1
|
Pérez-Jiménez GM, Alvarez-Villagomez CS, Martínez-Porchas M, Garibay-Valdez E, Sepúlveda-Quiroz CA, Méndez-Marín O, Martínez-García R, Jesús-Contreras R, Alvarez-González CA, De la Rosa-García SDC. The Indigenous Probiotic Lactococcus lactis PH3-05 Enhances the Growth, Digestive Physiology, and Gut Microbiota of the Tropical Gar ( Atractosteus tropicus) Larvae. Animals (Basel) 2024; 14:2663. [PMID: 39335253 PMCID: PMC11428600 DOI: 10.3390/ani14182663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Probiotics in aquaculture hold promise for enhancing fish health and growth. Due to their increased specificity and affinity for their host, indigenous probiotics may offer isolated and potentially amplified benefits. This study investigated the effects of Lactococcus lactis PH3-05, previously isolated from adults of tropical gar (Atractosteus tropicus), on the growth, survival, digestive enzyme activity, intestinal morphology, expression of barrier and immune genes, and intestinal microbiota composition in the larvae of tropical gar. Larvae were fed with live L. lactis PH3-05 concentrations of 104, 106, and 108 CFU/g for 15 days alongside a control diet without probiotics. Higher concentrations of L. lactis PH3-05 (106 and 108 CFU/g) positively influenced larval growth, increasing hepatocyte area and enterocyte height. The 106 CFU/g dose significantly enhanced survival (46%) and digestive enzyme activity. Notably, the 108 CFU/g dose stimulated increased expression of muc-2 and il-10 genes, suggesting enhanced mucosal barrier function and anti-inflammatory response. Although L. lactis PH3-05 did not significantly change the diversity, structure, or Phylum level composition of intestinal microbiota, which was constituted by Proteobacteria, Bacteroidota, Chloroflexi, and Firmicutes, an increase in Lactobacillus abundance was observed in fish fed with 106 CFU/g, suggesting enhanced probiotic colonization. These results demonstrate that administering L. lactis PH3-05 at 106 CFU/g promotes growth, survival, and digestive health in A. tropicus larvae, establishing it as a promising indigenous probiotic candidate for aquaculture applications.
Collapse
Affiliation(s)
- Graciela María Pérez-Jiménez
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Carina Shianya Alvarez-Villagomez
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo 83304, Sonora, Mexico; (M.M.-P.); (E.G.-V.)
| | - Estefanía Garibay-Valdez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Biología de Organismos Acuáticos, Hermosillo 83304, Sonora, Mexico; (M.M.-P.); (E.G.-V.)
| | - César Antonio Sepúlveda-Quiroz
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
- Instituto Tecnológico de Villahermosa, Tecnológico Nacional de México, Carretera Villahermosa-Frontera, Km. 3.5, Ciudad Industrial, Villahermosa 86010, Tabasco, Mexico
| | - Otilio Méndez-Marín
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Rafael Martínez-García
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Ronald Jesús-Contreras
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Carlos Alfonso Alvarez-González
- Laboratorio de Fisiología en Recursos Acuáticos (LAFIRA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico; (G.M.P.-J.); (C.S.A.-V.); or (C.A.S.-Q.); (O.M.-M.); (R.M.-G.); (R.J.-C.)
| | - Susana del Carmen De la Rosa-García
- Laboratorio de Microbiología Aplicada (LABMIA), División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas Km. 0.5, Villahermosa 86039, Tabasco, Mexico
| |
Collapse
|
2
|
Kanika NH, Hou X, Liu H, Dong Y, Wang J, Wang C. Specific gut microbiome's role in skin pigmentation: insights from SCARB1 mutants in Oujiang colour common carp. J Appl Microbiol 2024; 135:lxae226. [PMID: 39243120 DOI: 10.1093/jambio/lxae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024]
Abstract
AIMS Beyond the pivotal roles of the gut microbiome in initiating physiological processes and modulating genetic factors, a query persists: Can a single gene mutation alter the abundance of the gut microbiome community? Not only this, but the intricate impact of gut microbiome composition on skin pigmentation has been largely unexplored. METHODS AND RESULTS Based on these premises, our study examines the abundance of lipase-producing gut microbes about differential gene expression associated with bile acid synthesis and lipid metabolism-related blood metabolites in red (whole wild) and white (whole white wild and SCARB1-/- mutant) Oujiang colour common carp. Following the disruption of the SCARB1 gene in the resulting mutant fish with white body colour (SCARB1-/-), there is a notable decrease in the abundance of gut microbiomes (Bacillus, Staphylococcus, Pseudomonas, and Serratia) associated with lipase production. This reduction parallels the downregulation seen in wild-type white body colour fish (WW), as contrasting to the wild-type red body colour fish (WR). Meanwhile, in SCARB1-/- fish, there was a downregulation noted not only at the genetic and metabolic levels but also a decrease in lipase-producing bacteria. This consistency with WW contrasts significantly with WR. Similarly, genes involved in the bile acid synthesis pathway, along with blood metabolites related to lipid metabolism, exhibited downregulation in SCARB1-/- fish. CONCLUSIONS The SCARB1 knockout gene blockage led to significant alterations in the gut microbiome, potentially influencing the observed reduction in carotenoid-associated skin pigmentation. Our study emphasizes that skin pigmentation is not only impacted by genetic factors but also by the gut microbiome. Meanwhile, the gut microbiome's adaptability can be rapidly shaped and may be driven by specific single-gene variations.
Collapse
Affiliation(s)
- Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Dong
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Qian Z, Hou D, Gao S, Wang X, Yu J, Dong J, Sun C. Toxic effects and mechanisms of chronic cadmium exposure on Litopenaeus vannamei growth performance based on combined microbiome and metabolome analysis. CHEMOSPHERE 2024; 361:142578. [PMID: 38857631 DOI: 10.1016/j.chemosphere.2024.142578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 μg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 μg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 μg/L Cd2+, and Maribacter at 300 μg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 μg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.
Collapse
Affiliation(s)
- Zhaoying Qian
- School of Economics, Guizhou University of Finance and Economics, Guiyang, 550025, Guizhou, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Shan Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Xuejie Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jianbo Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxin Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
4
|
Tawfik MM, Lorgen-Ritchie M, Król E, McMillan S, Norambuena F, Bolnick DI, Douglas A, Tocher DR, Betancor MB, Martin SAM. Modulation of gut microbiota composition and predicted metabolic capacity after nutritional programming with a plant-rich diet in Atlantic salmon (Salmo salar): insights across developmental stages. Anim Microbiome 2024; 6:38. [PMID: 38951941 PMCID: PMC11218362 DOI: 10.1186/s42523-024-00321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.
Collapse
Affiliation(s)
- Marwa Mamdouh Tawfik
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
- Hydrobiology Department, Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Marlene Lorgen-Ritchie
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Elżbieta Król
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Stuart McMillan
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | | | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Alex Douglas
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Douglas R Tocher
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, Guangdong, China
| | - Mónica B Betancor
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
5
|
Kong M, Zhao W, Wang C, Qi J, Liu J, Zhang Q. A Well-Established Gut Microbiota Enhances the Efficiency of Nutrient Metabolism and Improves the Growth Performance of Trachinotus ovatus. Int J Mol Sci 2024; 25:5525. [PMID: 38791564 PMCID: PMC11121967 DOI: 10.3390/ijms25105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The gut microbiota has become an essential component of the host organism and plays a crucial role in the host immune system, metabolism, and physiology. Nevertheless, our comprehension of how the fish gut microbiota contributes to enhancing nutrient utilization in the diet and improving host growth performance remains unclear. In this study, we employed a comprehensive analysis of the microbiome, metabolome, and transcriptome to analyze intestines of the normal control group and the antibiotic-treated model group of T. ovatus to investigate how the gut microbiota enhances fish growth performance and uncover the underlying mechanisms. First, we found that the growth performance of the control group was significantly higher than that of the antibiotic-treated model under the same feeding conditions. Subsequent multiomics analyses showed that the gut microbiota can improve its own composition by mediating the colonization of some probiotics represented by Lactobacillus in the intestine, improving host metabolic efficiency with proteins and lipids, and also influencing the expression of genes in signaling pathways related to cell proliferation, which together contribute to the improved growth performance of T. ovatus. Our results demonstrated the important contribution of gut microbiota and its underlying molecular mechanisms on the growth performance of T. ovatus.
Collapse
Affiliation(s)
- Miao Kong
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Wendong Zhao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Cong Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jie Qi
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jinxiang Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Quanqi Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572025, China; (M.K.); (W.Z.); (C.W.); (J.Q.); (J.L.)
- MOE Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
6
|
Mathan Muthu CM, Vickram AS, Bhavani Sowndharya B, Saravanan A, Kamalesh R, Dinakarkumar Y. A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109459. [PMID: 38369068 DOI: 10.1016/j.fsi.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.
Collapse
Affiliation(s)
- C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - B Bhavani Sowndharya
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Yuvaraj Dinakarkumar
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
7
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
8
|
Tamilselvan M, Raja S. Exploring the role and mechanism of potential probiotics in mitigating the shrimp pathogens. Saudi J Biol Sci 2024; 31:103938. [PMID: 38327656 PMCID: PMC10847377 DOI: 10.1016/j.sjbs.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Shrimp aquaculture has rapidly developed into a significant industry worldwide, providing not only financial gain and high-quality food but also tens of thousands of trained and competent workers. Frequent diseases are now regarded as a significant risk factor for shrimp aquaculture, as they have the potential to significantly reduce shrimp production and result in economic losses. Over the years various traditional methods including the use of antibiotics have been followed to control diseases yet unsuccessful. Probiotic is considered potential supplements for shrimps during farming, they may also act beneficially as disease control and increased production. Probiotics are described as a live microbial supplement that benefits the host by modifying the microbial population associated with the host and its ambient. The present state of research about probiotics demonstrates notable impacts on the immune defences of the host's gastrointestinal system, which play a crucial role in safeguarding against diseases and managing inflammation inside the digestive tract. In the past ten years, many studies on probiotics have been published. However, there is a lack of information about the processes by which probiotics exert their effects in aquaculture systems, with only limited elucidations being offered. This study explores the variety of procedures behind the positive effects of probiotics in shrimp culture. These mechanisms include the augmentation of the immune system, control of growth, antagonistic action against pathogens, competitive exclusion, and modification of the gut microbiota. Mechanisms involved in the probiotic mode of action are mostly interlinked. This provides a greater understanding of the importance of probiotics in shrimp culture as an environmentally friendly practice.
Collapse
Affiliation(s)
- Manishkumar Tamilselvan
- Aquaculture Biotechnology Laboratory, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| | - Sudhakaran Raja
- Aquaculture Biotechnology Laboratory, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
9
|
Hu YZ, Wu CS, Wang J, Han XQ, Si PY, Zhang YA, Zhang XJ. Antimicrobial Protein LECT2-b Helps Maintain Gut Microbiota Homeostasis via Selectively Targeting Certain Pathogenic Bacteria. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:81-95. [PMID: 38038392 DOI: 10.4049/jimmunol.2300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 12/02/2023]
Abstract
Antimicrobial peptides/proteins (AMPs) constitute a critical component of gut immunity in animals, protecting the gut from pathogenic bacteria. However, the interactions between AMPs and gut microbiota remain elusive. In this study, we show that leukocyte-derived chemotaxin-2 (LECT2)-b, a recently discovered AMP, helps maintain gut homeostasis in grass carp (Ctenopharyngodon idella), one of the major farmed fish species globally, by directly regulating the gut microbiota. Knockdown of LECT2-b resulted in dysregulation of the gut microbiota. Specifically, LECT2-b deficiency led to the dominance of Proteobacteria, consisting of proinflammatory bacterial species, over Firmicutes, which includes anti-inflammatory bacteria. In addition, the opportunistic pathogenic bacteria genus Aeromonas became the dominant genus replacing the probiotic bacteria Lactobacillus and Bacillus. Further analysis revealed that this effect was due to the direct and selective inhibition of certain pathogenic bacterial species by LECT2-b. Moreover, LECT2-b knockdown promoted biofilm formation by gut microbiota, resulting in tissue damage and inflammation. Importantly, LECT2-b treatment alleviated the negative effects induced by LECT2-b knockdown. These findings highlight the crucial role of LECT2-b in maintaining the gut microbiota homeostasis and mucosal health. Overall, our study provides important data for understanding the roles of AMPs in the regulation of gut homeostasis in animals.
Collapse
Affiliation(s)
- Ya-Zhen Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jie Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xue-Qing Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Pei-Yue Si
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
Li Y, Zhou X, Guo W, Fu Y, Ruan G, Fang L, Wang Q. Effects of lead contamination on histology, antioxidant and intestinal microbiota responses in freshwater crayfish, Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106768. [PMID: 38041968 DOI: 10.1016/j.aquatox.2023.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 11/12/2023] [Indexed: 12/04/2023]
Abstract
The red swamp crayfish (Procambarus clarkii) is an important farming species in China and there is a high degree of overlap between the main crayfish production areas and areas contaminated with the heavy metal lead (Pb), thus putting crayfish farming at potential risk of Pb contamination. To assess the toxic effects of Pb on crayfish, in this study they were exposed to different concentrations of Pb (0, 0.1, 1, 10, 50 mg/L) for 72 h, and 0.1 mg/L represents the level of Pb in the contaminated water. Histomorphology and activities of antioxidant or immune-related enzymes suggest that the damage of Pb to the hepatopancreas and intestine was dose- and time-dependent, with the intestine being more sensitive to Pb than the hepatopancreas. Notably, after a short period (24 h) of stress at low concentrations (0.1 mg/L) of Pb, the malondialdehyde (MDA) content and antioxidant enzymes such as catalase (CAT) and glutathione peroxidase (GSH-Px) in the intestine of crayfish showed significant changes, indicating that low concentrations of Pb were also highly detrimental to crayfish. High-throughput sequencing of the intestinal microbial community indicated that Pb exposure led to a disturbance in the relative abundance of intestinal bacteria, increasing the abundance of pathogenic bacteria (Bosea, Cloacibacterium, Legionella spp.) and decreasing the abundance of potentially beneficial bacteria (Chitinibacter, Chitinilyticum, Paracoccus, Microbacterium, Demequina, and Acinetobacter spp.). In conclusion, Pb damages the hepatopancreas and intestinal barrier of crayfish, leading to the destruction of their anti-stress ability and immune response, and at the same time disrupts the homeostasis of intestinal microbes, resulting in adverse effects on the gut. This study contributed to the assessment of the ecotoxicity of the heavy metal Pb to the crustacean aquatic animals.
Collapse
Affiliation(s)
- Yulong Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Xingwang Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650504, China
| | - Yunyin Fu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Guoliang Ruan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Liu Fang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China.
| | - Qian Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China.
| |
Collapse
|
11
|
Elsadek MM, Zhu W, Wang S, Wang X, Guo Z, Lin L, Wang G, Wang Q, Chen Y, Zhang D. Beneficial effects of indigenous Bacillus spp. on growth, antioxidants, immunity and disease resistance of Rhynchocypris lagowskii. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109047. [PMID: 37673385 DOI: 10.1016/j.fsi.2023.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
This study aimed to investigate the effect of Bacillus aryabhattai (LSG3-7) and Bacillus mojavensis (LSG3-8) on growth performance, antioxidant capacity, and immune response in Rhynchocypris lagowskii (Dybowski, 1869), at the trial and challenge periods. A 630 healthy fish (10.76 ± 0.05) were randomly divided into six groups: control group (D1) was fed the basal diet, D2 and D3 were supplemented with LSG 3-7 and LSG3-8 (1 × 108 CFU/g) for both of them, whereas D4 was supplemented with a mixture of both bacteria (0.5 × 108 CFU/g each), and D5 was supplemented with LSG3-7 0.75 × 108 CFU/g + LSG3-8 0.25 × 108 CFU/g, and D6 supplemented with LSG3-7 0.25 × 108 CFU/g + LSG3-8 0.75 × 108 CFU/g. After the trial, Aeromonas hydrophila was used in a challenge test for 14 days. Treatments showed significant differences (p < 0.05) in growth performance and antioxidant capacity (CAT, CuZn-SOD, GPX) in the liver and intestine compared to the control. The antioxidant-related genes CAT, CuZn-SOD, GPX, and Nrf2 in the liver and intestine showed upregulation compared with the control group. Serum IgM, LZM, C3, C4, and AKP showed a favorable superiority (p < 0.05) in treatments (D2 - D6) at the trial and challenge test compared to controls. In parallel, immune-related genes (IgM, NF-κB, TLR-1, TLR-2, and MyD88) showed an up-regulated level (p < 0.05) in treatments (D2 - D6) compared to the control. In addition, pro-inflammatory cytokines (IL-1, TNF-α) showed a downregulated level in treatments (D2 - D6). After the challenge test, the immune-related genes in the liver and muscle showed an up-regulated level in treatments compared to the controls. The survival rate showed a significant increase (p < 0.05) in the treatment groups (D2 - D6) compared to the control. Overall, individuals and the bacterial mixture of B. aryabhattai and B. mojavensis could improve the growth performance, antioxidant capacity, immune capacity, and survival rate of R. lagowskii and prevent side effects of A. hydrophila. However, B. mojavensis showed a slight improvement compared to B. aryabhattai without a significant difference between them.
Collapse
Affiliation(s)
- Mahmoud M Elsadek
- College of Animal Science and Technology, Key Laboratory for Animal Production Quality and Safety of Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11884, Egypt
| | - Wenli Zhu
- College of Animal Science and Technology, Key Laboratory for Animal Production Quality and Safety of Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Sibu Wang
- College of Animal Science and Technology, Key Laboratory for Animal Production Quality and Safety of Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Wang
- College of Animal Science and Technology, Key Laboratory for Animal Production Quality and Safety of Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Zhixin Guo
- Tonghua Normal University, College of Life Science, Jilin, Tonghua, 134001, China
| | - Lili Lin
- Fishery Technical Extension Station of Jilin Province, Changchun, 130012, China
| | - Guiqin Wang
- College of Animal Science and Technology, Key Laboratory for Animal Production Quality and Safety of Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuju Wang
- College of Animal Science and Technology, Key Laboratory for Animal Production Quality and Safety of Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Yuke Chen
- College of Animal Science and Technology, Key Laboratory for Animal Production Quality and Safety of Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| | - Dongming Zhang
- College of Animal Science and Technology, Key Laboratory for Animal Production Quality and Safety of Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Changchun University of Architecture and Civil Engineering, Changchun, 130607, China.
| |
Collapse
|
12
|
Chang YT, Ko HT, Wu PL, Kumar R, Wang HC, Lu HP. Gut microbiota of Pacific white shrimp ( Litopenaeus vannamei) exhibits distinct responses to pathogenic and non-pathogenic Vibrio parahaemolyticus. Microbiol Spectr 2023; 11:e0118023. [PMID: 37750710 PMCID: PMC10580984 DOI: 10.1128/spectrum.01180-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), a high-mortality-rate shrimp disease, is caused by specific Vibrio parahaemolyticus (Vp) strains with a plasmid encoding the PirABVp toxins. As a bacterial pathogen, the invasion of AHPND-causing Vp might impose pressure on commensal microbiota in the shrimp gut, while the relationship between the pathogenesis of AHPND and the dysbiosis of gut bacterial communities remains unclear. Here we explored the temporal changes of shrimp gut microbiota in response to AHPND-causing and non-AHPND-causing Vp strains, with the non-infected controls as a baseline of the shrimp gut microbiota. The diversity and composition of bacterial communities from 168 gut samples (covering three treatments at seven time points with eight individuals per set) were investigated using 16S rRNA gene metabarcoding with high-throughput sequencing. The results showed that (i) species diversity of gut bacterial communities declined in Vp-infected shrimp, independent of the strain pathogenicity; (ii) taxonomic compositions of gut bacterial communities were significantly different between shrimp infected by AHPND-causing and non-AHPND-causing Vp strains; (iii) short-term (within 6 hours) compositional shifts in the gut microbiota were found only in AHPND-causing Vp-infected shrimp; (iv) the gut microbiota of AHPND-causing Vp-infected shrimp was enriched with genera Photobacterium and Vibrio, with a decline in Candidatus Bacilliplasma; and (v) functional predictions suggested the loss of normal metabolism due to compositional shifts in the gut microbiota. Our work reveals distinct features of community dynamics in shrimp gut microbiota, associated with pathogenic versus non-pathogenic Vibrio infections, providing a new perspective of the pathogenesis of AHPND. IMPORTANCE Shrimp production is continually threatened by newly emerging diseases, such as AHPND, which is caused by specific Vp strains. Previous studies on the pathogenesis of AHPND have mainly focused on the histopathology and immune responses of the host. However, more attention needs to be paid to the gut microbiota, which acts as the first barrier to pathogen colonization. In this study, we revealed that shrimp gut microbiota responded differently to pathogenic and non-pathogenic Vp strains, with bacterial genera Photobacterium and Vibrio enriched in pathogenic Vp-infected shrimp, and Candidatus Bacilliplasma enriched in non-pathogenic Vp-infected shrimp. Moreover, functional predictions suggested that changes in taxonomic compositions would further affect normal metabolic functions, emphasizing the importance of sustaining an equilibrium in the gut microbiota. Several biomarkers associated with specific microbial taxa and functional pathways were identified in our data sets, which help predict the incidence of disease outcomes.
Collapse
Affiliation(s)
- Yi-Ting Chang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Ting Ko
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Lun Wu
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Hsiao-Pei Lu
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Monzón-Atienza L, Bravo J, Serradell A, Montero D, Gómez-Mercader A, Acosta F. Current Status of Probiotics in European Sea Bass Aquaculture as One Important Mediterranean and Atlantic Commercial Species: A Review. Animals (Basel) 2023; 13:2369. [PMID: 37508146 PMCID: PMC10376171 DOI: 10.3390/ani13142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
European sea bass production has increased in recent decades. This increase is associated with an annually rising demand for sea bass, which encourages the aquaculture industries to increase their production to meet that demand. However, this intensification has repercussions on the animals, causing stress that is usually accompanied by dysbiosis, low feed-conversion rates, and immunodepression, among other factors. Therefore, the appearance of pathogenic diseases is common in these industries after immunodepression. Seeking to enhance animal welfare, researchers have focused on alternative approaches such as probiotic application. The use of probiotics in European sea bass production is presented as an ecological, safe, and viable alternative in addition to enhancing different host parameters such as growth performance, feed utilization, immunity, disease resistance, and fish survival against different pathogens through inclusion in fish diets through vectors and/or in water columns. Accordingly, the aim of this review is to present recent research findings on the application of probiotics in European sea bass aquaculture and their effect on growth performance, microbial diversity, enzyme production, immunity, disease resistance, and survival in order to help future research.
Collapse
Affiliation(s)
- Luis Monzón-Atienza
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Jimena Bravo
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Antonio Gómez-Mercader
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto ECO-AQUA (IU-ECOAQUA), Universidad de Las Palmas de Gran Canaria, 35214 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
14
|
Hoseinifar SH, Maradonna F, Faheem M, Harikrishnan R, Devi G, Ringø E, Van Doan H, Ashouri G, Gioacchini G, Carnevali O. Sustainable Ornamental Fish Aquaculture: The Implication of Microbial Feed Additives. Animals (Basel) 2023; 13:ani13101583. [PMID: 37238012 DOI: 10.3390/ani13101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Ornamental fish trade represents an important economic sector with an export turnover that reached approximately 5 billion US dollars in 2018. Despite its high economic importance, this sector does not receive much attention. Ornamental fish husbandry still faces many challenges and losses caused by transport stress and handling and outbreak of diseases are still to be improved. This review will provide insights on ornamental fish diseases along with the measures used to avoid or limit their onset. Moreover, this review will discuss the role of different natural and sustainable microbial feed additives, particularly probiotics, prebiotics, and synbiotics on the health, reduction in transport stress, growth, and reproduction of farmed ornamental fish. Most importantly, this review aims to fill the informational gaps existing in advanced and sustainable practices in the ornamental fish production.
Collapse
Affiliation(s)
- Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Mehwish Faheem
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti 621007, Tamil Nadu, India
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, N9019 Tromsø, Norway
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ghasem Ashouri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|