1
|
Chen L, Xu M, Shang R, Xin Y, Wang G, Li Y, Wang Z, Wang X, Sun H, Li L. Evaluating Different Supplements on the Growth Performance and Bioconversion Efficiency of Kitchen Waste by Black Soldier Fly Larvae. INSECTS 2024; 16:22. [PMID: 39859603 PMCID: PMC11765844 DOI: 10.3390/insects16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Black soldier fly larvae (BSFL) convert kitchen waste into high-quality insect feed. However, the optimal amount of auxiliary materials needed to improve the physical and chemical properties of kitchen waste and enhance BSFL bioconversion efficiency remains unresolved. In this study, maize stover and BSFL frass were added to kitchen waste (in groups G2 and G3, respectively) to explore their effects on the growth performance and bioconversion efficiency of BSFL. The group with only kitchen waste, without the addition of maize stover or BSF frass, was used as the control group and labeled as G1. On the 5th day, the body length of the BSFL in the G2 group was significantly greater than that in G1 and G3 (p < 0.05). The dry matter weight loss rate in the G3 group was significantly lower compared to that of G1 and G2 (p < 0.05), and the feed conversion rate (FCR) of G1 was significantly lower than that of G2 and G3 (p < 0.01). In summary, adding maize stover and BSFL frass increased BSFL feed intake and improved body weight gain. However, these additives did not significantly enhance BSFL bioconversion efficiency. The organic matter in maize stover and BSFL frass was utilized by the BSFL, and the heavy metal levels in each group of BSFL did not exceed standard limits.
Collapse
Affiliation(s)
- Lifei Chen
- College of Agriculture and Biology, Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China; (M.X.); (R.S.); (Y.X.); (G.W.); (Y.L.); (Z.W.); (X.W.); (H.S.)
| | | | | | | | | | | | | | | | | | - Lusheng Li
- College of Agriculture and Biology, Shandong Province Engineering Research Center of Black Soldier Fly Breeding and Organic Waste Conversion, Liaocheng University, Liaocheng 252000, China; (M.X.); (R.S.); (Y.X.); (G.W.); (Y.L.); (Z.W.); (X.W.); (H.S.)
| |
Collapse
|
2
|
Montalbán A, Madrid J, Hernández F, Schiavone A, Ruiz E, Sánchez CJ, Ayala L, Fiorilla E, Martínez-Miró S. The Influence of Alternative Diets and Whole Dry Black Soldier Fly Larvae ( Hermetia illucens) on the Production Performance, Blood Status, and Egg Quality of Laying Hens. Animals (Basel) 2024; 14:2550. [PMID: 39272336 PMCID: PMC11394493 DOI: 10.3390/ani14172550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Given the significant environmental consequences of current poultry feed practices and the heavy dependence of the European Union on imported soybeans, studying alternatives is crucial. This study evaluated the potential benefits of using locally sourced alternative plant-based ingredients and whole dry black soldier fly larvae in the diet of laying hens. The experiment involved 120 Isazul hens at 23 weeks old, which were divided into three groups with five replicates each (eight hens per replicate): a control diet (CON) based on soybean meal and cereals, an alternative diet (ALT) replacing the soybean meal with locally sourced plant-based resources (peas, distillers' dried grains with solubles, and sunflower meal), and the ALT diet supplemented with 5% whole dry black soldier fly larvae (ALT+DBSFL). Over 15 weeks, the hens were fed ad libitum, and the production performance, egg quality, and plasma biochemical parameters were assessed across three experimental sub-periods. The results showed no significant differences in body weight, feed intake, egg production, egg weight, egg mass, or feed conversion ratio across the diets (p > 0.05). The egg quality remained consistent across all the groups; however, the hens fed the ALT+DBSFL diet exhibited higher Haugh units in the first experimental sub-period (p < 0.05) and lower plasma cholesterol and triglycerides at 32 weeks of age (p < 0.05). The findings of this study indicate that incorporating these alternative ingredients and whole DBSFL into layers' diets does not compromise production performance, egg quality, or biochemical parameters related to health status, supporting their potential as sustainable feed alternatives.
Collapse
Affiliation(s)
- Ana Montalbán
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Josefa Madrid
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Fuensanta Hernández
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, 10124 Turin, Italy
| | - Eduardo Ruiz
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Cristian J Sánchez
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Lucía Ayala
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Edoardo Fiorilla
- Department of Veterinary Sciences, University of Turin, 10124 Turin, Italy
| | - Silvia Martínez-Miró
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
3
|
Colombino E, Gariglio M, Biasato I, Ferrocino I, Pozzo S, Fragola E, Battisti E, Zanet S, Ferroglio E, Capucchio MT, Schiavone A. Insect live larvae as a new nutritional model in duck: effects on gut health. Anim Microbiome 2024; 6:31. [PMID: 38812012 PMCID: PMC11137933 DOI: 10.1186/s42523-024-00316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the effects of Hermetia illucens (Black soldier fly-BSF) and Tenebrio molitor (Yellow mealworm-YMW) live larvae as a new nutritional model on duck's gut health, considering gut histomorphometry, mucin composition, cytokines transcription levels, and microbiota. A total of 126, 3-days-old, females Muscovy ducks were randomly allotted to three dietary treatments (6 replicates/treatment, 7 birds/pen): (i) C: basal diet; (ii) BSF: C + BSF live larvae; (iii) YMW: C + YMW live larvae. BSF and YMW live larvae were administered on top of the basal diet, based on the 5% of the expected daily feed intake. The live weight, average daily gain, average daily feed intake and feed conversion ratio were evaluated for the whole experimental period. On day 52, 12 ducks/treatment (2 birds/replicate) were slaughtered and samples of duodenum, jejunum, ileum, spleen, liver, thymus and bursa of Fabricius were collected for histomorphometry. Mucin composition was evaluated in the small intestine through histochemical staining while jejunal MUC-2 and cytokines transcription levels were evaluated by rt-qPCR. Cecal microbiota was also analyzed by means of 16 S rRNA gene sequencing. RESULTS Birds' growth performance and histomorphometry were not influenced by diet, with a proximo-distal decreasing gradient from duodenum to ileum (p < 0.001), respecting the physiological gut development. Mucin staining intensity and MUC-2 gene expression did not vary among dietary treatments, even though mucin intensity increased from duodenum to ileum, according to normal gut mucus physiology (p < 0.001). Regarding local immune response, IL-6 was higher in YMW group when compared to the other groups (p = 0.009). Insect live larvae did not affect cecal microbiota diversity, but BSF and YMW groups showed a higher presence of Helicobacter, Elusimicrobium, and Succinatimonas and a lower abundance of Coriobacteriaceae and Phascolarctobacterium compared to C birds (p < 0.05). CONCLUSIONS The use of BSF and YMW live larvae as new nutritional model did not impair gut development and mucin composition of Muscovy ducks, but slightly improved the intestinal immune status and the microbiota composition by enhancing regulatory cytokine IL-6 and by increasing minor Operational Taxonomic Units (OTUs) involved in short-chain fatty acids production.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy.
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Sara Pozzo
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milano, 20133, MI, Italy
| | - Emma Fragola
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Elena Battisti
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Ezio Ferroglio
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
- National Research Council, Institute of Science of Food Production, Grugliasco, 10095, TO, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
- National Research Council, Institute of Science of Food Production, Grugliasco, 10095, TO, Italy
| |
Collapse
|
4
|
Aldis RE, Muhlisin M, Zuprizal Z, Sasongko H, Hanim C, Al Anas M. Black soldier fly larvae meal supplementation in a low protein diet reduced performance, but improved nitrogen efficiency and intestinal morphology of duck. Anim Biosci 2024; 37:678-688. [PMID: 37946415 PMCID: PMC10915214 DOI: 10.5713/ab.23.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Reduced crude protein (CP) diets offer potential benefits such as optimized feed efficiency, reduced expenses, and lower environmental impact. The objective of this study was to evaluate black soldier fly larvae (BSFL) meal on a low-protein diet for duck performance, blood biochemical, intestinal morphology, gastrointestinal development, and litter. METHODS The experiment was conducted for 42 days. A total of 210-day-old male hybrid ducklings (5 replicate pens, 7 ducks per pen) were randomly assigned to 6 dietary treatments (3×2 factorial arrangements) in randomized design. The factors were CP level (18%, 16%, 14%) and protein source feed soybean meals (SBM), black soldier fly larvae meals (BSFLM). RESULTS Reduced dietary CP levels significantly decreased growth performance, feed intake, the percentage of nitrogen, pH (p<0.05), and tended to suppress ammonia in litter (p = 0.088); increased lipid concentration; and enhanced relative weight of gastrointestinal tracts (p<0.05). In addition, dietary BSFL as a source of protein feed significantly increased lipid concentration and impacted lowering villus height and crypt depth on jejunum (p<0.05). CONCLUSION In conclusion, the use of BSFLM in a low-protein diet was found to have a detrimental effect on growth performance. However, the reduction of 2% CP levels in SBM did not have a significant impact on growth performance but decreased nitrogen and ammonia concentrations.
Collapse
Affiliation(s)
- Rinanti Eka Aldis
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada 55281, Yogyakarta,
Indonesia
| | - Muhlisin Muhlisin
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada 55281, Yogyakarta,
Indonesia
| | - Zuprizal Zuprizal
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada 55281, Yogyakarta,
Indonesia
| | - Heru Sasongko
- Animal Production Department, Faculty of Animal Science, Universitas Gadjah Mada 55281, Yogyakarta,
Indonesia
| | - Chusnul Hanim
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada 55281, Yogyakarta,
Indonesia
| | - Muhsin Al Anas
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada 55281, Yogyakarta,
Indonesia
| |
Collapse
|
5
|
Acar MC, Türkekul B, Karahan Uysal Ö, Özkan S, Yalcin S. Effects of Partial Replacement of Soybean with Local Alternative Sources on Growth, Blood Parameters, Welfare, and Economic Indicators of Local and Commercial Broilers. Animals (Basel) 2024; 14:314. [PMID: 38275775 PMCID: PMC10812567 DOI: 10.3390/ani14020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
The effects of the partial replacement of soybean with alternative local agri-industry by-products and black soldier fly (BSF) larvae meal on broiler growth performance, blood biochemistry, welfare, and, subsequently, economic performance of these diets were evaluated. A total of 524 day-old chicks from a local and a commercial strain were fed one of the three diets from the day of hatch to the slaughter age. The diets were the following: a soybean-based control diet, a diet in which soybean was partially replaced (SPR) with agri-industrial by-products, or a diet with BSF larvae meal added to the SPR (SPR + BSF). There was no effect of the diets on the slaughter weight, total feed consumption, and feed conversion of the chickens. The SPR + BSF diet reduced the blood glucose, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, protein, triglycerides, and cholesterol levels in the local chickens and the gamma-glutamyl transferase, protein, and creatinine levels in the commercial broilers. The negative effect of the SPR diet on plumage cleanliness in the commercial broilers was alleviated by the SPR + BSF diet, whereas 100% of the local birds presented either slight or moderate soiling. The results showed that, due to the high cost of the BSF larvae meal, the SPR + BSF diet was not economically feasible. In a further study, the price trends of BSF larvae will be examined from the standpoint of economic profitability conditions.
Collapse
Affiliation(s)
- Muazzez Cömert Acar
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 İzmir, Türkiye; (M.C.A.); (S.Ö.)
| | - Berna Türkekul
- Department of Agricultural Economics, Faculty of Agriculture, Ege University, 35100 İzmir, Türkiye; (B.T.); (Ö.K.U.)
| | - Özlem Karahan Uysal
- Department of Agricultural Economics, Faculty of Agriculture, Ege University, 35100 İzmir, Türkiye; (B.T.); (Ö.K.U.)
| | - Sezen Özkan
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 İzmir, Türkiye; (M.C.A.); (S.Ö.)
| | - Servet Yalcin
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 İzmir, Türkiye; (M.C.A.); (S.Ö.)
| |
Collapse
|
6
|
Huang W, Wang C, Chen Q, Chen F, Hu H, Li J, He Q, Yu X. Physicochemical, functional, and antioxidant properties of black soldier fly larvae protein. J Food Sci 2024; 89:259-275. [PMID: 37983838 DOI: 10.1111/1750-3841.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
This study explores the multifaceted attributes of black soldier fly larvae protein (BSFLP), focusing on its physicochemical, functional, and antioxidant properties. BSFLP is characterized by 16 amino acids, with a predominant random coil secondary structure revealed by circular dichroism spectra. Differential scanning calorimetry indicates a substantial thermal denaturation temperature of 97.63°C. The protein exhibits commendable solubility, emulsification, and foaming properties in alkaline and low-salt environments, albeit with reduced water-holding capacity and foam stability under elevated alkaline and high-temperature conditions. In vitro assessments demonstrate that BSFLP displays robust scavenging proficiency against 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and hydroxyl radicals, with calculated EC50 values of 1.90 ± 0.57, 0.55 ± 0.01, and 1.14 ± 0.02 mg/mL, respectively, along with notable reducing capabilities. Results from in vivo antioxidant experiments reveal that BSFLP, administered at doses of 300 and 500 mg/kg, significantly enhances the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) (p < 0.05) while simultaneously reducing malondialdehyde levels in both serum and tissues of d-galactose-induced oxidative stress in mice. Moreover, the protein effectively attenuates oxidative damage in liver and hippocampal tissues. These findings underscore the potential utility of BSFLP as a natural antioxidant source, with applications spanning the food, pharmaceutical, and cosmetic industries. PRACTICAL APPLICATION: Black soldier fly larvae protein emerges as an environmentally sustainable reservoir of natural antioxidants, holding significant promise for the food, pharmaceutical, and cosmetic sectors. Its advantageous amino acid composition, robust thermal resilience, and impressive functional attributes position it as a compelling subject for continued investigation and advancement in various applications.
Collapse
Affiliation(s)
- Wangxiang Huang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chen Wang
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qianzi Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Feng Chen
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Haohan Hu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jianfei Li
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qiyi He
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaodong Yu
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education School of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
7
|
Zhao J, Ban T, Miyawaki H, Hirayasu H, Izumo A, Iwase SI, Kasai K, Kawasaki K. Long-Term Dietary Fish Meal Substitution with the Black Soldier Fly Larval Meal Modifies the Caecal Microbiota and Microbial Pathway in Laying Hens. Animals (Basel) 2023; 13:2629. [PMID: 37627424 PMCID: PMC10451910 DOI: 10.3390/ani13162629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Feeding laying hens with black soldier fly larval (BSFL) meal improves their performance. However, the beneficial mechanism of BSFL meals in improving the performance of laying hens remains unclear. This study investigated the effects of the BSFL diet on liver metabolism, gut physiology, and gut microbiota in laying hens. Eighty-seven Julia hens were randomly assigned to three groups based on their diets and fed maize grain-and soybean meal-based diets mixed with either 3% fish meal (control diet), 1.5% fish and 1.5% BSFL meals, or 3% BSFL meal for 52 weeks. No significant differences were observed in biochemical parameters, hepatic amino acid and saturated fatty acid contents, intestinal mucosal disaccharidase activity, and intestinal morphology between BSFL diet-fed and control diet-fed laying hens. However, the BSFL diet significantly increased the abundance of acetic and propionic acid-producing bacteria, caecal short-chain fatty acids, and modified the caecal microbial pathways that are associated with bile acid metabolism. These findings indicate that consuming a diet containing BSFL meal has minimal effects on plasma and liver nutritional metabolism in laying hens; however, it can alter the gut microbiota associated with short-chain fatty acid production as well as the microbial pathways involved in intestinal fat metabolism. In conclusion, this study provides evidence that BSFL can enhance enterocyte metabolism and gut homeostasis in laying hens.
Collapse
Affiliation(s)
- Junliang Zhao
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| | - Takuma Ban
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| | - Hironori Miyawaki
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| | - Hirofumi Hirayasu
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Akihisa Izumo
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Shun-ichiro Iwase
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Koji Kasai
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo 442, Habikino, Osaka 583-0862, Japan; (H.H.); (A.I.); (S.-i.I.); (K.K.)
| | - Kiyonori Kawasaki
- Graduate School of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; (J.Z.); (T.B.); (H.M.)
| |
Collapse
|
8
|
Yan Y, Zhang J, Chen X, Wang Z. Effects of Black Soldier Fly Larvae ( Hermetia illucens Larvae) Meal on the Production Performance and Cecal Microbiota of Hens. Vet Sci 2023; 10:vetsci10050364. [PMID: 37235447 DOI: 10.3390/vetsci10050364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The effects of Hermetia illucens larvae meal (HILM) as a feed supplement on production performance and cecal microflora were studied in 900 Hy-line Brown laying hens. Laying hens (60 weeks old) were randomly divided into four groups. Each group had five replicates, and each replicate had 45 hens. The control group was fed with a corn-soybean-based diet, and the experimental groups were fed with 1% HILM, 2% HILM, or 3% HILM. Results were as follows: (1) With the increase in HILM level, the laying rate increased linearly (p ≤ 0.05), and the feed/egg and cracked-egg rate decreased linearly (p ≤ 0.05). (2) Community composition analysis showed that the dominant bacteria in each group were Bacteroidetes and Firmicutes, followed by Actinobacteria and Proteobacteria, which accounted for more than 97% of 16S rRNA gene sequence of the total cecal bacteria. (3) Alpha diversity analysis at the operational taxonomic unit classification level showed that the HILM-addition groups had higher community richness and community diversity than the control group. (4) Principal co-ordinates analysis showed that the cecum samples in each group were significantly separated (p ≤ 0.05). At the phylum level, the relative abundance of Bacteroidetes in the HILM addition groups was significantly lower than that in the control group (p < 0.001), and the relative abundance of Firmicutes in the HILM addition groups was significantly higher than that in the control group (p < 0.001). In conclusion, dietary HILM supplementation had a significant effect on the production performance and cecal microflora of laying hens at the late laying period under the conditions of this experiment but had no adverse effect on the intestinal dominant flora.
Collapse
Affiliation(s)
- Yan Yan
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| | - Jinjin Zhang
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| | - Xiaochen Chen
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| | - Zhanbin Wang
- Henan Provincial Academician Workstation of Feed Resource Development and Healthy Livestock, Department of Animal Science and Technology, Henan University of Science and Technology, Luoyang 271023, China
| |
Collapse
|
9
|
Effects of Partial Replacement of Soybean Meal with Defatted Hermetia illucens Meal in the Diet of Laying Hens on Performance, Dietary Egg Quality, and Serum Biochemical and Redox Indices. Animals (Basel) 2023; 13:ani13030527. [PMID: 36766414 PMCID: PMC9913826 DOI: 10.3390/ani13030527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study was carried out on 96 caged Bovans Brown laying hens at an initial age of 25 weeks, which were randomly assigned to four experimental groups of 12 replicates (cages) of two hens per cage. The control group hens received a diet containing 20% soybean meal (SBM), without Hermetia illucens larvae meal (HIM) content. The hens in the experimental groups received a diet containing defatted HIM at levels of 5, 10, and 15% (HIM 5%, HIM 10%, and HIM 15%, respectively), at the expense of a proportionally decreasing content of SBM. During the 12-week experiment, the laying performance, biochemical and redox blood indices, and liver condition were examined. The cholesterol level, fatty acid profile, and malondialdehyde content in egg yolks were also evaluated to determine the dietary quality of the eggs. The inclusion of HIM at any level in the diet did not affect the laying performance parameters (p > 0.05). Increased serum Ca and uric acid contents were observed. There was no effect on the redox indices in plasma. The number of hepatocytes was decreased in the HIM-fed groups. The level of cholesterol in yolks was reduced, and the fatty acid profile showed significant changes. Despite the high lauric acid content in the H. illucens meal, it was present in trace amounts in yolks. In the HIM-fed groups, the levels of saturated fatty acids increased significantly, whereas those of unsaturated fatty acids decreased in the yolks in the same groups.
Collapse
|
10
|
Kaczor M, Bulak P, Proc-Pietrycha K, Kirichenko-Babko M, Bieganowski A. The Variety of Applications of Hermetia illucens in Industrial and Agricultural Areas-Review. BIOLOGY 2022; 12:25. [PMID: 36671718 PMCID: PMC9855018 DOI: 10.3390/biology12010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Hermetia illucens (Diptera: Stratiomyidae, Linnaeus, 1978), commonly known as the black soldier fly (BSF), is a saprophytic insect, which in recent years has attracted significant attention from both the scientific community and industry. The unrestrained appetite of the larvae, the ability to forage on various organic waste, and the rapid growth and low environmental impact of its breeding has made it one of the insect species bred on an industrial scale, in the hope of producing fodder or other ingredients for various animals. The variety of research related to this insect has shown that feed production is not the only benefit of its use. H. illucens has many features and properties that could be of interest from the point of view of many other industries. Biomass utilization, chitin and chitosan source, biogas, and biodiesel production, entomoremediation, the antimicrobial properties of its peptides, and the fertilizer potential of its wastes, are just some of its potential uses. This review brings together the work of four years of study into H. illucens. It summarizes the current state of knowledge and introduces the characteristics of this insect that may be helpful in managing its breeding, as well as its use in agro-industrial fields. Knowledge gaps and under-studied areas were also highlighted, which could help identify future research directions.
Collapse
Affiliation(s)
- Monika Kaczor
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr Bulak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Kinga Proc-Pietrycha
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Marina Kirichenko-Babko
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnitsky 15, 01030 Kyiv, Ukraine
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
11
|
Bongiorno V, Gariglio M, Zambotto V, Cappone EE, Biasato I, Renna M, Forte C, Coudron C, Bergagna S, Gai F, Schiavone A. Black soldier fly larvae used for environmental enrichment purposes: Can they affect the growth, slaughter performance, and blood chemistry of medium-growing chickens? Front Vet Sci 2022; 9:1064017. [PMID: 36590795 PMCID: PMC9794612 DOI: 10.3389/fvets.2022.1064017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction This research has been aimed at evaluating the effects of live black soldier fly larvae (BSFL) (Hermetia illucens) on the growth, slaughtering performance, and blood parameters of medium-growing chickens. Methods A total of 240, 28-day-old, Label Rouge Naked Neck chickens were allotted to four experimental groups, according to the gender (males-females) and to the absence (control group, C) or presence (larvae group, L) of a dietary supplementation with 10% live BSFL, on the basis of the expected average daily feed intake (ADFI) (6 replicates/diet, 10 chickens/replicate). The birds were weighed weekly, and the feed consumption was recorded to calculate the average live weight, feed conversion ratio (FCR), average daily gain (ADG), and the ADFI. At 82 days of age, 2 birds/replicate (12 birds/diet) were selected and slaughtered. The blood samples were collected, and the carcass traits (carcass, breast, thigh, and organ weights and yields) were assessed. Results and discussions Overall, the administered live BSFL did not impair the growth and slaughtering performance, or the blood traits, while the C females showed a better FCR than the treated ones (P < 0.05). The live BSFL consumption time was longer for the females than for the males (P < 0.001). The weight of the immune organs (spleen and bursa of Fabricius) increased as the live BSFL supplementation increased (P < 0.05). Furthermore, the provision of live BSFL reduced the gamma glutamyl transferase (GGT, U/l) activity content in the blood (P < 0.05). Finally, both the leukocytes (%) and the monocytes (%) were more abundant in the C groups than in the larvae ones (P < 0.05 and P < 0.01, respectively). In short, the supplementation of live BSFL can be used successfully as an environmental enrichment, without affecting the growth performance of male birds. Furthermore, the immune organ activity could be enhanced by the provision of live BSFL.
Collapse
Affiliation(s)
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Valeria Zambotto
- National Research Council, Institute of Sciences of Food Production, Turin, Italy
| | | | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Manuela Renna
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Claudio Forte
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Carl Coudron
- Provincial Research and Advice Centre for Agriculture and Horticulture (Inagro vzw), Roeselare-Beitem, Belgium
| | - Stefania Bergagna
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Francesco Gai
- National Research Council, Institute of Sciences of Food Production, Turin, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Lu S, Taethaisong N, Meethip W, Surakhunthod J, Sinpru B, Sroichak T, Archa P, Thongpea S, Paengkoum S, Purba RAP, Paengkoum P. Nutritional Composition of Black Soldier Fly Larvae ( Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review. INSECTS 2022; 13:insects13090831. [PMID: 36135532 PMCID: PMC9502457 DOI: 10.3390/insects13090831] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/09/2023]
Abstract
The rapidly growing population has increased demand for protein quantities and, following a shortage of plant-based feed protein sources and the prohibition of animal-based feed protein, has forced the search for new sources of protein. Therefore, humans have turned their attention to edible insects. Black soldier fly larvae (BSFL) (Hermetia illucens L.) are rich in nutrients such as fat, protein and high-quality amino acids and minerals, making them a good source of protein. Furthermore, BSFL are easily reared and propagated on any nutrient substrate such as plant residues, animal manure and waste, food scraps, agricultural byproducts, or straw. Although BSFL cannot completely replace soybean meal in poultry diets, supplementation of less than 20% has no negative impact on chicken growth performance, biochemical indicators and meat quality. In pig studies, although BSFL supplementation did not have any negative effect on growth performance and meat quality, the feed conversion ratio (FCR) was reduced. There is obviously less research on the feeding of BSFL in pigs than in poultry, particularly in relation to weaning piglets and fattening pigs; further research is needed on the supplementation level of sows. Moreover, it has not been found that BSFL are used in ruminants, and the next phase of research could therefore study them. The use of BSFL in animal feed presents some challenges in terms of cost, availability and legal and consumer acceptance. However, this should be considered in the context of the current shortage of protein feed and the nutritional value of BSFL, which has important research significance in animal production.
Collapse
Affiliation(s)
- Shengyong Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Nittaya Taethaisong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Weerada Meethip
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Jariya Surakhunthod
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Boontum Sinpru
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Thakun Sroichak
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Pawinee Archa
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Muang, Nakhon Ratchasima 30000, Thailand
| | - Rayudika Aprilia Patindra Purba
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
- Correspondence:
| |
Collapse
|
13
|
Colombino E, Biasato I, Ferrocino I, Bellezza Oddon S, Caimi C, Gariglio M, Dabbou S, Caramori M, Battisti E, Zanet S, Ferroglio E, Cocolin L, Gasco L, Schiavone A, Capucchio MT. Effect of Insect Live Larvae as Environmental Enrichment on Poultry Gut Health: Gut Mucin Composition, Microbiota and Local Immune Response Evaluation. Animals (Basel) 2021; 11:2819. [PMID: 34679839 PMCID: PMC8532707 DOI: 10.3390/ani11102819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate the effect of Hermetia illucens (HI) and Tenebrio molitor (TM) live larvae as environmental enrichment on the mucin composition, local immune response and microbiota of broilers. A total of 180 four-day-old male broiler chickens (Ross 308) were randomly allotted to three dietary treatments (six replicates/treatment; ten animals/replicate): (i) control (C); (ii) C+HI; (iii) C+TM. Live larvae were distributed based on 5% of the expected daily feed intake. At slaughter (39 days of age), samples of duodenum, jejunum and ileum (twelve animals/diet) were submitted to mucin histochemical evaluation. Expression of MUC-2 and cytokines was evaluated by rt-qPCR in jejunum. Mucin staining intensity was not influenced by diet (p > 0.05); however, this varied depending on the intestinal segment (p < 0.001). No significant differences were recorded for IL-4, IL-6 TNF-α, MUC-2 and INF-γ gene expression in jejunum, while IL-2 was lower in the TM group compared to HI and C (p = 0.044). Caecal microbiota showed higher abundance of Clostridium, Saccharibacteria and Victivallaceae in the HI group, while Collinsella was higher in the TM group. The results suggested that live insect larvae did not impair mucin composition or local immune response, and can slightly improve caecal microbiota by enhancing a minor fraction of short chain fatty acid-producing taxa.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Sara Bellezza Oddon
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Christian Caimi
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, TN, Italy;
| | - Marta Caramori
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Elena Battisti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Ezio Ferroglio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Luca Cocolin
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Laura Gasco
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.B.); (I.F.); (S.B.O.); (C.C.); (L.C.); (L.G.)
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (M.G.); (M.C.); (E.B.); (S.Z.); (E.F.); (A.S.); (M.T.C.)
- Institute of Sciences of Food Production, CNR, 10095 Grugliasco, TO, Italy
| |
Collapse
|
14
|
Partial and Total Replacement of Soybean Meal with Full-Fat Black Soldier Fly ( Hermetia illucens L.) Larvae Meal in Broiler Chicken Diets: Impact on Growth Performance, Carcass Quality and Meat Quality. Animals (Basel) 2021; 11:ani11092715. [PMID: 34573682 PMCID: PMC8472167 DOI: 10.3390/ani11092715] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to compare selected growth performance parameters and slaughter characteristics in broiler chickens fed diets with a different content of full-fat Hermetia illucens L. (HI) larvae meal. The experiment was performed on 384 male broiler chickens (Ross 308) reared to 42 d of age and assigned to four dietary treatments (HI0-control diet and diets where soybean meal protein (SBM) was replaced with HI protein in 50%, 75% and 100%, respectively). The final body weights of chickens were as follows: 3010.0 g (HI0), 2650.0 g (HI50), 2590.0 g (HI75) and 2375.0 g (H100, p < 0.05). The carcasses of chickens from the experimental groups contained less meat and more abdominal fat. The feed conversion ratio for the entire experimental period was similar in groups HI0, HI50 and HI75 and more desirable than in group HI100 (p < 0.05). The meat of broiler chickens from groups HI75 and HI100 was characterized by significantly (p < 0.05) lower juiciness and taste intensity than the meat of birds from groups HI0 and HI50. The replacement of SBM protein with full-fat HI larvae meal in broiler diets exceeding 50% significantly compromised the growth performance of birds and the carcass and meat quality.
Collapse
|
15
|
Ringseis R, Peter L, Gessner DK, Meyer S, Most E, Eder K. Effect of Tenebrio molitor larvae meal on the antioxidant status and stress response pathways in tissues of growing pigs. Arch Anim Nutr 2021; 75:237-250. [PMID: 34251937 DOI: 10.1080/1745039x.2021.1950106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insect meal (IM) produced from edible insects, such as Tenebrio molitor, has been recognised as a potentially suitable protein component in feeding rations for monogastric livestock. While several studies with broilers have shown that animal´s health is not negatively affected by IM, less is known with regard to the influence of IM on metabolism of pigs. The present study investigates whether IM from Tenebrio molitor larvae causes oxidative stress and activates oxidative stress-sensitive signalling pathways in key metabolic tissues of pigs. To address this question, male 5-week-old crossbred pigs were randomly assigned to three groups of 10 pigs each and fed nutrient-adequate, isonitrogenous diets either without (CON) or with 5% IM or 10% IM from Tenebrio molitor larvae for 4 weeks. Concentrations of thiobarbituric acid reactive substances, tocopherols and glutathione in liver, gastrocnemius muscle and/or plasma did not differ between groups. Activities of the antioxidant enzymes catalase (CAT), glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the liver and of GPX and SOD in gastrocnemius muscle were not different between groups, whereas the activity of CAT in skeletal muscle was increased in the two IM-fed groups compared to group CON (p < 0.05). The mRNA levels of most of the target genes of oxidative stress-sensitive signalling pathways, such as nuclear factor-κB, nuclear factor erythroid 2-related factor 2 and endoplasmic reticulum stress-induced unfolded protein response, in liver and gastrocnemius muscle did not differ between the three groups. The present study shows that feeding a diet containing adequate levels of antioxidants, such as vitamin E and selenium, and Tenebrio molitor larvae meal as a protein component neither causes oxidative stress nor activates oxidative stress-sensitive signalling pathways in key metabolic tissues of growing pigs. Based on these observations, IM from Tenebrio molitor larvae can be regarded as a safe source of protein in growing pigs.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Lukas Peter
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sandra Meyer
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
16
|
Gariglio M, Dabbou S, Gai F, Trocino A, Xiccato G, Holodova M, Gresakova L, Nery J, Bellezza Oddon S, Biasato I, Gasco L, Schiavone A. Black soldier fly larva in Muscovy duck diets: effects on duck growth, carcass property, and meat quality. Poult Sci 2021; 100:101303. [PMID: 34280644 PMCID: PMC8318895 DOI: 10.1016/j.psj.2021.101303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to evaluate the effects of partially defatted black soldier fly (Hermetia illucens, HI) larva meal on the carcass characteristics and meat quality of Muscovy ducks (Cairina moschata domestica). A total of 192 female ducks aged 3 d were divided between 4 dietary treatments (6 pens/treatment; 8 birds/pen), characterized by increasing levels of substitution of corn gluten meal with HI meal (0%, 3%, 6%, and 9%; HI0, HI3, HI6, and HI9, respectively), and reared until 50 days of age. Twelve birds/treatment (2 birds/pen) were slaughtered on d 51 to evaluate the slaughter traits (i.e., carcass, breast, thigh, and organs weights), carcass yield and meat quality. The slaughter weight, hot and chilled carcass weights, and abdominal fat weight showed a quadratic response to HI meal (minimum for the HI6 group, P < 0.05). Dietary HI meal inclusion did not influence the ultimate pH, the color, the proximate composition or the thiobarbituric acid reactive substances (TBARS) values in either the breast or thigh meat. The mineral profile of the meat was slightly affected by the dietary treatment, with a linear increase in the Cu content of the thigh meat (P < 0.05), whereas no differences were observed for Zn, Mn, or Fe. Dietary HI meal inclusion increased the saturated fatty acid rate in the thigh meat (maximum for the HI9 group, P < 0.05), and the monounsaturated and polyunsaturated fatty acid content in the breast meat (maximum for the HI0 and HI9 groups, respectively, P < 0.05). The ∑n-6/∑n-3 ratio decreased linearly in both the breast and thigh meat, with the HI9 group showing the lowest values (P < 0.05). Finally, the heavy metal concentrations were below the EU limits for poultry meat. To conclude, the inclusion up to 9% of partially defatted HI larva meal in the diet of Muscovy ducks did not affect the slaughter traits or the meat quality, although it did affect the meat fatty acid profile.
Collapse
Affiliation(s)
- M Gariglio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - S Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38010 San Michele all'Adige, Italy; Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - F Gai
- Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - A Trocino
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - G Xiccato
- Department of Agronomy, Food, Natural Resources, Animal, and Environment, University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - M Holodova
- Institute of Animal Physiology, Center of Biosciences, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovak Republic
| | - L Gresakova
- Institute of Animal Physiology, Center of Biosciences, Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovak Republic
| | - J Nery
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - S Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - I Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| | - L Gasco
- Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy; Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy.
| | - A Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy; Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco, Turin, Italy
| |
Collapse
|
17
|
Affiliation(s)
- L. A. Arias-Sosa
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Alex L. Rojas
- Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
18
|
Liu X, Liu X, Yao Y, Qu X, Chen J, Xie K, Wang X, Qi Y, Xiao B, He C. Effects of different levels of Hermetia illucens larvae meal on performance, egg quality, yolk fatty acid composition and oxidative status of laying hens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1878946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xu Liu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xin Liu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yaling Yao
- Huaihua Animal Husbandry and Fishery Affairs Center, Huaihua, China
| | - Xiangyong Qu
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jifa Chen
- College of Life Science and Resources and Environment, Yichun University, Yichun, P. R. China
| | - Kailai Xie
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xingju Wang
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yi Qi
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bing Xiao
- Hunan Yunfeifeng Agricultural Co. Ltd, Huaihua, China
| | - Changqing He
- Hunan Engineering Research Center of Poultry Production Safety, Hunan Co-Innovation Center of Animal Production Safety, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
19
|
Rafiullah, Khan S, Khan RU, Ullah Q. Does the gradual replacement of spent silkworm (Bombyx mori) pupae affect the performance, blood metabolites and gut functions in White Leghorn laying hens? Res Vet Sci 2020; 132:574-577. [PMID: 32171448 DOI: 10.1016/j.rvsc.2020.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/13/2020] [Accepted: 03/05/2020] [Indexed: 11/24/2022]
Abstract
Spent silkworm pupa is a valuable source of alternative protein in poultry production. Usually the spent silkworm pupae are wasted and may cause environmental pollution and off smell. This feeding experiment was performed to determine the gradual increase of silkworm substitution of soybean on the egg production performance, serum biochemistry and intestinal histological features of White Leghorns laying hens. For this purpose, a total of 250 White Leghorn laying hens were allocated to five experimental treatments. Rations were prepared in which soybean meal was replaced with 0, 25, 50, 75 and 100% substitution with silkworm meal. The outcomes of the study indicated that performance was not significantly (P < .05) different among the experimental groups. Aspartate aminotransferase (AST) and alanine aminotrasferase (ALT), uric acid and creatinin concentration did not significantly (P > .05) alter among the groups during the experimental period. Similarly, height and thickness of intestinal villi, surface of intestinal villi, number of goblet cells did not change between the control and experimental groups. It was concluded that substitution of silkworm meal with soybean meal had no hostile effect on production performance, intestinal histomorphology and blood biochemical functions of liver and kidney in White Leghorn hens.
Collapse
Affiliation(s)
- Rafiullah
- Department of Poultry Science, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Sarzamin Khan
- Department of Poultry Science, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, Gomal University, Derea Ismail Khan, Pakistan
| |
Collapse
|
20
|
Performance of Slow-Growing Male Muscovy Ducks Exposed to Different Dietary Levels of Quebracho Tannin. Animals (Basel) 2020; 10:ani10060979. [PMID: 32512810 PMCID: PMC7341193 DOI: 10.3390/ani10060979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Different inclusion levels of Quebracho tannin (QT) in the diet of growing male Muscovy ducks of a slow-growing type were explored under free-range conditions. As a result of the dietary treatments tested in this trial, the growth performance or the total blood proteins were not affected. By contrast, dietary QT did not lead birds to produce less moist excreta, as observed in other bird species, as a desirable aspect for intensively raised poultry. A marked improvement in carcass yield was observed as a desirable economic trait in the extensive slow-type duck farming system. Abstract The study of the nutritional effects of tannins is complex due to the large chemical diversity; consequently, in poultry nutrition the biological responses may vary greatly. The aim of the present study was to evaluate the effect of different levels of dietary Quebracho tannins (QT) on growth and production performance in slow-growing type Muscovy ducks. For this purpose, a 42-d trial was carried out on 126 male ducks (42-d old at start), fed on three levels of dietary QT inclusion in the diet (0% as control diet, vs. 1.5% vs. 2.5% on an as fed basis). Birds were reared under free-range conditions. A linear increase in feed intake as a function of QT inclusion in the diet was observed (p < 0.05). No difference as to final body weight, overall average daily weight gain (ADG) and total feed conversion ratio (FCR) in relation to dietary treatments was observed. Carcass yields were positively improved in QT birds (p < 0.05). No adverse responses were recorded in total blood protein and liver weight. Dietary QT might be safely used up by to 2.5% in 42- to 84-d aged male Muscovy ducks.
Collapse
|
21
|
Zhu D, Huang X, Tu F, Wang C, Yang F. Preparation, antioxidant activity evaluation, and identification of antioxidant peptide from black soldier fly (Hermetia illucens L.) larvae. J Food Biochem 2020; 44:e13186. [PMID: 32163603 DOI: 10.1111/jfbc.13186] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Black soldier fly larvae protein (BLP) was hydrolyzed using alcalase, neutrase, trypsin, and papain. The BLP hydrolysates (BLPHs) were fractionated by ultrafiltration into three peptide fractions of molecular weight (<3 kDa, 3-10 kDa and >10 kDa). Their antioxidant activities in vitro and the amino acid composition were determined. Results showed that the alcalase was more efficient in hydrolyzing the BLP into oligopeptides. BLPHs-I presented the best scavenging activity to superoxide radicals, hydroxyl radicals, DPPH, and ABTS radicals. The best scavenging activities were found in BLPHs-I containing high levels of aromatic and hydrophobic amino acids. Seventeen novel sequences with typical features of well-known antioxidant proteins were identified by LC-MS/MS. Results demonstrated that BLPHs-I possesses a great capacity as antioxidant peptides applied in functional foods. PRACTICAL APPLICATIONS: Black soldier fly larvae protein (BLP) can also be hydrolyzed to produce antioxidant peptides and their sequences were identified. It can be used in pharmaceutical products and functional foods.
Collapse
Affiliation(s)
- Ding Zhu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xuewei Huang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Fen Tu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Cunwen Wang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China.,Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, China.,Key Laboratory of Novel and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan, China
| | - Fang Yang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.,Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, China.,Key Laboratory of Novel and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
22
|
Comprehensive evaluation of the metabolic effects of insect meal from Tenebrio molitor L. in growing pigs by transcriptomics, metabolomics and lipidomics. J Anim Sci Biotechnol 2020; 11:20. [PMID: 32158542 PMCID: PMC7055059 DOI: 10.1186/s40104-020-0425-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background The hypothesis was tested that insect meal (IM) as protein source influences intermediary metabolism of growing pigs. To test this, 30 male, 5-week-old crossbred pigs were randomly assigned to 3 groups of 10 pigs each with similar body weights (BW) and fed isonitrogenous diets either without (CON) or with 5% IM (IM5) or 10% IM (IM10) from Tenebrio molitor L. for 4 weeks and key metabolic tissues (liver, muscle, plasma) were analyzed using omics-techniques. Results Most performance parameters did not differ across the groups, whereas ileal digestibilities of most amino acids were 6.7 to 15.6%-units lower in IM10 than in CON (P < 0.05). Transcriptomics of liver and skeletal muscle revealed a total of 166 and 198, respectively, transcripts differentially expressed between IM10 and CON (P < 0.05). Plasma metabolomics revealed higher concentrations of alanine, citrulline, glutamate, proline, serine, tyrosine and valine and a lower concentration of asparagine in IM10 than in CON (P < 0.05). Only one out of fourteen quantifiable amino acid metabolites, namely methionine sulfoxide (MetS), in plasma was elevated by 45% and 71% in IM5 and IM10, respectively, compared to CON (P < 0.05). Plasma concentrations of both, major carnitine/acylcarnitine species and bile acids were not different across groups. Lipidomics of liver and plasma demonstrated no differences in the concentrations of triacylglycerols, cholesterol and the main phospholipids, lysophospholipids and sphingolipids between groups. The percentages of all individual phosphatidylcholine (PC) and phosphatidylethanolamine (PE) species in the liver showed no differences between groups, except those with 6 double bonds (PC 38:6, PC 40:6, PE 38:6, PE 40:6), which were markedly lower in IM10 than in CON (P < 0.05). In line with this, the percentage of C22:6n-3 in hepatic total lipids was lower in IM10 than in the other groups (P < 0.05). Conclusions Comprehensive analyzes of the transcriptome, lipidome and metabolome of key metabolic tissues indicate that partial or complete replacement of a conventional protein source by IM in the diet has only a weak impact on the intermediary metabolism of growing pigs. Thus, it is concluded that IM from Tenebrio molitor L. can be used as a dietary source of protein in pigs without causing adverse effects on metabolism.
Collapse
|