1
|
Li L, Ma M, Zuo G, Xiao J, Chen J, He X, Song Z. Effect of manganese amino acid complexes on growth performance, meat quality, breast muscle and bone development in broilers. Br Poult Sci 2024; 65:582-594. [PMID: 38994893 DOI: 10.1080/00071668.2024.2346640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/14/2024] [Indexed: 07/13/2024]
Abstract
1. This study was conducted to investigate the effects of dietary supplementation of manganese (Mn) amino acid complexes on growth performance, Mn deposition, meat quality, breast muscle and bone development of broilers.2. A total of 504, one-day-old male Arbor Acres broilers were randomly divided into seven treatments; control diet (CON; basal diet, no extra Mn addition), manganese diet (MnN as Numine®-Mn; CON + 40, 80, 120 or 160 mg Mn/kg), manganese-S group (MnS; CON + 120 mg Mn/kg as MnSO4·H2O), manganese-A diet (MnA as Mn from hydrolysed feather meal; CON + 40 mg Mn/kg as MnA).3. There were no significant differences for average daily gain (ADG) or feed intake (ADFI) among diets during the feed phases (p > 0.05). The FCR in the starter and over the whole period were quadratically affected by dietary MnN dosage and gave the lowest FCR at 80 mg/kg (p < 0.05). The Mn content of thigh muscle, jejunum, heart, pancreas, liver and tibia increased linearly with MnN addition (p < 0.05).4. For meat quality, MnN significantly increased colour (a*), pH45 min and pH24 h, reduced shear force, drip loss and pressure loss of breast muscle (p < 0.05).5. Moreover, MnN significantly upregulated MYOD expression at d 21 and SOD expression at d 42, decreased MuRF1 and Atrogin-1 mRNA level at d 42 in breast muscle. Transcriptome analysis revealed that the regulating effect of MnN on muscle development significantly enriched signalling pathways such as adhesion, ECM-receptor, MAPK, mTOR and AMPK. Furthermore, dietary MnN significantly affected tibia length and growth plate development (p < 0.05) and promoted growth plate chondrocytes by increasing SOX-9, Runx-2, Mef2c, TGF-β, Ihh, Bcl-2 and Beclin1 and decreasing Bax and Caspase-3 (p < 0.05) expression which affect longitudinal tibial development.6. In conclusion, Mn amino acid complexes could improve growth performance, tissue Mn deposition, breast muscle development, meat quality and bone development.
Collapse
Affiliation(s)
- L Li
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - M Ma
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - G Zuo
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
- Technical R&D Department, Beijing Deyuanshun Biotechnology Co, Ltd, Beijing, China
| | - J Xiao
- Technical R&D Department, Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde, Hunan, China
| | - J Chen
- Technical R&D Department, Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde, Hunan, China
| | - X He
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| | - Z Song
- College of Animal Science and Technology, Hunan Agricultural University, Hunan, China
- R&D Department, Hunan Engineering Research Center of Poultry Production Safety, Hunan, China
| |
Collapse
|
2
|
Chen X, Zhang F, Raza SHA, Wu Z, Su Q, Ji Q, He T, Zhu K, Zhang Y, Hou S, Gui L. Immune, Oxidative, and Morphological Changes in the Livers of Tibetan Sheep after Feeding Resveratrol and β-Hydroxy-β-methyl Butyric Acid: A Transcriptome-Metabolome Integrative Analysis. Int J Mol Sci 2024; 25:9865. [PMID: 39337353 PMCID: PMC11432669 DOI: 10.3390/ijms25189865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of dietary resveratrol (RES) and β-Hydroxy-β-methyl butyric acid (HMB) on immune, oxidative, and morphological changes in the livers of Tibetan sheep using transcriptomics and metabolomics. One hundred and twenty male Tibetan lambs of a similar initial weight (15.5 ± 0.14 kg) were randomly divided into four groups with thirty lambs per treatment: (1) H group (basal diet without RES or HMB); (2) H-RES group (1.5 g/day of RES); (3) H-HMB group (1250 mg/day of HMB); (4) H-RES-HMB group (1.5 g/day of RES and 1250 mg/day of HMB). The experiment was conducted for 100 days, including a pre-test period of 10 days and a formal period of 90 days. The results showed significantly increased concentrations of glutathione peroxidase, superoxide dismutase, and IgM in the H-RES-HMB group (p < 0.05), while the malondialdehyde levels were significantly decreased (p < 0.05). The glycolytic indices including creatinine kinase (CK), malate dehydrogenase (MDH), and succinate dehydrogenase (SDH) were significantly increased in the H-RES-HMB group compared with the others (p < 0.05). A histological analysis showed that the hepatic plate tissue in the H-RES-HMB group appeared normal with multiple cells. The transcriptomic analysis showed that the expression of genes associated with the calcium signaling pathway (MYLK2, CYSLTR2, ADCY1, HRH1, ATP2B2, NOS2, HRC, ITPR1, and CAMK2B) and the NF-κB signaling pathway (BCL2 and CARD14) in the H-RES-HMB group were upregulated. The key differential metabolites (d-pyroglutamic acid, DL-serine, DL-threonine, fumarate, and glyceric acid) were enriched in the pathways associated with D-amino acid metabolism, the citrate cycle (TCA cycle), and carbon metabolism. The combined transcriptomic and non-targeted metabolomic analyses showed the co-enrichment of differential genes (NOS2 and GLUD1) and metabolites (fumarate) in arginine biosynthesis-regulated glycolytic activity, whereas the differential genes (ME1, SCD5, FABP2, RXRG, and CPT1B) and metabolites (Leukotriene b4) co-enriched in the PPAR signaling pathway affected the immune response by regulating the PI3K/AKT and cGMP/PKG signaling. In conclusion, the dietary RES and HMB affected the hepatic antioxidant capacity, immune response, and glycolytic activity through modulating the transcriptome (BCL2, CAMK2B, ITPR1, and IL1R1) and metabolome (DL-serine, DL-threonine, fumaric acid, and glycolic acid).
Collapse
Affiliation(s)
- Xuan Chen
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Qiurong Ji
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Tingli He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Kaina Zhu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
3
|
Taskozhina G, Batyrova G, Umarova G, Issanguzhina Z, Kereyeva N. The Manganese-Bone Connection: Investigating the Role of Manganese in Bone Health. J Clin Med 2024; 13:4679. [PMID: 39200820 PMCID: PMC11355939 DOI: 10.3390/jcm13164679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The complex relationship between trace elements and skeletal health has received increasing attention in the scientific community. Among these minerals, manganese (Mn) has emerged as a key element affecting bone metabolism and integrity. This review examines the multifaceted role of Mn in bone health, including its effects on bone regeneration, mineralization, and overall skeletal strength. This review article is based on a synthesis of experimental models, epidemiologic studies, and clinical trials of the mechanisms of the effect of Mn on bone metabolism. Current research data show that Mn is actively involved in the processes of bone remodeling by modulating the activity of osteoblasts and osteoclasts, as well as the main cells that regulate bone formation and resorption. Mn ions have a profound effect on bone mineralization and density by intricately regulating signaling pathways and enzymatic reactions in these cells. Additionally, Mn superoxide dismutase (MnSOD), located in bone mitochondria, plays a crucial role in osteoclast differentiation and function, protecting osteoclasts from oxidative damage. Understanding the nuances of Mn's interaction with bone is essential for optimizing bone strategies, potentially preventing and managing skeletal diseases. Key findings include the stimulation of osteoblast proliferation and differentiation, the inhibition of osteoclastogenesis, and the preservation of bone mass through the RANK/RANKL/OPG pathway. These results underscore the importance of Mn in maintaining bone health and highlight the need for further research into its therapeutic potential.
Collapse
Affiliation(s)
- Gulaim Taskozhina
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulnara Batyrova
- Department of Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Zhamilya Issanguzhina
- Department of Children Disease No. 2, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Nurgul Kereyeva
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| |
Collapse
|
4
|
Aparecida Martins R, de Almeida Assunção AS, Cavalcante Souza Vieira J, Campos Rocha L, Michelin Groff Urayama P, Afonso Rabelo Buzalaf M, Roberto Sartori J, de Magalhães Padilha P. Metalloproteomic analysis of liver proteins isolated from broilers fed with different sources and levels of copper and manganese. Sci Rep 2024; 14:4883. [PMID: 38418503 PMCID: PMC10902370 DOI: 10.1038/s41598-024-55478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Supplementing minerals beyond dietary requirements can increase the risk of toxicity and mineral excretion, making the selection of more bioavailable sources crucial. Thus, this work aimed to use metalloproteomics tools to investigate possible alterations in the hepatic proteome of broilers fed with diets containing two sources (sulfate and hydroxychloride) and two levels of copper (15 and 150 ppm) and manganese (80 and 120 ppm), totaling four treatments: low Cu/Mn SO4, high Cu/Mn SO4, low Cu/Mn (OH)Cl and high Cu/Mn (OH)Cl. The difference in abundance of protein spots and copper and manganese concentrations in liver and protein pellets were analyzed by analysis of variance with significance level of 5%. The Cu and Mn concentrations determined in liver and protein pellets suggested greater bioavailability of hydroxychloride sources. We identified 19 Cu-associated proteins spots, 10 Mn-associated protein spots, and 5 Cu and/or Mn-associated protein spots simultaneously. The analysis also indicated the induction of heat shock proteins and detoxification proteins in broilers fed with high levels of copper and manganese, suggesting the involvement of these proteins in metal tolerance and stress.
Collapse
Affiliation(s)
- Renata Aparecida Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Leone Campos Rocha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - José Roberto Sartori
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | |
Collapse
|
5
|
Helbawi E, Abd El-Latif SA, Toson MA, Banach A, Mohany M, Al-Rejaie SS, Elwan H. Impacts of Biosynthesized Manganese Dioxide Nanoparticles on Antioxidant Capacity, Hematological Parameters, and Antioxidant Protein Docking in Broilers. ACS OMEGA 2024; 9:9396-9409. [PMID: 38434868 PMCID: PMC10905714 DOI: 10.1021/acsomega.3c08775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Using green tomato extract, a green approach was used to synthesize manganese oxide nanoparticles (MnO2NPs). The synthesis of MnO2NPs was (20.93-36.85 nm) confirmed by energy-dispersive X-ray (EDX), scanning and transmission electron microscopy (SEM and TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy (UV-vis) analyses. One hundred fifty-day-old Arbor Acres broiler chicks were randomly divided into five groups. The control group received a diet containing 60 mg Mn/kg (100% NRC broiler recommendation). The other four groups received different levels of Mn from both bulk MnO2 and green synthesized MnO2NPs, ranging from 66 to 72 mg/kg (110% and 120% of the standard level). Each group comprised 30 birds, in three replicates of 10 birds each. Generally, the study's results indicate that incorporating MnO2NPs as a feed additive had no negative effects on broiler chick growth, antioxidant status, and overall physiological responses. The addition of MnO2NPs, whether at 66 or 72 mg/kg, led to enhanced superoxide dismutase (SOD) activity in both serum and liver tissues of the broiler chicks. Notably, the 72 mg MnO2NPs group displayed significantly higher SOD activity compared to the other groups. The study was further justified through docking. High throughput targeted docking was performed for proteins GHS, GST, and SOD with MnO2. SOD showed an effective binding affinity of -2.3 kcal/mol. This research sheds light on the potential of MnO2NPs as a safe and effective feed additive for broiler chicks. Further studies are required to explore the underlying mechanisms and long-term effects of incorporating MnO2NPs into broiler feed, to optimize broiler production and promote its welfare.
Collapse
Affiliation(s)
- Esraa
S. Helbawi
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| | - S. A. Abd El-Latif
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| | - Mahmoud A. Toson
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| | - Artur Banach
- Department
of Biology and Biotechnology of Microorganisms, Institute of Biological
Sciences, Faculty of Medicine, The John
Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Mohamed Mohany
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamada Elwan
- Animal
and Poultry Production Department, Faculty of Agriculture, Minia University, 61519 EL-Minya, Egypt
| |
Collapse
|
6
|
Martins RA, Assunção ASDA, Vieira JCS, Rocha LC, Urayama PMG, Buzalaf MAR, Sartori JR, Padilha PDM. Proteomic Study of Broiler Plasma Supplemented with Different Levels of Copper and Manganese from Different Sources. Molecules 2023; 28:8155. [PMID: 38138643 PMCID: PMC10745542 DOI: 10.3390/molecules28248155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of the present study was to evaluate the differential expression of plasma proteins in broiler chickens supplemented with different sources (sulfates and hydroxychlorides) and levels of copper (15 and 150 mg kg-1) and manganese (80 and 120 mg kg-1). For this, plasma samples from 40 broiler chickens were used, divided into four experimental groups: S15-80 (15 ppm CuSO4 and 80 ppm MnSO4), S150-120 (150 ppm CuSO4 and 120 ppm MnSO4), H15-80 (15 ppm Cu(OH)Cl and 80 ppm Mn(OH)Cl), and H150-120 (150 ppm Cu(OH)Cl and 120 ppm Mn(OH)Cl). From plasma samples obtained from each bird from the same treatment, four pools were made considering 10 birds per group. Plasma proteome fractionation was performed by 2D-PAGE. Concentrations of the studied minerals were also evaluated in both plasma and protein pellet samples. A higher concentration of Cu and Mn was observed in the plasma and protein pellets of groups that received higher mineral supplementation levels compared to those receiving lower levels. Mn concentrations were higher in plasma and protein pellets of the hydroxychloride-supplemented groups than the sulfate-supplemented groups. Analysis of the gels revealed a total of 40 differentially expressed spots among the four treatments. Supplementation with different sources of minerals, particularly at higher levels, resulted in changes in protein regulation, suggesting a potential imbalance in homeostasis.
Collapse
Affiliation(s)
- Renata Aparecida Martins
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | - Andrey Sávio de Almeida Assunção
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | | | - Leone Campos Rocha
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | - Priscila Michelin Groff Urayama
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | | | - José Roberto Sartori
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil; (R.A.M.); (A.S.d.A.A.); (L.C.R.); (P.M.G.U.); (J.R.S.)
| | | |
Collapse
|
7
|
Influence of water quality and pollution on broiler's performance, vaccine and antibiotic efficiencies. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Abstract
Good water quality for livestock is critical for preserving animal health, ensuring the quality of animal products, supplying safe food, and increasing food production economics. Higher water levels of toxic compounds than permitted can impair meat, fat, eggs, and milk production, lower fertility, and represent public health hazards. Water picks up pollutants from its surroundings and those caused by animal and human activities. Many physicochemical parameters were used to ensure water quality, including pH, salt, taste, color, alkalinity, odor, and hardness. Water quality, directly and indirectly, impacts livestock performance and, thus, the poultry industry. Employing drinking water as a carrier of drugs still faces substantial barriers. The effectiveness of vaccinations and drugs is affected by inadequate water quality. Furthermore, contaminated water and poor nutrition negatively affect broiler chicken immunity, survival, and production. Antibiotics are widely utilized in poultry production to preserve animal health and growth. They can eliminate harmful bacteria in the gut, reduce the load on the immune system, optimize the digestive system, and boost growth performance. However, the abuse of antibiotics in animal agriculture has resulted in antibiotic-resistant infections threatening people and animals. As a result of its positive impact on the metabolome and gut microbiome, the natural antimicrobial combination could be used as an alternative; improving broiler chicken growth performance without negatively affecting the environment is currently paramount.
Collapse
|