1
|
Alfifi A, El-Hamid MIA, Abdel-Raheem SM, Al-Khalaifah HS, Youssef W, Khalil SS, Al-Nasser A, Elkhawaga E, Elmehrath EM, Nassar AH, Elsaid GA, El Oksh ASA, Ibrahim D. Combined modulatory effects of dietary arginine and olive leaf phenolic extract on growth performance and immune functions of broiler chickens, and meat antioxidant potential during frozen storage. BMC Vet Res 2025; 21:226. [PMID: 40165253 PMCID: PMC11956227 DOI: 10.1186/s12917-025-04663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Nowadays, broilers reared in intensive farming become more susceptible to oxidative stress, which impairs their performance and the quality of their products. Arginine (G) is a crucial amino acid for chickens and feeding on arginine beyond the recommended levels has been shown to positively impact the growth performance of broiler chickens and their immunity. Olive leaves phenolic extract (OLE) is a natural source of powerful antioxidants. The current study aimed to investigate the combined efficacy of these functional feed additives (G + OLE) in enhancing broilers' growth performance, immunity, and muscle development, as well as potentiating meat quality and antioxidant capacity during freezing. METHODS Broilers (n = 250) were randomly assigned into control (without supplementations) and four groups fed control diets plus 1.5 g/kg arginine alone (G) or with three different levels of OLE; 0.25%, 0.5% and 1% (G + OLEǀ, G + OLEǀǀǀ and G + OLEǀǀǀ, respectively). RESULTS During whole rearing periods, G + OLE inclusion boosted efficacy on body weight gain, and feed conversion ratio in a dose-dependent manner. The postmortem pH values at 0.5, and 24 h, drip loss, and cooking loss % of meat were considerably minimized in G + OLE-supplied groups, especially at high levels. Even after 4 weeks of frozen storage, G + OLEǀǀǀ, G + OLEǀǀ groups exhibited the most prominent increase in the breast meat scavenging ability for free radicals (2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid, and ferric reducing antioxidant power) with an inverse minimization in lipid peroxidation attributes (malondialdehyde). Total flavonoid, and phenolic contents, total antioxidant capacity, and antioxidant enzymes' activities in the breast meat were significantly improved by increasing the concentrations of dietary G + OLE. Concordantly, upregulation of genes encoding immunity (immunoglobulins A, G and M), antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, peroxiredoxin-1, heme oxygenase-1, NAD(P)H dehydrogenase quinone 1, xanthine oxidoreductase, and heme oxygenase 1), and muscle development (myogenic determination factor, myogenin and mammalian target of rapamycin), and downregulation of myostatin, were remarkably recognized in G + OLE-supplied groups. CONCLUSIONS The outcomes of the current study supported the usage of dietary G + OLE as an innovative feed supplement in the broilers industry to improve broilers` production, and meat quality during frozen storage.
Collapse
Affiliation(s)
- Ahmed Alfifi
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al- Ahsa, 31982, Saudi Arabia.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al- Ahsa, 31982, Saudi Arabia
| | - H S Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box:24885, Safat, 13109, Kuwait
| | - Wessam Youssef
- Department of Biotechnology, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Giza, Egypt
| | - Samah S Khalil
- Department of Biochemistry, Drug Information Centre, Zagazig University Hospitals, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Afaf Al-Nasser
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box:24885, Safat, 13109, Kuwait
| | - Eman Elkhawaga
- Department of Food Hygiene, Mansoura Branch, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Eman Mahmoud Elmehrath
- Department of Food Hygiene, Mansoura Branch, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Arwa H Nassar
- Department of Food Hygiene, Mansoura Branch, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Gamilat A Elsaid
- Department of Food Hygiene, Mansoura Branch, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, Giza, Egypt
| | - Amal S A El Oksh
- Department of Biotechnology, Reference Laboratory for Quality Control of Poultry Production (RLQP), Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
2
|
Elahwl EA, Assar DH, Al-Hawary II, Salah AS, Ragab AE, Elsheshtawy A, Assas M, Abo-Al-Ela HG, Fouad AM, Elbialy ZI. Alleviation of glyphosate-induced toxicity by Horseradish tree (Moringa oleifera) Leaf extract and phytase in Nile Tilapia (Oreochromis niloticus) highlighting the antioxidant, anti-inflammatory, and anti-apoptotic activities. Vet Res Commun 2025; 49:135. [PMID: 40063176 PMCID: PMC11893658 DOI: 10.1007/s11259-025-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
The danger posed by waterborne toxicity from herbicides endangers the aquatic ecosystem. Using dietary medicinal herbs is a useful approach to mitigate the effects of herbicide toxicity on aquatic animals. This study attempts to examine the consequences and potential mechanisms behind the dietary addition of horseradish tree (Moringa oleifera) leaf extract (MOLE) with the help of phytase addition to check the overall growth performance, biochemical changes, histological alteration, and gene expression in normal and after glyphosate challenge in Nile tilapia. A total number of 135 Nile tilapia fish (7.93 ± 0.03 g) were randomly assigned into three groups each in triplicate. The first group is the control group and fed basal diet; the second group supplied with MOLE (200 mg of extract/kg), and the third group was supplied with MOLE (200 mg /kg), and phytase (0.2g/ kg) for 8 weeks. After the feeding trial, each experimental group was divided into two subgroups to be unchallenged and challenged with glyphosate (30 mg/L of water). The results declared significant enhancements (P < 0.05) in Weight Gain Percent (WG%), Specific growth rate (SGR), and Protein efficiency ratio (PER) and reducing feed conversion ratio (FCR) with up-regulating hepatic gh, igf1,myogenine, intestinal ghrelin and NPY in fish groups fed MOLE and phytase compared with the control group. Moreover, improving the hepatic antioxidant capacity while down-regulating hepatic igf1bp, myostatin. Interstingly, MOLE and phytase lightened glyphosate-induced biochemical alterations, antioxidants, apoptosis, and inflammation-associated genes compared to the glyphosate-challenged group. Interestingly, UPLC-ESI-MS/MS analysis recognized 16 compounds encompasing two glucosinolates, three flavonoids, one phenolic and three alkaloids in addition to four fatty acids, a terpenoid, one phytate and an aromatic glycoside. These components might be accountable for the potential effects exerted by MOLE. Therefore, the current study suggests that dietary supplementation to MOLE and phytase can be used as substitute feed supplements in sustainable farming of Nile tilapia to defend against glyphosate challenges and enhance growth, antioxidant capacity, exerting anti-inflammatory and antiapoptotic effects under normal health conditions or post glyphosate challenge.
Collapse
Affiliation(s)
- Esraa A Elahwl
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Ibrahim I Al-Hawary
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Abdallah S Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Amany E Ragab
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, 32527, Egypt
| | - Ahmed Elsheshtawy
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Mona Assas
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Haitham G Abo-Al-Ela
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt
| | - Alamira Marzouk Fouad
- Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Zizy I Elbialy
- Fish processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
3
|
Ragab AE, Al-Ashmawy GM, Afify SRE, El-Feky OA, Ibrahim AO. Synergistic anticancer effects of cisplatin and phenolic aglycones of the aerial part of Rumex dentatus L. in tongue squamous cell carcinoma: insights from network pharmacology and biological verification. BMC Complement Med Ther 2025; 25:25. [PMID: 39863836 PMCID: PMC11762535 DOI: 10.1186/s12906-024-04718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L., from the Polygonaceae family, is known for its medicinal properties, but its anticancer potential has not been thoroughly explored. This study aimed to investigate the synergy between cisplatin and an extract from the aerial parts of R. dentatus L. in treating tongue carcinoma (HNO97) in vitro, using network pharmacology, biological verification, and phytochemical analysis. METHODS The study included UPLC-ESI-MS/MS analysis, cytotoxicity assays, cell cycle analysis, apoptosis assessment, and RT-qPCR for gene expression of Bcl2, p53, and ATG7. Potential targets were identified, and mechanisms of action were examined through online databases and enrichment analyses. RESULTS The R. dentatus L. extract contained 14 phenolic aglycons. Combining cisplatin and R. dentatus L. was more effective in inhibiting proliferation, inducing cell cycle arrest and apoptosis, and reducing autophagy in HNO97 cells than cisplatin alone. KEGG analysis indicated that the drug combination might work through pathways like PI3K-Akt signaling, microRNAs in cancer, and EGFR tyrosine kinase inhibitor resistance. CONCLUSIONS Combining cisplatin with R. dentatus L. may be a promising approach for treating tongue carcinoma by affecting multiple pathways, providing a new perspective for developing more effective treatments for OSCC.
Collapse
Affiliation(s)
- Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Alsalam University, Kafr Alzayat, Algharbia, 31611, Egypt.
| | - Sherin R El Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alsalam University, Kafr Alzayat, Algharbia, 31611, Egypt
| | - Ola A El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Alsalam University, Kafr Alzayat, Algharbia, 31611, Egypt
| | - Amera O Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Wang J, Wang L, Liu Y, Hou C, Xie Q, Tang D, Liu F, Lou B, Zhu J. The Keap1-Nrf2/ARE signaling pathway regulates redox balance and apoptosis in the small yellow croaker (Larimichthys polyactis) under hypoxic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177396. [PMID: 39521089 DOI: 10.1016/j.scitotenv.2024.177396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Hypoxic stress can result in redox imbalance and apoptosis in teleostean fishes; however, the precise molecular mechanisms underlying this process, including its regulation by the key signaling pathway Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 related factor (Nrf2)/antioxidant response element (ARE), remain elusive. Therefore, in this study, we chose the Keap1-Nrf2/ARE signaling pathway as the entry point and a combination of in vivo (target organ liver) and in vitro (small yellow croaker fry [SYCF] cell line) experiments to investigate the molecular mechanism by which Larimichthys polyactis (L. polyactis) adapts to hypoxic stress by regulating redox balance and apoptosis. As our previous study found that hypoxic stress could lead to redox imbalance and apoptosis in L. polyactis. First, we observed significant alterations in the expression of key genes Lpkeap1, Lpnrf2, Lpho-1, and Lpnqo1 within the Keap1-Nrf2/ARE signaling pathway in both liver tissue and SYCF cells of L. polyactis under hypoxic stress, indicating activation of this pathway in response to hypoxia. Subsequently, we elucidated the mechanism by which hypoxia activates this pathway, that is, hypoxia weakened the interaction between LpNrf2 and LpKeap1, promoting the nuclear translocation of LpNrf2 and enhancing its binding activity to ARE, thereby activating the transcription of target genes. Furthermore, we found that significant changes occurred in the redox balance and apoptosis-related indicators after LpNrf2 knockdown and exposure to hypoxic stress for 24 h in SYCF cells, indicating that this pathway can regulate redox balance and apoptosis regulation under hypoxic stress in L. polyactis. Additionally, we used DNA affinity purification sequencing (DAP-seq) to identify the ARE sequence (ATGATTTAGC) that bound to LpNrf2 and its target genes. Finally, we conducted a combined analysis of DAP-seq and RNA-seq to identify six key target genes involved in the process: haeme oxygenase-1 (Ho-1), B-cell lymphoma-2 (Bcl2), pituitary homeobox 2 isoform X1 (Pitx2), aquaporin-4 isoform X1 (Aqp4), stress-induced phosphoprotein 1-like isoform X1 (Stip1), and guanine nucleotide-binding protein G (i) subunit alpha-2-like (Gnai2). In summary, hypoxic stress induced by weakening LpNrf2 and LpKeap1 interaction promoted LpNrf2 nuclear entry and enhanced its binding activity to ARE, thereby activating the transcription of multiple target genes to regulate redox balance and apoptosis. The research results not only help deepen our understanding of the adaptive mechanisms of L. polyactis and even marine fish to hypoxic stress and its survival strategies but also provide new ideas and potential targets for breeding new hypoxia-tolerant strains.
Collapse
Affiliation(s)
- Jingqian Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Li Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Yang Liu
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Congcong Hou
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Qingping Xie
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, People's Republic of China
| | - Daojun Tang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China
| | - Feng Liu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, People's Republic of China
| | - Bao Lou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province 310021, People's Republic of China.
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang Province 315211, People's Republic of China.
| |
Collapse
|
5
|
Rashwan AG, Assar DH, Salah AS, Liu X, Al-Hawary II, Abu-Alghayth MH, Salem SMR, Khalil K, Hanafy NAN, Abdelatty A, Sun L, Elbialy ZI. Dietary Chitosan Attenuates High-Fat Diet-Induced Oxidative Stress, Apoptosis, and Inflammation in Nile Tilapia ( Oreochromis niloticus) through Regulation of Nrf2/Kaep1 and Bcl-2/Bax Pathways. BIOLOGY 2024; 13:486. [PMID: 39056682 PMCID: PMC11273726 DOI: 10.3390/biology13070486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Fatty liver injury is a prevalent condition in most farmed fish, yet the molecular mechanisms underpinning this pathology remain largely elusive. A comprehensive feeding trial spanning eight weeks was conducted to discern the potential of dietary chitosan in mitigating the deleterious effects of a high-fat diet (HFD) while concurrently exploring the underlying mechanism. Growth performance, haemato-biochemical capacity, antioxidant capacity, apoptotic/anti-apoptotic gene expression, inflammatory gene expression, and histopathological changes in the liver, kidney, and intestine were meticulously assessed in Nile tilapia. Six experimental diets were formulated with varying concentrations of chitosan. The first three groups were administered a diet comprising 6% fat with chitosan concentrations of 0%, 5%, and 10% and were designated as F6Ch0, F6Ch5, and F6Ch10, respectively. Conversely, the fourth, fifth, and sixth groups were fed a diet containing 12% fat with chitosan concentrations of 0%, 5%, and 10%, respectively, for 60 days and were termed F12Ch0, F12Ch5, and F12Ch10. The results showed that fish fed an HFD demonstrated enhanced growth rates and a significant accumulation of fat in the perivisceral tissue, accompanied by markedly elevated serum hepatic injury biomarkers and serum lipid levels, along with upregulation of pro-apoptotic and inflammatory markers. In stark contrast, the expression levels of nrf2, sod, gpx, and bcl-2 were notably decreased when compared with the control normal fat group. These observations were accompanied by marked diffuse hepatic steatosis, diffuse tubular damage, and shortened intestinal villi. Intriguingly, chitosan supplementation effectively mitigated the aforementioned findings and alleviated intestinal injury by upregulating the expression of tight junction-related genes. It could be concluded that dietary chitosan alleviates the adverse impacts of an HFD on the liver, kidney, and intestine by modulating the impaired antioxidant defense system, inflammation, and apoptosis through the variation in nrf2 and cox2 signaling pathways.
Collapse
Affiliation(s)
- Aya G. Rashwan
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Xiaolu Liu
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ibrahim I. Al-Hawary
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia;
| | - Shimaa M. R. Salem
- Department of Animal Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 33516, Egypt;
| | - Karim Khalil
- Department of Veterinary Medicine, College of Applied & Health Sciences, A’Sharqiyah University, P.O. Box 42, Ibra 400, Oman;
| | - Nemany A. N. Hanafy
- Group of Molecular Cell Biology and Bionanotechnology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Alaa Abdelatty
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Luyang Sun
- Single-Cell Center, Shandong Key Laboratory of Energy Genetics and Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, CAS Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China;
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zizy I. Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (A.G.R.); (I.I.A.-H.)
| |
Collapse
|