1
|
Boshra H, Blyth GAD, Truong T, Kroeker A, Kara P, Mather A, Wallace D, Babiuk S. The Development of a Multivalent Capripoxvirus-Vectored Vaccine Candidate to Protect against Sheeppox, Goatpox, Peste des Petits Ruminants, and Rift Valley Fever. Vaccines (Basel) 2024; 12:805. [PMID: 39066443 PMCID: PMC11281512 DOI: 10.3390/vaccines12070805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy skin disease virus (LSDV) field isolate from Warmbaths (WB) South Africa, ORF 005 (IL-10) gene-deleted virus (LSDV WB005KO), was able to protect sheep and goats against sheeppox and goatpox. Subsequently, genes encoding the protective antigens for peste des petits ruminants (PPR) and Rift Valley fever (RVF) viruses have been inserted in the LSDV WB005KO construct in three different antigen forms (native, secreted, and fusion). These three multivalent vaccine candidates were evaluated for protection against PPR using a single immunization of 104 TCID50 in sheep. The vaccine candidates with the native and secreted antigens protected sheep against PPR clinical disease and decreased viral shedding, as detected using real-time RT-PCR in oral and nasal swabs. An anamnestic antibody response, measured using PPR virus-neutralizing antibody response production, was observed in sheep following infection. The vaccine candidates with the antigens expressed in their native form were evaluated for protection against RVF using a single immunization with doses of 104 or 105 TCID50 in sheep and goats. Following RVF virus infection, sheep and goats were protected against clinical disease and no viremia was detected in serum compared to control animals, where viremia was detected one day following infection. Sheep and goats developed RVFV-neutralizing antibodies prior to infection, and the antibody responses increased following infection. These results demonstrate that an LSD virus-vectored vaccine candidate can be used in sheep and goats to protect against multiple viral infections.
Collapse
Affiliation(s)
- Hani Boshra
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (H.B.); (T.T.); (A.K.)
- Department of Pathology, Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Graham A. D. Blyth
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (H.B.); (T.T.); (A.K.)
| | - Thang Truong
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (H.B.); (T.T.); (A.K.)
| | - Andrea Kroeker
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (H.B.); (T.T.); (A.K.)
| | - Pravesh Kara
- ARC-Onderstepoort Veterinary Research, Onderstepoort, Pretoria 0110, South Africa; (P.K.); (A.M.)
| | - Arshad Mather
- ARC-Onderstepoort Veterinary Research, Onderstepoort, Pretoria 0110, South Africa; (P.K.); (A.M.)
| | - David Wallace
- ARC-Onderstepoort Veterinary Research, Onderstepoort, Pretoria 0110, South Africa; (P.K.); (A.M.)
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada; (H.B.); (T.T.); (A.K.)
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
2
|
Kamal T, Khan SUH, Hassan F, Zahoor AB, Ullah A, Andrabi SMH, Ali GM, Afsar T, Husain FM, Shafique H, Razak S. Molecular Characterization of Lineage-IV Peste Des Petits Ruminants Virus and the Development of In-House Indirect Enzyme-Linked Immunosorbent Assay (IELISA) for its Rapid Detection". Biol Proced Online 2024; 26:22. [PMID: 38969986 PMCID: PMC11225139 DOI: 10.1186/s12575-024-00249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024] Open
Abstract
Peste des petits ruminants (PPRV), a highly contagious viral disease, causes significant economic losses concerning sheep and goats. Recently, PPR viruses (PPRVs), have adopted new hosts and lineage IV of PPRVs represents genetic diversity within the same lineage. 350 samples, including blood, swabs, and tissues from sheep/goats, were collected during the 2020-2021 disease outbreaks in Pakistan. These samples were analysed through RT-PCR and three isolates of PPRV with accession numbers, MW600920, MW600921, and MW600922, were submitted to GenBank, based on the partial N-gene sequencing. This analysis provides a better understanding of genetic characterizations and a targeted RT-PCR approach for rapid PPRV diagnosis. An IELISA test was developed using the semi-purified antigen MW600922 isolate grown in Vero cells. The PPRV isolates currently present high divergence with the Turkish strain; conversely, similarities equivalent to 99.73% were observed for isolates collected from Pakistan. The developed indirect ELISA (IELISA) test demonstrated antibody detection rates at dilutions of 1:200 for antibodies (serum) and 1:32 for antigens. In comparison to cELISA, high specificity (85.23%) and sensitivity (90.60%) rates were observed. In contrast to the virus neutralization test (VNT), IELISA was observed to be 100% specific and 82.14% sensitive in its results. Based on these results, serological surveys conducted for PPR antibodies using IELISA can be a more effective strategy on a larger scale. Furthermore, our results demonstrate a significant breakthrough in the research in terms of cost-effectiveness and storage efficiency, and the developed IELISA test is highly recommended for use in developing countries.
Collapse
Affiliation(s)
- Tahira Kamal
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Center, Islamabad, Pakistan.
- Animal Sciences Institute, Animal Health, National Agricultural Research Center, Islamabad, Pakistan.
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Saeed-Ul-Hassan Khan
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hassan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir-Bin- Zahoor
- Animal Sciences Institute, Animal Health, National Agricultural Research Center, Islamabad, Pakistan
| | - Amman Ullah
- Animal Sciences Institute, Animal Health, National Agricultural Research Center, Islamabad, Pakistan
| | - S Murtaza Hassan Andrabi
- Animal Sciences Institute, Animal Health, National Agricultural Research Center, Islamabad, Pakistan
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Center, Islamabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Huma Shafique
- Institute of Cellular Medicine, Newcastle University Medical School, Newcastle University, Upon Tyne, UK
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Zafar S, Sarfraz MS, Ali S, Saeed L, Mahmood MS, Khan AU, Anwar MN. Recapitulation of Peste des Petits Ruminants (PPR) Prevalence in Small Ruminant Populations of Pakistan from 2004 to 2023: A Systematic Review and Meta-Analysis. Vet Sci 2024; 11:280. [PMID: 38922027 PMCID: PMC11209094 DOI: 10.3390/vetsci11060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Peste des petits ruminants (PPR) is an extremely transmissible viral disease caused by the PPR virus that impacts domestic small ruminants, namely sheep and goats. This study aimed to employ a methodical approach to evaluate the regional occurrence of PPR in small ruminants in Pakistan and the contributing factors that influence its prevalence. A thorough search was performed in various databases to identify published research articles between January 2004 and August 2023 on PPR in small ruminants in Pakistan. Articles were chosen based on specific inclusion and exclusion criteria. A total of 25 articles were selected from 1275 studies gathered from different databases. The overall pooled prevalence in Pakistan was calculated to be 51% (95% CI: 42-60), with heterogeneity I2 = 100%, τ2 = 0.0495, and p = 0. The data were summarized based on the division into five regions: Punjab, Baluchistan, KPK, Sindh, and GB and AJK. Among these, the pooled prevalence of PPR in Sindh was 61% (95% CI: 46-75), I2 = 100%, τ2 = 0.0485, and p = 0, while in KPK, it was 44% (95% CI: 26-63), I2 = 99%, τ2 = 0.0506, and p < 0.01. However, the prevalence of PPR in Baluchistan and Punjab was almost the same. Raising awareness, proper surveillance, and application of appropriate quarantine measures interprovincially and across borders must be maintained to contain the disease.
Collapse
Affiliation(s)
- Saad Zafar
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| | - Muhammad Shehroz Sarfraz
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| | - Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| | - Laiba Saeed
- Institute of Microbiology, Government College University, Faisalabad 38000, Punjab, Pakistan;
| | - Muhammad Shahid Mahmood
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| | - Aman Ullah Khan
- Department of Pathobiology, University of Veterinary and Animal Sciences (Jhang Campus), Lahore 54000, Punjab, Pakistan
| | - Muhammad Naveed Anwar
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan; (S.Z.); (M.S.S.); (S.A.); (M.S.M.)
| |
Collapse
|
4
|
Ullah I, Khan R, Suhail SM, Ahmad I, Khan FA, Shoaib M, Farid K, Ayari-Akkari A, Morfeine EA. Association of polymorphism in the promotor area of the caprine BMPR1B gene with litter size and body measurement traits in Damani goats. Trop Anim Health Prod 2024; 56:137. [PMID: 38649642 DOI: 10.1007/s11250-024-03991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
This study aimed to explore polymorphisms in the promoter region of the caprine BMPR1B (Bone morphogenetic protein receptor 1 beta) gene and its association with body measurement and litter size traits in Damani does. A total of 53 blood samples were collected to analyze the association between the BMPR1B gene polymorphism and 11 phenotypic traits in Damani female goats. The results revealed that three novel SNPs were identified in the promoter region of the caprine BMPR1B gene, including g.67 A > C (SNP1), g.170 G > A(SNP2), and g.501A > T (SNP3), among which the SNP1 and SNP2 were significantly (p < 0.05) associated with litter size and body measurement traits in Damani goats. In SNP1 the AC genotype could be used as a marker for litter size, and the CC genotype for body weight in Damani goats. In SNP2, the genotype GG was significantly (p < 0.05) associated with ear and head length. Therefore, we can conclude from the present study, that genetic variants AC and CC of the caprine BMPR1B gene could be used as genetic markers for economic traits through marker-assisted selection for the breed improvement program of the Damani goat.
Collapse
Affiliation(s)
- Inayat Ullah
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Farhan Anwar Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Shoaib
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Kamran Farid
- Department of Livestock and Dairy Development (Extension) Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| | - Ekhlas Ali Morfeine
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
5
|
Byadovskaya O, Shalina K, Prutnikov P, Shumilova I, Tenitilov N, Konstantinov A, Moroz N, Chvala I, Sprygin A. The Live Attenuated Vaccine Strain "ARRIAH" Completely Protects Goats from a Virulent Lineage IV Field Strain of Peste Des Petits Ruminants Virus. Vaccines (Basel) 2024; 12:110. [PMID: 38400094 PMCID: PMC10892433 DOI: 10.3390/vaccines12020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Peste des petits ruminants (PPR) is a transboundary viral disease that affects small ruminants, such as goats and sheep, in Africa, the Middle East, and Asia, causing substantial damage to livelihoods and disrupting livestock trade. Although Russia is PPR virus (PPRV)-free, controlling PPRV in neighboring countries is the top national priority. Recent PPR outbreaks in Mongolia and other countries in the Middle East caused by a lineage IV virus represent a risk of transboundary emergence in neighboring countries, including China, Kazakhstan, and Russia. In the present study, we assessed the potency and safety of the ARRIAH live attenuated PPRV vaccine (lineage II) in Zaannen and Nubian goat breeds by challenging them with a virulent lineage IV Mongolia/2021 isolate. For comparison, two commercial vaccines of Nigeria75/1 strain were used. The ARRIAH-vaccinated animals showed an increase in body temperature of 1-1.5 °C above the physiological norm, similar to the animals vaccinated with Nigeria75/1 vaccines. In all vaccinated groups, the average rectal temperature never exceeded 39.4-39.7 °C throughout the infection period, and no clinical signs of the disease were observed, demonstrating vaccine efficacy and safety in the current experimental setting. However, the control group (mock vaccinated) challenged with Mongolia/2021 PPRV exhibited moderate-to-severe clinical signs. Overall, the findings of the present study demonstrate that the ARRIAH vaccine strain has a promising protective phenotype compared with Nigeria75/1 vaccines, suggesting its potential as an effective alternative for curbing and controlling PPR in affected countries. Although the ARRIAH vaccine against PPR is not currently endorsed by the World Organization for Animal Health due to its incomplete safety and potency profile, this study is the first step to provide experimentally validated data on the ARRIAH vaccine.
Collapse
|
6
|
Amanova Z, Turyskeldy S, Kondybaeva Z, Sametova Z, Usembai A, Kerimbayev A, Bulatov Y. Assessment of Peste des Petits Ruminants Antibodies in Vaccinated Pregnant Ewes of Kazakh Breed Fine-Fleeced and Determination of the Decreasing Trend of Maternal Immunity in Their Lambs. Viruses 2023; 15:2054. [PMID: 37896831 PMCID: PMC10611327 DOI: 10.3390/v15102054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
In this article, we first assessed peste des petits ruminants (PPR) antibodies in vaccinated pregnant ewes of Kazakh breed fine-fleeced immunized with the PPR vaccine and the duration of maternal immunity in their lambs. Ewes in the last trimester of pregnancy and gestation were immunized with a vaccine from the Nigeria 75/1 strain of the PPR virus (PPRV) produced by the Research Institute of Biological Safety Problems (RIBSP), Kazakhstan. Serum samples from lambs born from vaccinated and unvaccinated ewes were collected a week after birth and at intervals of 7 days for 18 weeks after birth. Serum samples collected from lambs were tested for PPR antibodies using competitive ELISA and virus neutralization test (VNT). Maternal antibodies (MAs) in lambs born from vaccinated ewes were detected for up to 18 weeks, with a tendency to decrease starting at week 14, and by the end of the experiment receded below the protective level (<1:8). In the blood serum of a 14-week-old lamb with MAs (1:8), post vaccination with a field dose (103 TCID50) of the vaccine against PPR, the titers of protective antibodies against PPRV increased to 1:16 on day 14 post vaccination, and the lamb was protected from infection with the field PPRV. A lamb of the same age with MAs in the 1:8 titer was 100% protected from infection with the field PPRV. Therefore, it is recommended that lambs of the Kazakh fine-wool breed be immunized from the age of 14 weeks or older to avoid a period of susceptibility.
Collapse
Affiliation(s)
- Zhanat Amanova
- Research Institute for Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (S.T.); (Z.K.); (Z.S.); (A.U.); (A.K.); (Y.B.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Arede M, Beltrán-Alcrudo D, Aliyev J, Chaligava T, Keskin I, Markosyan T, Morozov D, Oste S, Pavlenko A, Ponea M, Starciuc N, Zdravkova A, Raizman E, Casal J, Allepuz A. Examination of critical factors influencing ruminant disease dynamics in the Black Sea Basin. Front Vet Sci 2023; 10:1174560. [PMID: 37808108 PMCID: PMC10557248 DOI: 10.3389/fvets.2023.1174560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Ruminant production in the Black Sea basin (BSB) is critical for national economies and the subsistence of rural populations. Yet, zoonoses and transboundary animal diseases (TADs) are limiting and threatening the sector. To gain a more comprehensive understanding, this study characterizes key aspects of the ruminant sector in nine countries of the BSB, including Armenia, Azerbaijan, Belarus, Bulgaria, Georgia, Moldova, Romania, Türkiye, and Ukraine. Methods We selected six priority ruminant diseases (anthrax, brucellosis, Crimean Congo haemorrhagic fever (CCHF), foot-and-mouth disease (FMD), lumpy skin disease (LSD), and peste des petits ruminants (PPR)) that are present or threaten to emerge in the region. Standardized questionnaires were completed by a network of focal points and supplemented with external sources. We examined country and ruminant-specific data such as demographics, economic importance, and value chains in each country. For disease-specific data, we analysed the sanitary status, management strategies, and temporal trends of the selected diseases. Results and discussion The shift from a centrally planned to a market economy, following the collapse of the Soviet Union, restructured the ruminant sector. This sector played a critical role in rural livelihoods within the BSB. Yet, it faced significant challenges such as the low sustainability of pastoralism, technological limitations, and unregistered farms. Additionally, ruminant health was hindered by informal animal trade as a result of economic factors, insufficient support for the development of formal trade, and socio-cultural drivers. In the Caucasus and Türkiye, where diseases were present, improvements to ruminant health were driven by access to trading opportunities. Conversely, European countries, mostly disease-free, prioritized preventing disease incursion to avoid a high economic burden. While international initiatives for disease management are underway in the BSB, there is still a need for more effective local resource allocation and international partnerships to strengthen veterinary health capacity, protect animal health and improve ruminant production.
Collapse
Affiliation(s)
- Margarida Arede
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Beltrán-Alcrudo
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Europe and Central Asia, Budapest, Hungary
| | - Jeyhun Aliyev
- Food Safety Agency of the Republic of Azerbaijan, Baku, Azerbaijan
| | - Tengiz Chaligava
- Veterinary Department, National Food Agency, Ministry of Environmental Protection and Agriculture of Georgia, Tbilisi, Georgia
| | - Ipek Keskin
- Veterinary Control Central Research Institute, Ministry of Agriculture and Forestry, Ankara, Türkiye
| | - Tigran Markosyan
- Scientific Centre for Risk Assessment and Analysis in Food Safety Area, Ministry of Agriculture, Nubarashen, Yerevan, Armenia
| | - Dmitry Morozov
- Vitebsk State Academy of Veterinary Medicine, Vitebsk, Belarus
| | - Sarah Oste
- University Institute of Technology Nancy-Brabois, Lorraine University, Villers-lès-Nancy, France
| | - Andrii Pavlenko
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Europe and Central Asia, Budapest, Hungary
| | - Mihai Ponea
- National Sanitary Veterinary and Food Safety Authority, Bucharest, Romania
| | - Nicolae Starciuc
- Faculty of Veterinary Medicine, State Agrarian University of Moldova, Chisinau, Moldova
| | | | - Eran Raizman
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Europe and Central Asia, Budapest, Hungary
| | - Jordi Casal
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Tully M, Batten C, Ashby M, Mahapatra M, Parekh K, Parida S, Njeumi F, Willett B, Bataille A, Libeau G, Kwiatek O, Caron A, Berguido FJ, Lamien CE, Cattoli G, Misinzo G, Keyyu J, Mdetele D, Gakuya F, Bodjo SC, Taha FA, Elbashier HM, Khalafalla AI, Osman AY, Kock R. The evaluation of five serological assays in determining seroconversion to peste des petits ruminants virus in typical and atypical hosts. Sci Rep 2023; 13:14787. [PMID: 37684280 PMCID: PMC10491793 DOI: 10.1038/s41598-023-41630-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Peste des petits ruminants (PPR) is an infectious viral disease, primarily of small ruminants such as sheep and goats, but is also known to infect a wide range of wild and domestic Artiodactyls including African buffalo, gazelle, saiga and camels. The livestock-wildlife interface, where free-ranging animals can interact with captive flocks, is the subject of scrutiny as its role in the maintenance and spread of PPR virus (PPRV) is poorly understood. As seroconversion to PPRV indicates previous infection and/or vaccination, the availability of validated serological tools for use in both typical (sheep and goat) and atypical species is essential to support future disease surveillance and control strategies. The virus neutralisation test (VNT) and enzyme-linked immunosorbent assay (ELISA) have been validated using sera from typical host species. Still, the performance of these assays in detecting antibodies from atypical species remains unclear. We examined a large panel of sera (n = 793) from a range of species from multiple countries (sourced 2015-2022) using three tests: VNT, ID VET N-ELISA and AU-PANVAC H-ELISA. A sub-panel (n = 30) was also distributed to two laboratories and tested using the luciferase immunoprecipitation system (LIPS) and a pseudotyped virus neutralisation assay (PVNA). We demonstrate a 75.0-88.0% agreement of positive results for detecting PPRV antibodies in sera from typical species between the VNT and commercial ELISAs, however this decreased to 44.4-62.3% in sera from atypical species, with an inter-species variation. The LIPS and PVNA strongly correlate with the VNT and ELISAs for typical species but vary when testing sera from atypical species.
Collapse
Affiliation(s)
| | | | - Martin Ashby
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Satya Parida
- The Pirbright Institute, Pirbright, United Kingdom
- Food and Agriculture Organization (FAO), United Nations, Rome, Italy
| | - Felix Njeumi
- Food and Agriculture Organization (FAO), United Nations, Rome, Italy
| | - Brian Willett
- MRC-University of Glasgow Centre for Virus Research (UoG), Glasgow, United Kingdom
| | - Arnaud Bataille
- ASTRE, University of Montpellier, CIRAD, INRA, MUSE, Montpellier, France
| | - Genevieve Libeau
- ASTRE, University of Montpellier, CIRAD, INRA, MUSE, Montpellier, France
| | - Olivier Kwiatek
- ASTRE, University of Montpellier, CIRAD, INRA, MUSE, Montpellier, France
| | - Alexandre Caron
- ASTRE, University of Montpellier, CIRAD, INRA, MUSE, Montpellier, France
| | - Francisco J Berguido
- Animal Production and Health Laboratory, Joint FAO and IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444, Seibersdorf, Austria
| | - Charles E Lamien
- Animal Production and Health Laboratory, Joint FAO and IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444, Seibersdorf, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO and IAEA Centre for Nuclear Applications in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Friedenstrasse 1, 2444, Seibersdorf, Austria
| | - Gerald Misinzo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Julius Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | | | - Francis Gakuya
- Wildlife Research & Training Institute (WRTI), Karagita, Kenya
| | - Sanne Charles Bodjo
- Pan African Veterinary Vaccine Centre for African Union (AU-PANVAC), Debre Zeit, Ethiopia
| | | | | | - Abdelmalik Ibrahim Khalafalla
- Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
- Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
| | - Abdinasir Y Osman
- National Institute of Health (NIH), Ministry of Health, Mogadishu, Somalia
- Royal Veterinary College (RVC), London, United Kingdom
| | - Richard Kock
- Royal Veterinary College (RVC), London, United Kingdom
| |
Collapse
|
9
|
Benfield CTO, Legnardi M, Mayen F, Almajali A, Cinardi G, Wisser D, Chaka H, Njeumi F. Peste Des Petits Ruminants in the Middle East: Epidemiological Situation and Status of Control and Eradication Activities after the First Phase of the PPR Global Eradication Program (2017–2021). Animals (Basel) 2023; 13:ani13071196. [PMID: 37048452 PMCID: PMC10093352 DOI: 10.3390/ani13071196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Peste des petits ruminants (PPR) is a burdensome viral disease primarily affecting small ruminants, which is currently targeted for eradication by 2030 through the implementation of a Global Control and Eradication Strategy (PPR GCES). The PPR GCES, launched in 2015, has strongly encouraged countries to participate in Regional PPR Roadmaps, designated according to the Food and Agricultural Organization of the United Nations (FAO) and World Organisation for Animal Health (WOAH) regions and epidemiological considerations, with each targeted by dedicated meetings and activities. Following the conclusion of the first phase of the PPR Global Eradication Program (PPR GEP) (2017–2021), the present work focuses on the disease situation and status of the eradication campaign in the fourteen countries of the PPR GCES Middle Eastern Roadmap as well as Egypt. PPR is endemic to or suspected to be present in most of the region, except for Bahrain, which, as of 2021, is preparing to apply for official recognition as being free of PPR. Some substantial shortcomings are observed in surveillance and disease reporting, as well as in the implemented control strategies, most notably vaccination. Since many of these limitations are shared by many of the investigated countries, the international cooperation and harmonization of control efforts appears crucial to making PPR eradication attainable in the Middle East.
Collapse
Affiliation(s)
- Camilla T. O. Benfield
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
- Correspondence:
| | - Matteo Legnardi
- Dipartimento di Medicina Animale, Produzione e Salute (MAPS), Università di Padova, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Friederike Mayen
- Regional Office for Near East and North Africa, Food and Agriculture Organization of the United Nations (FAO), Cairo P.O. Box 2223, Egypt
| | - Ahmad Almajali
- Subregional Office for the Gulf Cooperation Council States and Yemen, Food and Agriculture Organization of the United Nations (FAO), Abu Dhabi 62072, United Arab Emirates
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Giuseppina Cinardi
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Dominik Wisser
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Hassen Chaka
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Felix Njeumi
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| |
Collapse
|
10
|
Yessenbayev K, Mukhanbetkaliyev Y, Yessembekova G, Kadyrov A, Sultanov A, Bainiyazov A, Bakishev T, Nkamwesiga J, Korennoy F, Abdrakhmanov S. Simulating the Spread of Peste des Petits Ruminants in Kazakhstan Using the North American Animal Disease Spread Model. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/7052175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In this study, we simulated the potential spread of Peste des Petits Ruminants (PPR) between small ruminant (SR) farms in the Republic of Kazakhstan (RK) in case of the disease’s introduction into the country. The simulation was based on actual data on the location and population of SR farms in the RK using the North American Animal Disease Spread Model (NAADSM). The NAADSM employs the stochastic simulations of the between-farm disease spread predicated on the SIR compartmental epidemic model. The most important epidemiological indicators of PPR, demography of SR farms, and livestock management characteristics in the RK were used for model parameterization. This article considers several scenarios for the initial introduction of PPR into the territory of Kazakhstan, based on previously identified high-risk regions and varying sizes of initially infected farms. It is demonstrated that the duration and size of the outbreak do not depend on the size of initially infected farms but rather depend on the livestock concentration and number of farms in the affected area. This implies that the outbreak may affect the largest number of farms in the case of introduction of the disease into farms in southern Kazakhstan. However, even in the most unfavorable scenario, the total number of affected farms does not exceed 2.4% of all SR farms in the RK. The size of the affected area is, in most cases, no larger than an averaged 2-level administrative division’s size, which suggests the scale of a local epidemic. The chosen model provides ample opportunity to study the impact of different control and prevention measures on the spread of PPR as well as to assess the potential economic damage.
Collapse
|
11
|
Zhang S, Liang R, Yang Q, Yang Y, Qiu S, Zhang H, Qu X, Chen Q, Niu B. Epidemiologic and import risk analysis of Peste des petits ruminants between 2010 and 2018 in India. BMC Vet Res 2022; 18:419. [PMID: 36447274 PMCID: PMC9707066 DOI: 10.1186/s12917-022-03507-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) is a serious disease that affects goats, sheep and other small ruminants. As one of the earliest and most serious countries, PPR has seriously threatened India's animal husbandry economy. RESULTS In this study, the spatiotemporal characteristics of the PPR in India outbreaks were analyzed. Between 2010 and 2018, the epidemic in India broke out all over the country in a cluster distribution. Epidemic clusters in northern and southern India are at higher risk, and the outbreak time of PPR has significant seasonality. The results of the analysis of the development and transmission of PPR under the natural infection conditions showed that the PPR outbreak in India reached a peak within 15 days. Finally, the quantitative risk analysis results based on scenario tree show showed that the average probability of infecting PPRV in live sheep exported from India was 1.45 × 10-4. CONCLUSIONS This study analyzed the prevalence of PPR in India. The analysis of transmission dynamics on the development of the epidemic provides a reference for the prevention and control of the epidemic. At the same time, it provides risk analysis and suggestions on trade measures for the trading countries of India.
Collapse
Affiliation(s)
- Shuwen Zhang
- grid.39436.3b0000 0001 2323 5732School of Life Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Ruirui Liang
- grid.39436.3b0000 0001 2323 5732School of Life Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Qiaoling Yang
- grid.39436.3b0000 0001 2323 5732School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Yunfeng Yang
- grid.39436.3b0000 0001 2323 5732School of Life Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Songyin Qiu
- grid.418544.80000 0004 1756 5008Chinese Academy of Inspection and Quarantine, Beijing, 100176 People’s Republic of China
| | - Hui Zhang
- grid.39436.3b0000 0001 2323 5732School of Life Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Qin Chen
- grid.39436.3b0000 0001 2323 5732School of Life Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Bing Niu
- grid.39436.3b0000 0001 2323 5732School of Life Sciences, Shanghai University, Shanghai, 200444 People’s Republic of China
| |
Collapse
|