1
|
Mangoma N, Zhou N, Ncube T. Metagenomic insights into the microbial community of the Buhera soda pans, Zimbabwe. BMC Microbiol 2024; 24:510. [PMID: 39614167 DOI: 10.1186/s12866-024-03655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Soda pans are unique, natural aquatic environments characterised by elevated salinity and alkalinity, creating a distinctive and often extreme geochemistry. The microbiomes of soda pans are unique, with extremophiles such as halophiles, alkaliphiles and haloalkaliphiles being important. Despite being dominated by mostly unculturable inhabitants, soda pans hold immense biotechnological potential. The application of modern "omics-based" techniques helps us better understand the ecology and true extend of the biotechnological potential of soda pan microbiomes. In this study, we used a shotgun metagenomic approach to determine the microbial diversity and functional profile of previously unexplored soda pans located in Buhera, Eastern Zimbabwe. A combination of titrimetry and inductively coupled plasma optical emission spectroscopy (ICP‒OES) was used to perform physico-chemical analysis of the soda pan water. RESULTS Physicochemical analysis revealed that the Buhera soda pans are highly alkaline, with a pH range of 8.74 to 11.03, moderately saline (2.94 - 7.55 g/L), and have high carbonate (3625 mg/L) and bicarbonate ion (1325 mg/L) alkalinity. High levels of sulphate, phosphate, chloride and fluoride ions were detected. Metagenomic analysis revealed that domain Bacteria dominated the soda pan microbial community, with Pseudomonadota and Bacillota being the dominant phyla. Vibrio was shown to be the predominant genus, followed by Clostridium, Candidatus Brevefilum, Acetoanaerobium, Thioalkalivibrio and Marinilactibacillus. Archaea were also detected, albeit at a low prevalence of 1%. Functional profiling revealed that the Buhera soda pan microbiome is functionally diverse, has hydrolytic-enzyme production potential and is capable of supporting a variety of geochemical cycles. CONCLUSIONS The results of this pioneering study showed that despite their extreme alkalinity and moderate salinity, the Buhera soda pans harbour a taxonomically and functionally diverse microbiome dominated by bacteria. Future work will aim towards establishing the full extent of the soda pan's biotechnological potential, with a particular emphasis on potential enzyme production.
Collapse
Affiliation(s)
- Ngonidzashe Mangoma
- Department of Applied Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe.
| | - Nerve Zhou
- Biological Sciences and Biotechnology Department, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Research and Internationalization Office, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
2
|
Liu W, Li M, Xue M, Zhou Y, Jiang N, Meng Y, Liu Y, Jiang J, Liao X, Fan Y. Identification of Aeromonas veronii as the Pathogen Associated with Massive Mortality in Bronze Gudgeon ( Coreius heterodon). Animals (Basel) 2024; 14:2440. [PMID: 39199972 PMCID: PMC11350679 DOI: 10.3390/ani14162440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Aeromonas veronii, an opportunistic pathogen toward aquatic organisms, was identified as the causative pathogen (isolate WH10) in diseased bronze gudgeon via bacterial isolation, and morphological, physiological, biochemical, and molecular characterization. WH10 exerted its pathogenicity via five virulence genes, including those encoding cytotoxic enterotoxins (act and alt), lipase (lip), a quorum sensing-controlled virulence factor (LuxS), and a Type III secretion system inner membrane component (ascV). WH10 was shown to be sensitive to compound sulfamethoxazoles, cefothiophene, doxycycline, and sulfamethoxazole. Toward bronze gudgeon, WH10 had a median lethal dose (LD50) of 1.36 × 106 colony forming units/mL. Analysis of blood parameters of diseased fish revealed significant increases in monocytes and neutrophils, but decreased numbers of lymphocytes. Serum aspartate aminotransferase activity and triglyceride concentration were significantly higher in diseased fish than in healthy fish. The reverse was noted for alkaline phosphatase, total protein, albumin, total cholesterol, and glucose. Thus, Aeromonas veronii is implicated as the causative agent of the mass mortality observed in bronze gudgeon, warranting further investigations into the diagnosis, epidemiology, prevention, and treatment of this infectious disease.
Collapse
Affiliation(s)
- Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Mengmeng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
| | - Yisha Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Jingwen Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaolin Liao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (W.L.); (M.L.); (M.X.); (Y.Z.); (N.J.); (Y.M.); (Y.L.); (J.J.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Li Y, Xu Y, Zhou X, Huang L, Wang G, Liao J, Dai R. From "resistance genes expression" to "horizontal migration" as well as over secretion of Extracellular Polymeric Substances: Sludge microorganism's response to the increasing of long-term disinfectant stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133940. [PMID: 38457979 DOI: 10.1016/j.jhazmat.2024.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Glutaraldehyde-Didecyldimethylammonium bromides (GDs) has been frequently and widely employed in livestock and poultry breeding farms to avoid epidemics such as African swine fever, but its long-term effect on the active sludge microorganisms of the receiving wastewater treatment plant was keep unclear. Four simulation systems were built here to explore the performance of aerobic activated sludge with the long-term exposure of GDs and its mechanism by analyzing water qualities, resistance genes, extracellular polymeric substances and microbial community structure. The results showed that the removal rates of CODCr and ammonia nitrogen decreased with the exposure concentration of GDs increasing. It is worth noting that long-term exposure to GDs can induce the horizontal transfer and coordinated expression of a large number of resistance genes, such as qacE, sul1, tetx, and int1, in drug-resistant microorganisms. Additionally, it promotes the secretion of more extracellular proteins, including arginine, forming a "barrier-like" protection. Therefore, long-term exposure to disinfectants can alter the treatment capacity of activated sludge receiving systems, and the abundance of resistance genes generated through horizontal transfer and coordinated expression by drug-resistant microorganisms does pose a significant threat to ecosystems and health. It is recommended to develop effective pretreatment methods to eliminate disinfectants.
Collapse
Affiliation(s)
- Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiao Zhou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Lu Huang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Guan Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingsong Liao
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu 527400, China
| | - Ruizhi Dai
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu 527400, China
| |
Collapse
|
4
|
Lu P, Jiang J, Liu C, Okuda S, Itoh H, Okamoto K, Suzuki M, Nagata K. Molecular mechanism of Fe 3+ binding inhibition to Vibrio metschnikovii ferric ion-binding protein, FbpA, by rosmarinic acid and its hydrolysate, danshensu. Protein Sci 2024; 33:e4881. [PMID: 38143427 PMCID: PMC10804667 DOI: 10.1002/pro.4881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Global warming has increased the growth of pathogenic Vibrio bacteria, which can cause foodborne illnesses and death. Vibrio bacteria require iron for growth and survival. They utilize a ferric ion-binding protein (FbpA) to bind and transport Fe3+ into the cell. FbpA from Vibrio metschnikovii (Vm) is a potential target for inhibiting its growth. Rosmarinic acid (RA) can block the binding of VmFbpA to Fe3+ ; however, the molecular mechanism of Fe3+ binding and RA inhibition to VmFbpA is unclear. In this study, we used x-ray crystallography to determine the Fe3+ -binding mode of VmFbpA and the mechanism of RA inhibition. The structures revealed that in the Fe3+ bound form, Fe3+ was coordinated to VmFbpA by two Tyr residues, two HCO3 - ions, and two water molecules in a six-coordinated geometry. In contrast, in the inhibitor bound form, RA was initially bound to VmFbpA following gel filtration purification, but it was hydrolyzed to danshensu (DSS), which occupied the binding site as shown in an electron density map and reverse phase chromatography (RPC) analysis. Both RA and DSS exhibited a stronger binding affinity to VmFbpA, higher Fe3+ reduction capacity, and more potent bacteriostatic effect on V. metschnikovii compared with caffeic acid (CA), another hydrolysis product of RA. These results provide insight into the mechanism of iron acquisition by V. metschnikovii and inhibition by RA and DSS. Our findings offer clues on the development of effective strategies to prevent Vibrio infections.
Collapse
Affiliation(s)
- Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Jinyan Jiang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Chang Liu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
- Research Center for Food Safety, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
5
|
Xing Y, Xue M, Xiao Z, Hu X, Zhai J, Zhang C, Jiang N, Fan Y, Meng Y, Zhou Y. Isolation and identification of Chryseobacterium indologenes and its pathological changes in Pelodiscus sinensis. JOURNAL OF FISH DISEASES 2024; 47:e13864. [PMID: 37723838 DOI: 10.1111/jfd.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
The Chinese revered a species of aquatic reptile known as Pelodiscus sinensis as both an edible and medicinal species. When artificially breeding, many deaths occurred at the farmed P. sinensis, mainly due to excessive breeding density, water contamination, and turtles biting each other secondary to bacterial infections. In this study, an isolate of gram-negative bacteria WH0623 was isolated from the liver and kidney of diseased P. sinensis to trace the potential pathogen of this disease. Based on biochemical characteristics and 16S rRNA gene sequencing analyses, this isolated strain of WH0623 was identified as Chryseobacterium indologenes. The strain's median lethal dose (LD50 ) was 3.3 × 105 colony-forming units (CFU)/g per fish weight tested using artificial infection. Histopathological analysis revealed pathological changes, including cell swelling, hyperaemia, and necrosis in many tissues. Antibiotic susceptibility tests revealed that the bacteria WH0623 was susceptible to doxycycline, sulphonamides, ceftazidime, norfloxacin, and ciprofloxacin. These antibiotics could treat the disease. In conclusion, the pathogen causing the death of farmed P. sinensis was isolated and identified, and a drug-sensitive test was conducted. Our findings contribute to the future diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Yangyang Xing
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaowei Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jiale Zhai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Chunjie Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
6
|
Falco A, Villaquirán-Muriel MÁ, Gallo Pérez JD, Mondragón-Quiguanas A, Aranaga C, Correa A. Identification of Vibrio metschnikovii and Vibrio injensis Isolated from Leachate Ponds: Characterization of Their Antibiotic Resistance and Virulence-Associated Genes. Antibiotics (Basel) 2023; 12:1571. [PMID: 37998773 PMCID: PMC10668802 DOI: 10.3390/antibiotics12111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to evaluate the antibiotic resistance of 22 environmental Vibrio metschnikovii isolates and 1 Vibrio injensis isolate from landfill leachates in southwestern Colombia. Isolates were identified by Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF), and 16S ribosomal RNA gene sequencing. Analysis of the susceptibility to six antibacterial agents by the Kirby-Bauer method showed susceptibility of all the isolates to ciprofloxacin and imipenem. We recorded resistance to beta-lactams and aminoglycosides, but no multidrug resistance was observed. The genome of one of the isolates was sequenced to determine the pathogenic potential of V. injensis. Genes associated with virulence were identified, including for flagellar synthesis, biofilm formation, and hemolysins, among others. These results demonstrate that landfill leachates are potential reservoirs of antibiotic-resistant and pathogenic bacteria and highlight the importance of monitoring Vibrio species in different aquatic environments.
Collapse
Affiliation(s)
- Aura Falco
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Miguel Ángel Villaquirán-Muriel
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - José David Gallo Pérez
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Alejandra Mondragón-Quiguanas
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| | - Carlos Aranaga
- Chemistry and Biotechnology Research Group (QUIBIO), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia;
| | - Adriana Correa
- Microbiology, Industry and Environment Research Group (GIMIA), Department of Basic Sciences, Santiago de Cali University, Cali 760035, Colombia (A.C.)
| |
Collapse
|
7
|
Hu X, Xiao Z, Li B, Xue M, Jiang N, Fan Y, Chen P, Qi F, Kong X, Zhou Y. Isolation, Identification, and Characterization of Aeromonas veronii from Chinese Soft-Shelled Turtle ( Trionyx sinensis). Microorganisms 2023; 11:1304. [PMID: 37317278 DOI: 10.3390/microorganisms11051304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Aeromonas veronii is widespread in aquatic environments and is capable of infecting various aquatic organisms. A. veronii infection is lethal for Chinese soft-shelled turtles (Trionyx sinensis, CSST). We isolated a gram-negative bacterium from the liver of diseased CSSTs, which was named XC-1908. This isolate was identified as A. veronii based on its morphological and biochemical characteristics, and 16S rRNA gene sequence analysis. A. veronii was pathogenic for CSSTs with an LD50 of 4.17 × 105 CFU/g. The symptoms of CSSTs artificially infected with isolate XC-1908 were consistent with those of the naturally infected CSSTs. The levels of total protein, albumin, and white globule in the serum samples of the diseased turtles were decreased, whereas those of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were elevated. Moreover, the diseased CSSTs exhibited the following histopathological changes: the liver contained numerous melanomacrophage centers, renal glomerulus were edematous, intestinal villi were shed, and in oocytes, the number of vacuoles increased and red-rounded particles were observed. Antibiotic sensitivity tests revealed that the bacterium was sensitive to ceftriaxone, doxycycline, florfenicol, cefradine, and gentamicin, and resistant to sulfanilamide, carbenicillin, benzathine, clindamycin, erythromycin, and streptomycin. This study provides control strategies to prevent outbreaks of A. veronii infection in CSSTs.
Collapse
Affiliation(s)
- Xiaowei Hu
- Department of Fisheries Development, College of Fisheries, Henan Normal University, Xinxiang 453000, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Bo Li
- Wuhan Academy of Agricultural Sciences, Wuhan 430071, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Peng Chen
- Institute of Fishery Research of Xinjiang Uygur Autonenous Region, Urumqi 830099, China
| | - Feng Qi
- Institute of Fishery Research of Xinjiang Uygur Autonenous Region, Urumqi 830099, China
| | - Xianghui Kong
- Department of Fisheries Development, College of Fisheries, Henan Normal University, Xinxiang 453000, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
8
|
Alterations of the Mucosal Immune Response and Microbial Community of the Skin upon Viral Infection in Rainbow Trout ( Oncorhynchus mykiss). Int J Mol Sci 2022; 23:ijms232214037. [PMID: 36430516 PMCID: PMC9698461 DOI: 10.3390/ijms232214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The skin is the largest organ on the surface of vertebrates, which not only acts as the first line of defense against pathogens but also harbors diverse symbiotic microorganisms. The complex interaction between skin immunity, pathogens, and commensal bacteria has been extensively studied in mammals. However, little is known regarding the effects of viral infection on the skin immune response and microbial composition in teleost fish. In this study, we exposed rainbow trout (Oncorhynchus mykiss) to infectious hematopoietic necrosis virus (IHNV) by immersion infection. Through pathogen load detection and pathological evaluation, we confirmed that IHNV successfully invaded the rainbow trout, causing severe damage to the epidermis of the skin. qPCR analyses revealed that IHNV invasion significantly upregulated antiviral genes and elicited strong innate immune responses. Transcriptome analyses indicated that IHNV challenge induced strong antiviral responses mediated by pattern recognition receptor (PRR) signaling pathways in the early stage of the infection (4 days post-infection (dpi)), and an extremely strong antibacterial immune response occurred at 14 dpi. Our 16S rRNA sequencing results indicated that the skin microbial community of IHNV-infected fish was significantly richer and more diverse. Particularly, the infected fish exhibited a decrease in Proteobacteria accompanied by an increase in Actinobacteria. Furthermore, IHNV invasion favored the colonization of opportunistic pathogens such as Rhodococcus and Vibrio on the skin, especially in the later stage of infection, leading to dysbiosis. Our findings suggest that IHNV invasion is associated with skin microbiota dysbiosis and could thus lead to secondary bacterial infection.
Collapse
|
9
|
Zhang M, Xue M, Xiao Z, Liu W, Jiang N, Meng Y, Fan Y, Liu X, Zhou Y. Staphylococcus sciuri causes disease and pathological changes in hybrid sturgeon acipenser baerii × acipenser schrencki. Front Cell Infect Microbiol 2022; 12:1029692. [PMID: 36275022 PMCID: PMC9582232 DOI: 10.3389/fcimb.2022.1029692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hybrid sturgeon is the main species of sturgeon cultured in China, with the advantages of a fast growth rate, early sexual maturity, fertile offspring, and more stable genetic traits. In May 2021, a large number of deaths characterized by superficial hemorrhage and liver damage occurred in a sturgeon farm in Yichang, Hubei Province, which posed a significant risk to hybrid sturgeon captive breeding. We isolated a pathogenic bacterium named D-59 from the diseased sturgeon with apparent symptoms. The pathogen was identified as Staphylococcus sciuri using 16S rRNA gene phylogenetic analysis combined with biochemical identification. Regression experiments showed that D-59 exhibited clinical signs similar to those of diseased sturgeon in the farm after intraperitoneal injection into hybrid sturgeon. High-throughput sequencing of gut microbes in D-59-infected sturgeon showed that the number of gut microbial species decreased in infected sturgeon, the number of some intestinal commensal bacteria decreased, and the balance of the intestinal microorganisms was disrupted. Histopathological sections indicated many inflammatory cells, congestion, and even necrosis in the tissue of diseased sturgeon. Analysis of blood indexes revealed an increase in the proportion of mononuclear cells and a decrease in the proportion of lymphocytes in the peripheral blood of diseased sturgeon. Significantly elevated serum levels of aspartate aminotransferase and alanine aminotransferase, whereas alkaline phosphatase, total protein, albumin, and globulin were decreased in diseased sturgeon. Antimicrobial susceptibility tests demonstrated that D-59 is susceptible to florfenicol, enrofloxacin, and neomycin sulfate. This study aimed to highlight the dangers of Staphylococcus sciuri infection during hybrid sturgeon culture and to provide recommendations for diagnosis and treatment.
Collapse
Affiliation(s)
- Mengwei Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xiaoling Liu, ; Yong Zhou,
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- *Correspondence: Xiaoling Liu, ; Yong Zhou,
| |
Collapse
|