1
|
Babington S, Tilbrook AJ, Maloney SK, Fernandes JN, Crowley TM, Ding L, Fox AH, Zhang S, Kho EA, Cozzolino D, Mahony TJ, Blache D. Finding biomarkers of experience in animals. J Anim Sci Biotechnol 2024; 15:28. [PMID: 38374201 PMCID: PMC10877933 DOI: 10.1186/s40104-023-00989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/28/2023] [Indexed: 02/21/2024] Open
Abstract
At a time when there is a growing public interest in animal welfare, it is critical to have objective means to assess the way that an animal experiences a situation. Objectivity is critical to ensure appropriate animal welfare outcomes. Existing behavioural, physiological, and neurobiological indicators that are used to assess animal welfare can verify the absence of extremely negative outcomes. But welfare is more than an absence of negative outcomes and an appropriate indicator should reflect the full spectrum of experience of an animal, from negative to positive. In this review, we draw from the knowledge of human biomedical science to propose a list of candidate biological markers (biomarkers) that should reflect the experiential state of non-human animals. The proposed biomarkers can be classified on their main function as endocrine, oxidative stress, non-coding molecular, and thermobiological markers. We also discuss practical challenges that must be addressed before any of these biomarkers can become useful to assess the experience of an animal in real-life.
Collapse
Affiliation(s)
- Sarah Babington
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Alan J Tilbrook
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jill N Fernandes
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Geelong, VIC, 3217, Australia
- Poultry Hub Australia, University of New England, Armidale, NSW, 2350, Australia
| | - Luoyang Ding
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Song Zhang
- School of Human Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Elise A Kho
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Timothy J Mahony
- Centre for Animal Science, The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Comin M, Atallah E, Chincarini M, Mazzola SM, Canali E, Minero M, Cozzi B, Rossi E, Vignola G, Dalla Costa E. Events with Different Emotional Valence Affect the Eye's Lacrimal Caruncle Temperature Changes in Sheep. Animals (Basel) 2023; 14:50. [PMID: 38200782 PMCID: PMC10778003 DOI: 10.3390/ani14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Infrared thermography (IRT) has been recently applied to measure lacrimal caruncle temperature non-invasively since this region is related to the sympathetic response, and it seems a promising technique that is able to infer negative emotions in sheep (e.g., fear). However, the scientific literature so far is limited in understanding whether a caruncle's temperature changes also in response to positive emotional states in sheep. Through classical conditioning, we aimed to assess how a positive or a negative event affects the physiological (lacrimal caruncle temperature measured with IRT and cortisol levels) and behavioral responses of sheep (ear position). Fourteen ewes from the same flock were randomly assigned to two treatment groups: positive (n = 7) and negative (n = 7). Each group was then trained through classical conditioning to associate a neutral auditory (ring bell) stimulus to an oncoming event: for the positive group, the presence of a food reward (maize grains), while for the negative one, the opening of an umbrella. After three weeks of training, before (at rest) and after (post-treatment), lacrimal caruncle temperature was non-invasively measured via IRT, and saliva samples were gently collected to measure cortisol levels. During treatment, sheep behavior was videorecorded and then analyzed using a focal animal sampling technique. At rest, the eye's lacrimal caruncle temperature was similar in both groups, while post-treatment, a significant increase was shown only in the negative group (t-test; p = 0.017). In the anticipation phase, sheep in the positive group kept their ears forward longer compared to those in the negative one (Mann-Whitney; p < 0.014), 8.3 ± 2.1 s and 5.2 ± 4.2 s, respectively. The behavioral response observed reflects a learnt association between a neutral stimulus and events with different emotional valence. Cortisol concentration slightly increased in both groups post-treatment. Our results confirm that IRT is a non-invasive technique that can be useful when applied to assess how positive and negative events may affect the physiological response in sheep.
Collapse
Affiliation(s)
- Marta Comin
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Elie Atallah
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Matteo Chincarini
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, 64100 Teramo, Italy; (M.C.); (G.V.)
| | - Silvia Michela Mazzola
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Elisabetta Canali
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Michela Minero
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Bruno Cozzi
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, 35131 Padova, Italy;
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy;
| | - Giorgio Vignola
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, 64100 Teramo, Italy; (M.C.); (G.V.)
| | - Emanuela Dalla Costa
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| |
Collapse
|
3
|
Frabasile L, Amendola C, Buttafava M, Chincarini M, Contini D, Cozzi B, De Zani D, Guerri G, Lacerenza M, Minero M, Petrizzi L, Qiu L, Rabbogliatti V, Rossi E, Spinelli L, Straticò P, Vignola G, Zani DD, Dalla Costa E, Torricelli A. Non-invasive estimation of in vivo optical properties and hemodynamic parameters of domestic animals: a preliminary study on horses, dogs, and sheep. Front Vet Sci 2023; 10:1243325. [PMID: 37789868 PMCID: PMC10543119 DOI: 10.3389/fvets.2023.1243325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
Biosensors applied in veterinary medicine serve as a noninvasive method to determine the health status of animals and, indirectly, their level of welfare. Near infrared spectroscopy (NIRS) has been suggested as a technology with this application. This study presents preliminary in vivo time domain NIRS measurements of optical properties (absorption coefficient, reduced scattering coefficient, and differential pathlength factor) and hemodynamic parameters (concentration of oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and tissue oxygen saturation) of tissue domestic animals, specifically of skeletal muscle (4 dogs and 6 horses) and head (4 dogs and 19 sheep). The results suggest that TD NIRS in vivo measurements on domestic animals are feasible, and reveal significant variations in the optical and hemodynamic properties among tissue types and species. In horses the different optical and hemodynamic properties of the measured muscles can be attributed to the presence of a thicker adipose layer over the muscle in the Longissimus Dorsi and in the Gluteus Superficialis as compared to the Triceps Brachii. In dogs the absorption coefficient is higher in the head (temporalis musculature) than in skeletal muscles. The smaller absorption coefficient for the head of the sheep as compared to the head of dogs may suggest that in sheep we are indeed reaching the brain cortex while in dog light penetration can be hindered by the strongly absorbing muscle covering the cranium.
Collapse
Affiliation(s)
| | | | | | - Matteo Chincarini
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| | - Bruno Cozzi
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Legnaro, Italy
| | - Donatella De Zani
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Giulia Guerri
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | | | - Michela Minero
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Lucio Petrizzi
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | - Lina Qiu
- School of Software, South China Normal University, Guangzhou, China
| | - Vanessa Rabbogliatti
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Lorenzo Spinelli
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, Italy
| | - Paola Straticò
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | - Giorgio Vignola
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, Teramo, Italy
| | - Davide Danilo Zani
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Emanuela Dalla Costa
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, Milan, Italy
| |
Collapse
|
4
|
Affective State Recognition in Livestock—Artificial Intelligence Approaches. Animals (Basel) 2022; 12:ani12060759. [PMID: 35327156 PMCID: PMC8944789 DOI: 10.3390/ani12060759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Emotions or affective states recognition in farm animals is an underexplored research domain. Despite significant advances in animal welfare research, animal affective state computing through the development and application of devices and platforms that can not only recognize but interpret and process the emotions, are in a nascent stage. The analysis and measurement of unique behavioural, physical, and biological characteristics offered by biometric sensor technologies and the affiliated complex and large data sets, opens the pathway for novel and realistic identification of individual animals amongst a herd or a flock. By capitalizing on the immense potential of biometric sensors, artificial intelligence enabled big data methods offer substantial advancement of animal welfare standards and meet the urgent needs of caretakers to respond effectively to maintain the wellbeing of their animals. Abstract Farm animals, numbering over 70 billion worldwide, are increasingly managed in large-scale, intensive farms. With both public awareness and scientific evidence growing that farm animals experience suffering, as well as affective states such as fear, frustration and distress, there is an urgent need to develop efficient and accurate methods for monitoring their welfare. At present, there are not scientifically validated ‘benchmarks’ for quantifying transient emotional (affective) states in farm animals, and no established measures of good welfare, only indicators of poor welfare, such as injury, pain and fear. Conventional approaches to monitoring livestock welfare are time-consuming, interrupt farming processes and involve subjective judgments. Biometric sensor data enabled by artificial intelligence is an emerging smart solution to unobtrusively monitoring livestock, but its potential for quantifying affective states and ground-breaking solutions in their application are yet to be realized. This review provides innovative methods for collecting big data on farm animal emotions, which can be used to train artificial intelligence models to classify, quantify and predict affective states in individual pigs and cows. Extending this to the group level, social network analysis can be applied to model emotional dynamics and contagion among animals. Finally, ‘digital twins’ of animals capable of simulating and predicting their affective states and behaviour in real time are a near-term possibility.
Collapse
|
5
|
McKnight JC, Ruesch A, Bennett K, Bronkhorst M, Balfour S, Moss SEW, Milne R, Tyack PL, Kainerstorfer JM, Hastie GD. Shining new light on sensory brain activation and physiological measurement in seals using wearable optical technology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200224. [PMID: 34121458 PMCID: PMC8200653 DOI: 10.1098/rstb.2020.0224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Sensory ecology and physiology of free-ranging animals is challenging to study but underpins our understanding of decision-making in the wild. Existing non-invasive human biomedical technology offers tools that could be harnessed to address these challenges. Functional near-infrared spectroscopy (fNIRS), a wearable, non-invasive biomedical imaging technique measures oxy- and deoxyhaemoglobin concentration changes that can be used to detect localized neural activation in the brain. We tested the efficacy of fNIRS to detect cortical activation in grey seals (Halichoerus grypus) and identify regions of the cortex associated with different senses (vision, hearing and touch). The activation of specific cerebral areas in seals was detected by fNIRS in responses to light (vision), sound (hearing) and whisker stimulation (touch). Physiological parameters, including heart and breathing rate, were also extracted from the fNIRS signal, which allowed neural and physiological responses to be monitored simultaneously. This is, to our knowledge, the first time fNIRS has been used to detect cortical activation in a non-domesticated or laboratory animal. Because fNIRS is non-invasive and wearable, this study demonstrates its potential as a tool to quantitatively investigate sensory perception and brain function while simultaneously recording heart rate, tissue and arterial oxygen saturation of haemoglobin, perfusion changes and breathing rate in free-ranging animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- J. Chris McKnight
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Alexander Ruesch
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Kimberley Bennett
- Division of Science, School of Engineering and Technology, Abertay University, Dundee, UK
| | - Mathijs Bronkhorst
- Artinis Medical Systems BV, Einsteinweg 17, 6662 PW Elst, The Netherlands
| | - Steve Balfour
- Sea Mammal Research Unit Instrumentation Group, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Simon E. W. Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Ryan Milne
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Peter L. Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Jana M. Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Gordon D. Hastie
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
6
|
Baciadonna L, Briefer EF, McElligott AG. Investigation of reward quality-related behaviour as a tool to assess emotions. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.104968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Sassaroli A, Blaney G, Fantini S. Dual-slope method for enhanced depth sensitivity in diffuse optical spectroscopy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:1743-1761. [PMID: 31674440 PMCID: PMC7160974 DOI: 10.1364/josaa.36.001743] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using diffusion theory, we show that a dual-slope method is more effective than single-slope methods or single-distance methods at enhancing sensitivity to deeper tissue. The dual-slope method requires a minimum of two sources and two detectors arranged in specially configured arrays. In particular, we present diffusion theory results for a symmetrical linear array of two sources (separated by 55 mm) that sandwich two detectors (separated by 15 mm), for which dual slopes achieve maximal sensitivity at a depth of about 5 mm for direct current (DC) intensity (as measured in continuous-wave spectroscopy) and 11 mm for phase (as measured in frequency-domain spectroscopy) under typical values of the tissue optical properties (absorption coefficient: ∼0.01mm-1, reduced scattering coefficient: ∼1mm-1). This result is a major advance over single-distance or single-slope data, which feature maximal sensitivity to shallow tissue (<2mm for the intensity, <5mm for the phase).
Collapse
|
8
|
Sheep Quickstep while the Floor Rock and Rolls: Visuomotor Lateralization during Simulated Sea Travel. Animals (Basel) 2019; 9:ani9090700. [PMID: 31540547 PMCID: PMC6770936 DOI: 10.3390/ani9090700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022] Open
Abstract
Unpredictable floor motions during transport disturbs animals' balance, requiring stepping to move the centre of gravity in the direction of body movement. When repeated regularly, this may be stressful, requiring involvement of the right brain hemisphere, hence we investigated the existence of behavioral laterality in sheep during prolonged floor motions. Six sheep were restrained in pairs on a programmable rocking platform, in which they were unable to turn around. They were exposed to three continuous rocking motion treatments (roll, pitch or both) in a regular or irregular pattern for 1 h periods in a changeover design. Right forelimb and left hindlimb diagonal stepping was more frequent in response to the motion treatment of irregular roll and pitch, which previous research has suggested to be the most stressful from heart rate measurements. An overall strategy to maintain balance appeared to be the use of the right hindlimb as a stabilizer, which was repositioned least often of all limbs until towards the end of the hour of experimental treatment. Of each tested pair, sheep restrained on the left side of the rocking floor stepped significantly often than its partner restrained on the right side, and we postulate the existence of visuomotor lateralization as left restrained sheep were unable to view their partner within the field of view of their left eye. We also investigated which side sheep lie down on, which if left lateralized could explain our observed bipedal diagonal control of sheep balance under stress. From the observation of 412 web-based images of sheep, there was an overall left-sided laterality to their lying, as has been observed in cattle. We conclude that stepping activity in sheep in response to a motion stressor is lateralized, providing evidence that floor motion experienced in transport may induce stress responses.
Collapse
|
9
|
Barrell GK. An Appraisal of Methods for Measuring Welfare of Grazing Ruminants. Front Vet Sci 2019; 6:289. [PMID: 31555673 PMCID: PMC6722481 DOI: 10.3389/fvets.2019.00289] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/14/2019] [Indexed: 01/10/2023] Open
Abstract
Although disturbances in body function of animals can be measured to determine whether a state of stress may exist, there is growing interest in finding ways to assess their emotional status as an indicator of good or bad welfare status. Generally it is easier to determine poor states of well-being than positive ones. For grazing ruminants some indicators of well-being include absence of illness, good growth and productivity, and longevity. Motion detectors can provide automated remote monitoring of behavior and it is likely that there will be advances in the interpretation software to increase the utility of this technology for assessing well-being. Cortisol levels in body fluids, feces and pelage are prominent as a marker of poor animal welfare, but like many of the other objective measures that are used, are not wholly reliable at the individual animal level. These other measures include: plasma serotonin, heart rate variation, infra-red thermography, cytokines, salivary alpha amylase, and acute phase proteins. Use of automated facial expression recognition may supplement electrophysiological recording as means to quantify the pain experience of animals. Although the measures described in the literature do not necessarily provide the final answer for determination of welfare in grazing ruminants, they all have some merit and deserve further investigation.
Collapse
Affiliation(s)
- Graham K Barrell
- Department of Agricultural Sciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
10
|
McKnight JC, Bennett KA, Bronkhorst M, Russell DJF, Balfour S, Milne R, Bivins M, Moss SEW, Colier W, Hall AJ, Thompson D. Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy. PLoS Biol 2019; 17:e3000306. [PMID: 31211787 PMCID: PMC6581238 DOI: 10.1371/journal.pbio.3000306] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/16/2019] [Indexed: 11/18/2022] Open
Abstract
Investigation of marine mammal dive-by-dive blood distribution and oxygenation has been limited by a lack of noninvasive technology for use in freely diving animals. Here, we developed a noninvasive near-infrared spectroscopy (NIRS) device to measure relative changes in blood volume and haemoglobin oxygenation continuously in the blubber and brain of voluntarily diving harbour seals. Our results show that seals routinely exhibit preparatory peripheral vasoconstriction accompanied by increased cerebral blood volume approximately 15 s before submersion. These anticipatory adjustments confirm that blood redistribution in seals is under some degree of cognitive control that precedes the mammalian dive response. Seals also routinely increase cerebral oxygenation at a consistent time during each dive, despite a lack of access to ambient air. We suggest that this frequent and reproducible reoxygenation pattern, without access to ambient air, is underpinned by previously unrecognised changes in cerebral drainage. The ability to track blood volume and oxygenation in different tissues using NIRS will facilitate a more accurate understanding of physiological plasticity in diving animals in an increasingly disturbed and exploited environment.
Collapse
Affiliation(s)
- J. Chris McKnight
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
- * E-mail:
| | - Kimberley A. Bennett
- Division of Science, School of Science Engineering and Technology, Abertay University, Dundee, Scotland
| | | | - Debbie J. F. Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Steve Balfour
- Sea Mammal Research Unit Instrumentation Group, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Ryan Milne
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Matt Bivins
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Simon E. W. Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | | | - Ailsa J. Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| | - Dave Thompson
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Scotland
| |
Collapse
|