fibroblast Hs68 cell line. As a result, the level of toxicity of T-2 toxin and its cytotoxic mechanism of action was determined. In cytotoxicity assays, the dose and time-dependent cytotoxic effect of T-2 on a cell line was observed. Bioluminometry results showed that relative levels of ATP in treated cells were decreased. Further analysis of the toxin's impact on the induction of apoptosis and necrosis processes showed the significant predominance of PI-stained cells, lack of caspase 3/7 activity, and increased concentration of released Human Cytokeratin 18 in treated cells, which indicates the necrosis process. In conclusion, the results of an in vitro human skin fibroblast model revealed for the first time that the T-2 toxin induces necrosis as a toxicity effect. These results provide new insight into the toxic T-2 mechanism on the skin.
Collapse
Affiliation(s)
- Edyta Janik-Karpinska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland;
| | - Magdalena Wieckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Monika Szyposzynska
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Poland;
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.S.); (T.S.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (E.J.-K.); (M.W.); (M.N.)
- Correspondence:
| |
Collapse
|
9
|
Hasuda AL, Person E, Khoshal AK, Bruel S, Puel S, Oswald IP, Bracarense APFL, Pinton P. Deoxynivalenol induces apoptosis and inflammation in the liver: Analysis using precision-cut liver slices. Food Chem Toxicol 2022; 163:112930. [DOI: 10.1016/j.fct.2022.112930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
|