1
|
Hauser-Davis RA, Wosnick N, Hoff RB, Vianna M, Saggioro EM. Cocaine and other illicit drugs in the marine environment: Potential effects and future directions. MARINE POLLUTION BULLETIN 2024; 208:117064. [PMID: 39357371 DOI: 10.1016/j.marpolbul.2024.117064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Cocaine and its primary metabolite, benzoylecgonine, have been recently detected in sharks, indicating a growing concern over marine drug pollution. The presence of this drug in marine fauna poses risks such as physiological stress, impaired growth, reproduction, and altered behaviors, potentially leading to biodiversity loss and disrupted ecological interactions. Biomagnification may further affect higher trophic levels, including humans. Addressing this issue requires continuous monitoring, studies on physiological effects, understanding contamination routes, and improving wastewater treatment. Additionally, stricter regulations on pharmaceutical disposal are necessary to mitigate the impacts of such pollutants on marine ecosystems and human health.
Collapse
Affiliation(s)
- Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | | - Rodrigo Barcellos Hoff
- Setor Laboratorial Avançado em Santa Catarina (SLAV/SC), Ministério da Agricultura, Pecuária e Abastecimento, Santa Catarina, Brazil
| | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; IMAM - AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Enrico Mendes Saggioro
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
de Farias Araujo G, de Oliveira LVA, Hoff RB, Wosnick N, Vianna M, Verruck S, Hauser-Davis RA, Saggioro EM. "Cocaine Shark": First report on cocaine and benzoylecgonine detection in sharks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174798. [PMID: 39019288 DOI: 10.1016/j.scitotenv.2024.174798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Cocaine (COC) and benzoylecgonine (BE), the main COC metabolite, have been detected in aquatic ecosystems. Studies focusing on wild fish are, however, very limited, and no reports concerning elasmobranchs are available. This study investigated COC and BE levels in Brazilian Sharpnose sharks (Rhizoprionodon lalandii) (n = 13) using LC-MS/MS. All samples (13/13) tested positive for COC, with 92 % (12/13) testing positive for BE. COC concentrations (23.0 μg kg-1) were over 3-fold higher than BE (7.0 μg kg-1). COC levels were about three-fold significantly higher in muscle (33.8 ± 33.4 g kg-1) compared to liver (12.2 ± 14.2 μg kg-1). Females presented higher COC concentrations in muscle (40.2 ± 35.8 μg kg-1) compared to males (12.4 ± 5.9 μg kg-1). Several positive statistical correlations were noted between COC and BE (rho = 0.84) in females, indicating systemic COC transport and metabolization, as well as between BE and weight (rho = 0.62), and between COC and the Condition Factor (rho = 0.73). A strong correlation was noted between BE and COC in the muscle of non-pregnant females (rho = 1.00). This study represents the first COC and BE report in free-ranging sharks, and the findings point to the potential impacts of the presence of illicit drugs in environments.
Collapse
Affiliation(s)
- Gabriel de Farias Araujo
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luan Valdemiro Alves de Oliveira
- Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| | - Rodrigo Barcellos Hoff
- Sepor Laboratorial Avançado em Santa Catarina (SLAV/SC), Ministério da Agricultura, Pecuária e Abastecimento, Santa Catarina, Brazil
| | | | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; IMAM - AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Silvani Verruck
- Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Departamento de Ciência e Tecnologia de Alimentos, Florianópolis, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Enrico Mendes Saggioro
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Falfushynska H, Rychter P, Boshtova A, Faidiuk Y, Kasianchuk N, Rzymski P. Illicit Drugs in Surface Waters: How to Get Fish off the Addictive Hook. Pharmaceuticals (Basel) 2024; 17:537. [PMID: 38675497 PMCID: PMC11054822 DOI: 10.3390/ph17040537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The United Nations World Drug Report published in 2022 alarmed that the global market of illicit drugs is steadily expanding in space and scale. Substances of abuse are usually perceived in the light of threats to human health and public security, while the environmental aspects of their use and subsequent emissions usually remain less explored. However, as with other human activities, drug production, trade, and consumption of drugs may leave their environmental mark. Therefore, this paper aims to review the occurrence of illicit drugs in surface waters and their bioaccumulation and toxicity in fish. Illicit drugs of different groups, i.e., psychostimulants (methamphetamines/amphetamines, cocaine, and its metabolite benzoylecgonine) and depressants (opioids: morphine, heroin, methadone, fentanyl), can reach the aquatic environment through wastewater discharge as they are often not entirely removed during wastewater treatment processes, resulting in their subsequent circulation in nanomolar concentrations, potentially affecting aquatic biota, including fish. Exposure to such xenobiotics can induce oxidative stress and dysfunction to mitochondrial and lysosomal function, distort locomotion activity by regulating the dopaminergic and glutamatergic systems, increase the predation risk, instigate neurological disorders, disbalance neurotransmission, and produce histopathological alterations in the brain and liver tissues, similar to those described in mammals. Hence, this drugs-related multidimensional harm to fish should be thoroughly investigated in line with environmental protection policies before it is too late. At the same time, selected fish species (e.g., Danio rerio, zebrafish) can be employed as models to study toxic and binge-like effects of psychoactive, illicit compounds.
Collapse
Affiliation(s)
- Halina Falfushynska
- Faculty of Economics, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Piotr Rychter
- Faculty of Science & Technology, Jan Dlugosz University in Częstochowa, Armii Krajowej 13/15, 42200 Czestochowa, Poland;
| | | | - Yuliia Faidiuk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53114 Wrocław, Poland;
- Educational and Scientific Centre “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, 2 Prospekt Hlushkov, 03022 Kyiv, Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny Str., 03143 Kyiv, Ukraine
| | - Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University, 61712 Poznań, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60806 Poznań, Poland;
| |
Collapse
|
4
|
Perry WB, Ahmadian R, Munday M, Jones O, Ormerod SJ, Durance I. Addressing the challenges of combined sewer overflows. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123225. [PMID: 38151091 DOI: 10.1016/j.envpol.2023.123225] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Europe's ageing wastewater system often combines domestic sewage with surface runoff and industrial wastewaters. To reduce the associated risk of overloading wastewater treatment works during storms, and to prevent wastewater backing-up into properties, Combined Sewer Overflows (CSOs) are designed into wastewater networks to release excess discharge into rivers or coastal waters without treatment. In view of growing regulatory scrutiny and increasing public concern about their excessive discharge frequencies and potential impacts on environments and people, there is a need to better understand these impacts to allow prioritisation of cost-effective solutions.We review: i) the chemical, physical and biological composition of CSOs discharges; ii) spatio-temporal variations in the quantity, quality and load of overflows spilling into receiving waters; iii) the potential impacts on people, ecosystems and economies. Despite investigations illustrating the discharge frequency of CSOs, data on spill composition and loading of pollutants are too few to reach representative conclusions, particularly for emerging contaminants. Studies appraising impacts are also scarce, especially in contexts where there are multiple stressors affecting receiving waters. Given the costs of addressing CSOs problems, but also the likely long-term gains (e.g. economic stimulation as well as improvements to biodiversity, ecosystem services, public health and wellbeing), we highlight here the need to bolster these evidence gaps. We also advocate no-regrets options to alleviate CSO problems taking into consideration economic costs, carbon neutrality, ecosystem benefit and community well-being. Besides pragmatic, risk-based investment by utilities and local authorities to modernise wastewater systems, these include i) more systemic thinking, linking policy makers, consumers, utilities and regulators, to shift from local CSO issues to integrated catchment solutions with the aim of reducing contributions to wastewater from surface drainage and water consumption; ii) broader societal responsibilities for CSOs, for example through improved regulation, behavioural changes in water consumption and disposal of waste into wastewater networks, and iii) greater cost-sharing of wastewater use.
Collapse
Affiliation(s)
- William Bernard Perry
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Reza Ahmadian
- School of Engineering, Cardiff University, Cardiff, CF10 3AX, UK
| | - Max Munday
- Cardiff Business School, Cardiff University, Cardiff, CF10 3AX, UK
| | - Owen Jones
- School of Mathematics, Cardiff University, Cardiff, CF10 3AX, UK
| | - Steve J Ormerod
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Isabelle Durance
- Water Research Institute, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| |
Collapse
|
5
|
Rosati L, Chianese T, Mileo A, De Falco M, Capaldo A. Cocaine Effects on Reproductive Behavior and Fertility: An Overview. Vet Sci 2023; 10:484. [PMID: 37624271 PMCID: PMC10458869 DOI: 10.3390/vetsci10080484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Cocaine is one of the most widely used drugs that, due to its molecular properties, causes various behavioral alterations, including sexual behavior. In vivo and in vitro studies conducted mainly in mammals have shown various disorders of sexual activity and morpho-functional dysfunctions of the gonads in both sexes. Although the modalities are still unclear, cocaine has been shown to alter the cell cycle, induce apoptosis, and alter sperm motility. In females, this drug alters the formation of the meiotic spindle as well as may obstruct the ovulation mechanism of mature oocytes. The data provided in this review, in addition to reviewing the current literature on the main effects of cocaine on spermatogenesis and oogenesis mainly in mammals, will hopefully provide a basic overview that may help and support further future studies on the molecular interaction of cocaine and its metabolites with germ cells.
Collapse
Affiliation(s)
- Luigi Rosati
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
- Centro Interdipartimentale di Ricerca “Ambiente” (CIRAM), University Federico II, 80134 Naples, Italy
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
| | - Aldo Mileo
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
| | - Maria De Falco
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
- Istituto Nazionale Biostrutture e Biosistemi (INBB), 00136 Rome, Italy
| | - Anna Capaldo
- Department of Biology, University Federico II, Via Cinthia 21, 80126 Naples, Italy; (T.C.); (A.M.); (M.D.F.); (A.C.)
| |
Collapse
|
6
|
Sancho Santos ME, Horký P, Grabicová K, Steinbach C, Hubená P, Šálková E, Slavík O, Grabic R, Randák T. From metabolism to behaviour - Multilevel effects of environmental methamphetamine concentrations on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163167. [PMID: 37003339 DOI: 10.1016/j.scitotenv.2023.163167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Methamphetamine (METH) is a concerning drug of abuse that produces strong psychostimulant effects. The use of this substance, along with the insufficient removal in the sewage treatment plants, leads to its occurrence in the environment at low concentrations. In this study, brown trout (Salmo trutta fario) were exposed to 1 μg/L of METH as environmental relevant concentration for 28 days in order to elucidate the complex effects resulting from the drug, including behaviour, energetics, brain and gonad histology, brain metabolomics, and their relations. Trout exposed to METH displayed lowered activity as well as metabolic rate (MR), an altered morphology of brain and gonads as well as changes in brain metabolome when compared to controls. Increased activity and MR were correlated to an increased incidence of histopathology in gonads (females - vascular fluid and gonad staging; males - apoptotic spermatozoa and peritubular cells) in exposed trout compared to controls. Higher amounts of melatonin in brain were detected in exposed fish compared to controls. Tyrosine hydroxylase expression in locus coeruleus was related to the MR in exposed fish, but not in the control. Brain metabolomics indicated significant differences in 115 brain signals between control and METH exposed individuals, described by the coordinates within the principal component analyses (PCA) axes. These coordinates were subsequently used as indicators of a direct link between brain metabolomics, physiology, and behaviour - as activity and MR varied according to their values. Exposed fish showed an increased MR correlated with the metabolite position in PC1 axes, whereas the control had proportionately lower MR and PC1 coordinates. Our findings emphasize the possible complex disturbances in aquatic fauna on multiple interconnected levels (metabolism, physiology, behaviour) as a result of the presence of METH in aquatic environments. Thus, these outcomes can be useful in the development of AOP's (Adverse Outcome Pathways).
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Hubená
- Behavioural Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|