1
|
Kalia S, Magnuson AD, Sun T, Sun Z, Lei XG. Potential and Metabolic Impacts of Double Enrichments of Docosahexaenoic Acid and 25-Hydroxy Vitamin D 3 in Tissues of Broiler Chickens. J Nutr 2024; 154:3312-3322. [PMID: 39332774 DOI: 10.1016/j.tjnut.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Chicken may be enriched with 25-hydroxy D3 [25(OH)D3] and docosahexaenoic acid (DHA) to enhance the dietary intake of the public. OBJECTIVES Two experiments (Expt.) were conducted to determine the potential and metabolic impacts of enriching both DHA and 25(OH)D3 in the tissues of broiler chickens. METHODS In Expt. 1, 144 chicks (6 cages/treatment and 6 birds/cage) were fed a corn-soybean meal basal diet (BD), BD + 10,000 IU 25(OH)D3/kg [BD + 25(OH)D3], BD + 1% DHA-rich Aurantiochytrium (1.2 g DHA/kg; BD + DHA), or BD + 25(OH)D3+DHA for 6 wk. In Expt. 2, 180 chicks were fed the BD, BD + DHA-rich microalgal oil (1.5-3.0 g DHA/kg, BD + DHA), BD + DHA + eicosapentaenoic acid (EPA)-rich microalgae (0.3-0.6 g EPA/kg, BD + DHA + EPA), BD + DHA + 25(OH)D3 [6000 to 12,000 IU/kg diet; BD + DHA + 25(OH)D3], and BD + DHA + EPA + 25(OH)D3 for 6 wk. RESULTS Supranutrition of these 2 nutrients resulted in 57-62 mg DHA and 1.9-3.3 μg of 25(OH)D3/100 g of breast or thigh muscles. The DHA enrichment was independent of dietary EPA or 25(OH)D3, but that of 25(OH)D3 in the liver was decreased (68%, P < 0.05) by dietary DHA in Expt. 1. Compared with BD, BD + 25(OH)D3 enhanced (P < 0.05) gene expression related to D3 absorption (scavenger receptor class B type 1 and Niemann-pick c1 like 1) in the liver and D3 degradation (cytochrome P450 24A1) in the breast, and decreased mRNA or protein concentrations of vitamin D binding protein in the adipose tissue or thigh muscle. Supranutrition of DHA decreased mRNA concentrations of lipid metabolism-related genes (fatty acid desaturase 1,2, ELOVL fatty acid elongase 5, fatty acid desaturase 2, fatty acid synthase, and sterol regulatory element-binding protein 1). CONCLUSIONS Both DHA and 25(OH)D3 were enriched in the muscles up to meeting 50%-100% of the suggested intakes of these nutrients by consuming 2 servings of 100 g of fortified chicken. The enrichments altered gene expression related to lipid biosynthesis and vitamin D transport or storage.
Collapse
Affiliation(s)
- Sahil Kalia
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Andrew D Magnuson
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Tao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Ziqiao Sun
- Department of Animal Science, Cornell University, Ithaca, NY, United States
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
2
|
Gao C, Wen H, Dai D, Li Q, Zhou Y. Transcriptome analysis reveals the effects of Schizochytrium sp. on the meat quality attributes of Tan lambs. Meat Sci 2024; 216:109583. [PMID: 38944909 DOI: 10.1016/j.meatsci.2024.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Schizochytrium sp., a feed additive, positively affects the quality of animal meat. In this study, the molecular mechanisms through which dietary Schizochytrium sp. affects the meat quality characteristics of Tan lambs were investigated using transcriptomic techniques. The findings demonstrate that the lambs supplemented with Schizochytrium sp. had a larger loin eye area and a higher average daily gain and intramuscular fat content (P < 0.05). They also had lower drip loss (at 24 and 48 h) and shear force (P < 0.05). Further, 745 genes were differentially expressed between lambs supplemented with Schizochytrium and the control group. Moreover, KEGG pathway analysis showed that the ECM-receptor interaction pathway, which is related to muscle generation and intramuscular fat deposition, was significantly enriched in the lambs administered a diet containing Schizochytrium sp. Herein, we identified some pivotal genes linked to muscular system development and lipid metabolism. Thus, using Schizochytrium sp. may boost the meat quality of Tan lambs by modifying the expression of genes related to hub pathways. The results supply a new basis to determine the molecular mechanisms through which Schizochytrium sp. supplementation regulates the meat quality characteristics of sheep.
Collapse
Affiliation(s)
- Changpeng Gao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Hongrui Wen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Dongwen Dai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmin Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yuxiang Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
3
|
Jeong HY, Moon YS, Cho KK. ω-6 and ω-3 Polyunsaturated Fatty Acids: Inflammation, Obesity and Foods of Animal Resources. Food Sci Anim Resour 2024; 44:988-1010. [PMID: 39246544 PMCID: PMC11377208 DOI: 10.5851/kosfa.2024.e65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Obesity, as defined by the World Health Organization (WHO), is excessive fat accumulation that can pose health risks and is a disorder of the energy homeostasis system. In typical westernized diets, ω-6 polyunsaturated fatty acids (PUFAs) vastly exceed the amount of ω-3 PUFAs, with ω-6/ω-3 ratios ranging from 10:1 to 25:1. ω-6 PUFAs, such as arachidonic acid, have pro-inflammatory effects and increase obesity. On the other hand, ω-3 PUFAs, including eicosapentaenoic acid and docosahexaenoic acid, have anti-inflammatory and anti-obesity effects. Linoleic acid (LA) and alpha-linolenic acid (ALA) are synthesized in almost all higher plants, algae, and some fungi. However, in humans and animals, they are essential fatty acids and must be consumed through diet or supplementation. Therefore, balancing LA/ALA ratios is essential for obesity prevention and human health. Monogastric animals such as pigs and chickens can produce meat and eggs fortified with ω-3 PUFAs by controlling dietary fatty acid (FA). Additionally, ruminant animals such as feeder cattle and lactating dairy cows can opt for feed supplementation with ω-3 PUFAs sources and rumen-protected microencapsulated FAs or pasture finishing. This method can produce ω-3 PUFAs and conjugated linoleic acid (CLA) fortified meat, milk, and cheese. A high ω-6/ω-3 ratio is associated with pro-inflammation and obesity, whereas a balanced ratio reduces inflammation and obesity. Additionally, probiotics containing lactic acid bacteria are necessary, which reduces inflammation and obesity by converting ω-6 PUFAs into functional metabolites such as 10-hydroxy-cis-12-octadecenoic acid and CLA.
Collapse
Affiliation(s)
- Hwa Yeong Jeong
- Division of Animal Science, Gyeongsang National University, Jinju 52725, Korea
| | - Yang Soo Moon
- Division of Animal Bioscience & Integrated Biotechnology, Gyeongsang National University, Jinju 52725, Korea
| | - Kwang Keun Cho
- Division of Animal Science, Gyeongsang National University, Jinju 52725, Korea
| |
Collapse
|
4
|
Zhu M, Singer SD, Guan LL, Chen G. Emerging microalgal feed additives for ruminant production and sustainability. ADVANCED BIOTECHNOLOGY 2024; 2:17. [PMID: 38756984 PMCID: PMC11097968 DOI: 10.1007/s44307-024-00024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The global demand for animal-derived foods has led to a substantial expansion in ruminant production, which has raised concerns regarding methane emissions. To address these challenges, microalgal species that are nutritionally-rich and contain bioactive compounds in their biomass have been explored as attractive feed additives for ruminant livestock production. In this review, we discuss the different microalgal species used for this purpose in recent studies, and review the effects of microalgal feed supplements on ruminant growth, performance, health, and product quality, as well as their potential contributions in reducing methane emissions. We also examine the potential complexities of adopting microalgae as feed additives in the ruminant industry.
Collapse
Affiliation(s)
- Mianmian Zhu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAlberta, T6G 2P5 Canada
| | - Stacy D. Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, LethbridgeAlberta, T1J 4B1 Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAlberta, T6G 2P5 Canada
- Faculty of Land and Food Systems, University of British Columbia, VancouverBritish Columbia, V6T 1Z4 Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAlberta, T6G 2P5 Canada
| |
Collapse
|
5
|
Li Y, Liu M, Wei Y, Li L, Ma D, Weng Y, Wang H, Xu X. Influence of a Mixture of Protein Hydrolysate from Black Soldier Fly Larvae and Schizochytrium on Palatability, Plasma Biochemistry, and Antioxidative and Anti-Inflammatory Capacity in Cat Diets. Animals (Basel) 2024; 14:751. [PMID: 38473136 DOI: 10.3390/ani14050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The objective of this research was to evaluate palatability, plasma biochemistry, antioxidative and anti-inflammatory capacity, and immune levels in cats by feeding supplementing inclusion of different levels of a mixture of protein hydrolysate from black soldier fly larvae and schizochytrium (BSFPs) in diets. In the feed experiment, a total of 24 adult cats (12 females and 12 males; BW: 3.02 ± 0.06 kg) were randomly divided into four groups: (1) diet with chicken and fish meal as primary protein resource (CON); (2) diet with 5% BSFPs replacing chicken meal, fish meal, chicken oil, and fish oil (5% BSFPs); (3) 10% BSFPs; and (4) 15% BSFPs. The body weight and feed intake were recorded, and a blood sample was collected for analysis. In the palatability experiment, three diets containing 5%, 10%, and 15% BSFPs were evaluated by comparing with CON. These results suggested that different levels of BSFPs could improve palatability in cat diets by enhancing the first sniff, the first bite, and feed intake (p < 0.05). However, no significant influence existed in body weight and average daily feed intake (p > 0.05). In comparison to the CON group, 5% and 15% BSFPs significantly increased the total protein content, and all treatment groups decreased the triglyceride content and enhanced the calcium concentration in plasma; in addition, the activity of aspartate aminotransferase and alanine aminotransferase and the content of creatinine and urea nitrogen were significantly reduced by the supplementation inclusion of BSFPs in the diets (p < 0.05). The enzyme activity of glutathione peroxidase was dramatically enhanced by the supplementation of 10% and 15% BSFPs in diets compared with the CON diet, and the activity of superoxide dismutase was increased and the malondialdehyde concentration was remarkably reduced in all three treatments (p < 0.05). Compared with the CON group, different levels of BSFPs in the diets significantly increased the immunoglobulin A content in plasma; similarly, the immunoglobulin G concentration was significantly enhanced by the supplementation of 10% and 15% BSFPs in the diets (p < 0.05). Furthermore, the interleukin-1β content was significantly reduced in the inclusion of 10% and 15% BSFPs in the diets, and 15% BSFPs remarkably decreased the content of interleukin-8 in plasma compared with the CON diet (p < 0.05). To sum up, the supplementation of different levels of BSFPs exhibited a positive effect on palatability and enhanced the antioxidant, anti-inflammatory, and immune capacity. Particularly, the addition levels of 10% and 15% BSFPs were more effective in antioxidation, anti-inflammation, and immunity.
Collapse
Affiliation(s)
- You Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingkang Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Wei
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Luyang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Deying Ma
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuxiao Weng
- P&O Biotechnology (Hubei) Co., Ltd., Wuhan 436043, China
| | - Haifeng Wang
- P&O Biotechnology (Hubei) Co., Ltd., Wuhan 436043, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
6
|
Gao Q, Liu H, Wang Z, Lan X, An J, Shen W, Wan F. Recent advances in feed and nutrition of beef cattle in China - A review. Anim Biosci 2023; 36:529-539. [PMID: 36108687 PMCID: PMC9996267 DOI: 10.5713/ab.22.0192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The beef cattle industry in China has advanced remarkably since its reform and opening up; consequently, China has become the world's third-largest beef cattle producer. China is also one of the countries with the most substantial research input and output in the field of beef cattle feed and nutrition. The progress and innovation by China in the research field of beef cattle feed and nutrition have undoubtedly promoted the development of the domestic beef cattle industry. This review summarizes recent advances in feed resource development, nutrient requirements, and nutritional regulation of beef cattle in China. Limitations in current research and perspectives on future work are also discussed.
Collapse
Affiliation(s)
- Qian Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-Ecosystems; College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jishan An
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
7
|
Avilés-Ramírez C, Vioque Amor M, Polvillo Polo O, Horcada A, Gómez-Cortés P, de la Fuente MÁ, Núñez-Sánchez N, Martínez Marín AL. Influence of Dietary Algae Meal on Lipid Oxidation and Volatile Profile of Meat from Lambs with Competent Reticular Groove Reflex. Foods 2022; 11:foods11152193. [PMID: 35892778 PMCID: PMC9331320 DOI: 10.3390/foods11152193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Dietary lipid sources influence intramuscular fatty acid composition, which in turn may affect the volatile profile of meat. The aim of this work was to investigate the effects of marine algae supplementation (Aurantiochytrium limacinum) on volatile compounds of cooked lamb meat. Forty-eight lambs with 42 days of age were divided into three groups: lambs fed a conventional diet without algae meal supplementation (NOALG), lambs with competent reticular groove reflex (RGR) fed the same diet supplemented with 2.5% marine algae meal mixed in the concentrate (ALGCON), and lambs with competent RGR, receiving the same diet and fed with 2.5% marine algae meal in a milk replacer to bypass the rumen (ALGMILK). Lipid and protein oxidation in raw meat was assessed and volatile compounds in grilled meat were determined. The highest and lowest lipid oxidations were observed in the ALGMILK and NOALG groups, respectively. Protein oxidation was unaffected. Out of 56 identified compounds, 12 volatiles significantly increased in both algae groups and 6 of them exclusively in the ALGCON treatment. Algae meal supplementation and its form of administration, either protected or not from rumen degradation, are important factors to consider in lipid oxidation and the aromatic profile of lamb meat.
Collapse
Affiliation(s)
- Carmen Avilés-Ramírez
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain;
- Correspondence: ; Tel.: +34-957-218-526
| | - Montserrat Vioque Amor
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain;
| | - Oliva Polvillo Polo
- Centro de Investigación, Tecnología e Innovación, Universidad de Sevilla, Avda. Reina Mercedes 4-B, 41012 Sevilla, Spain;
| | - Alberto Horcada
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, 41013 Sevilla, Spain;
| | - Pilar Gómez-Cortés
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain; (P.G.-C.); (M.Á.d.l.F.)
| | - Miguel Ángel de la Fuente
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain; (P.G.-C.); (M.Á.d.l.F.)
| | - Nieves Núñez-Sánchez
- Departamento de Producción Animal, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain; (N.N.-S.); (A.L.M.M.)
| | - Andrés Luis Martínez Marín
- Departamento de Producción Animal, Universidad de Córdoba, Ctra. Madrid-Cádiz km 396, 14071 Córdoba, Spain; (N.N.-S.); (A.L.M.M.)
| |
Collapse
|