1
|
Ghoneem WMA, Rahmy HAF, El-Tanany RRA. Effect of orange pulp with or without zeolite on productive performance, nitrogen utilization, and antioxidative status of growing rabbits. Trop Anim Health Prod 2024; 56:326. [PMID: 39361180 PMCID: PMC11449954 DOI: 10.1007/s11250-024-04157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
The current study was designed to investigate the effect of dried orange pulp inclusion (OP diet), natural zeolite addition (Z diet), or both (OPZ diet) compared to control (CON diet) on digestibility, growth performance, nitrogen utilization, blood biochemical, antioxidative status, and cecum microbiota of growing rabbits. Seventy-two V-line male rabbits (6 weeks old) were divided into 4 balanced experimental groups. Results showed that administration of dried orange pulp or zeolite especially the OPZ diet significantly improved nutrient digestibility and nutritive values. Rabbits fed the experimental diets (OP, Z, or OPZ) recorded significantly higher values of average daily gain, N-retention, and N-balance compared with those fed the CON diet. Data on blood biochemical, showed non-significant differences in globulin concentrations, and significant decreases in levels of cholesterol, LDL (low-density lipoproteins), triglycerides, and MDA (malondialdehyde) as an antioxidant biomarker with OP, Z, or OPZ diets. Moreover, the incorporation of orange pulp or zeolite in diets significantly decreased the cecal count of E. coli, with no significant difference in total bacterial count among the experimental groups. It could be concluded that a combination between dried orange pulp and natural zeolite in the diet can enhance the growth performance, antioxidant and health status of rabbits.
Collapse
|
2
|
Tan Z, Chen Y, Wen C, Zhou Y. Dietary supplementation with a silicate clay mineral (palygorskite) alleviates inflammatory responses and intestinal barrier damage in broiler chickens challenged with Escherichia coli. Poult Sci 2024; 103:104017. [PMID: 39043023 PMCID: PMC11318557 DOI: 10.1016/j.psj.2024.104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
This experiment aimed to explore the protective effects of dietary palygorskite (Pal) supplementation on inflammatory responses and intestinal barrier function of broiler chickens challenged with Escherichia coli (E. coli). A 2 × 2 factorial arrangement was designed to assess the effects of Pal administration (0 or 5 g/kg of feed) and E. coli challenge (E. coli or bacterial culture medium) on broilers in a 21-d feeding trial. Birds were randomly assigned into one of the 4 groups, and each group had 8 replicates with ten birds each. The challenged chickens were orally gavaged with E. coli suspended in Luria-Bertani broth on 14 d of age, while unchallenged birds were administrated with an equivalent amount of culture medium. The sampling was performed at 21 d of age. Compared with the normal birds, an oral E. coli challenge reduced final body weight, and decreased feed intake, weight gain, and feed efficiency during the challenge period (P < 0.05). E. coli challenge promoted colonization of E. coli in cecal content and their translocation to internal organs (heart, liver, and spleen) (P < 0.05). E. coli infection also increased levels of pro-inflammatory cytokines in jejunum and ileum possibly through activating the toll-like receptor-4-mediated signaling pathway (P < 0.05). Moreover, E. coli administration increased intestinal mucosal permeability (higher serum D-lactate level and diamine oxidase activity, and lower intestinal mucosal disaccharidase activities), altered intestinal morphology, and downregulated the gene expression of intestinal tight junction proteins (P < 0.05). In contrast, Pal supplementation enhanced growth performance, inhibited colonization of E. coli, reduced intestinal inflammation, decreased intestinal permeability, restored intestinal morphology, and normalized the expression of genes responsible for inflammatory processes and maintenance of intestinal mucosal barrier (P < 0.05), and most of these beneficial effects resulting from Pal administration were independent of bacterial challenge. The results indicated dietary Pal incorporation was effective in improving growth performance and alleviating inflammation and intestinal mucosal barrier damage in broilers challenged with E. coli.
Collapse
Affiliation(s)
- Zichao Tan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
3
|
Elsherbeni AI, Youssef IM, Kamal M, Youssif MAM, El-Gendi GM, El-Garhi OH, Alfassam HE, Rudayni HA, Allam AA, Moustafa M, Alshaharni MO, Al-Shehri M, El Kholy MS, Hamouda RE. Impact of adding zeolite to broilers' diet and litter on growth, blood parameters, immunity, and ammonia emission. Poult Sci 2024; 103:103981. [PMID: 38981360 PMCID: PMC11279774 DOI: 10.1016/j.psj.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
This work was designed to assess the impact of varying zeolite concentrations in diet and litter to enhance broiler's growth performance, immunity, and litter quality. A complete random arrangement was used for distributing 525 unsexed "Cobb 500" broiler chicks into seven treatments (75 chick / treatment), each treatment divided into 3 replicates (25 chicks / replicate). The 1st group (control one) received the recommended basal diet. Zeolite has been introduced to the basal diet (ZD) of the second, third, and fourth groups at concentrations of 5, 10, and 15 g/kg, respectively. The 5th, 6th and 7th groups used zeolite mixed with litter (ZL) at 0.5, 1, and 1.5 kg/m2 of litter, respectively. Due to the obtained results, adding zeolite with levels 15 g/kg of diet and 1.5 kg/1 m2 of litter, a significant improvement occurred in live body weight (LBW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR) and European production efficiency factor (EPEF). Also, transaminase enzymes (ALT and AST), creatinine, white blood cells (WBCs) and different Immunoglobulins were significantly increased with different zeolite levels, except urea concentrations which showed reduced due to different zeolite treatments. In addition, spleen relative weight hasn't been affected by zeolite treatments, even though thymus and bursa relative weights had been affected significantly. Moreover, the antibodies' production to Newcastle disease virus (NDV) and Avian influenza virus (AIV) had increased significantly with adding zeolite with levels 10 g/kg of diet and 1.5 kg/1m2 of litter. Litter quality traits (NH3 concentration, pH values, and Moisture content) were improved with zeolite addition. So, zeolite could be employed in both feed and litter of broilers to maximize their production, immunity and improve farm's climate.
Collapse
Affiliation(s)
- Ahmed I Elsherbeni
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Islam M Youssef
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt; Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Mai A M Youssif
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Gaafar M El-Gendi
- Animal Production Department, Faculty of Agriculture, Benha University, Egypt
| | - Osama H El-Garhi
- Animal Production Department, Faculty of Agriculture, Benha University, Egypt
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia; Department of Zoology, Faculty of Science, Beni-Suef University, Beni-suef, 65211 Egypt.
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed Al-Shehri
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohamed S El Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Reda E Hamouda
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| |
Collapse
|
4
|
Panaiotov S, Tancheva L, Kalfin R, Petkova-Kirova P. Zeolite and Neurodegenerative Diseases. Molecules 2024; 29:2614. [PMID: 38893490 PMCID: PMC11173861 DOI: 10.3390/molecules29112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative diseases (NDs), characterized by progressive degeneration and death of neurons, are strongly related to aging, and the number of people with NDs will continue to rise. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs, and the current treatments offer no cure. A growing body of research shows that AD and especially PD are intricately related to intestinal health and the gut microbiome and that both diseases can spread retrogradely from the gut to the brain. Zeolites are a large family of minerals built by [SiO4]4- and [AlO4]5- tetrahedrons joined by shared oxygen atoms and forming a three-dimensional microporous structure holding water molecules and ions. The most widespread and used zeolite is clinoptilolite, and additionally, mechanically activated clinoptilolites offer further improved beneficial effects. The current review describes and discusses the numerous positive effects of clinoptilolite and its forms on gut health and the gut microbiome, as well as their detoxifying, antioxidative, immunostimulatory, and anti-inflammatory effects, relevant to the treatment of NDs and especially AD and PD. The direct effects of clinoptilolite and its activated forms on AD pathology in vitro and in vivo are also reviewed, as well as the use of zeolites as biosensors and delivery systems related to PD.
Collapse
Affiliation(s)
- Stefan Panaiotov
- National Centre of Infectious and Parasitic Diseases, Yanko Sakazov Blvd. 26, 1504 Sofia, Bulgaria;
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria;
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, 66 Ivan Mihailov St., 2700 Blagoevgrad, Bulgaria
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria;
| |
Collapse
|
5
|
Abdelrahman MM, Al-Baadani HH, Qaid MM, Al-Garadi MA, Suliman GM, Alobre MM, Al-Mufarrej SI. Using Natural Zeolite as a Feed Additive in Broilers' Diets for Enhancing Growth Performance, Carcass Characteristics, and Meat Quality Traits. Life (Basel) 2023; 13:1548. [PMID: 37511923 PMCID: PMC10382045 DOI: 10.3390/life13071548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Using natural zeolites as a food additive in poultry diets offers an intriguing perspective. The objective of this study was to investigate the effects of zeolite addition and particle size on broiler performance, carcass characteristics, meat quality, moisture of excreta and litter, and intestinal measurements during 35 days. METHODS A total of 560 1-day-old female Ross-308 broilers were divided into five treatment levels (0, 5, 10, 15, and 20 g zeolite/kg diet) (n = 16 replicates/treatment, n = 8 replicates /particle size of each treatment). Performance was calculated weekly. Carcass characteristics, meat quality, small intestine (SI) measurements, litter pH, and moisture content were determined on day 35. RESULTS Litter pH, breast redness, cooking loss, chewiness, total weight, and SI length were all affected by zeolite treatments (p < 0.05). Particle size had an impact on the gastric pH and texture analysis. Their interaction had an effect on color redness, litter pH, and cooking loss. Performance was unaffected by either the main or interaction effects. CONCLUSION Zeolite as a feed additive may be useful in broiler diets, particularly large particles. The performance and production efficiency factor improved numerically (p > 0.05) with increasing zeolite doses up to 10 g zeolite/kg diet.
Collapse
Affiliation(s)
- Mutassim M Abdelrahman
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hani H Al-Baadani
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Qaid
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maged A Al-Garadi
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gamaleldin M Suliman
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohsen M Alobre
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud I Al-Mufarrej
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Sholikin MM, Sadarman, Irawan A, Sofyan A, Jayanegara A, Rumhayati B, Hidayat C, Adli DN, Julendra H, Herdian H, Manzila I, Hudaya MF, Harahap MA, Qomariyah N, Budiarto R, Krisnan R, Asmarasari SA, Hayanti SY, Wahyono T, Priyatno TP, Ujilestari T, Negara W, Wulandari W, Nahrowi N. A meta-analysis of the effects of clay mineral supplementation on alkaline phosphatase, broiler health, and performance. Poult Sci 2023; 102:102456. [PMID: 36736058 PMCID: PMC10014353 DOI: 10.1016/j.psj.2022.102456] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The crucial constraint in the broiler production sector is feed efficiency; many feed additives have been widely employed to increase broiler growth. Nonetheless, some of these substances exacerbate health and animal-based food product safety concerns. This meta-analysis examines the effect of clay minerals on alkaline phosphatase (ALP), broiler health, and performance. Metadata was constructed from 369 data items that were harvested from 86 studies. The addition of clay minerals was set as a fixed effect and the difference between experiments was established as a random effect. The metadata were fitted using a linear mixed model. Due to the presence of clay minerals, growth performance as assessed by body weight (BW), average daily gain (ADG), and performance efficiency index (PEI) increased significantly (P < 0.01). In the total period, the increases of BW, ADG, and PEI were 4.12 g, 0.0714 g/d, and 0.648, respectively, per unit of clay minerals added. Clay minerals did not affect blood serum parameters (e.g., ALP and calcium). The IgA and IgM concentrations in the jejunum and ileum were significantly greater (P < 0.01) in the starter phase. Among clay minerals, broilers fed diets with aluminosilicate, halloysite, kaolin, and zeolite consistently exhibited higher (P < 0.05) BW, ADG, PEI, and lower feed conversion ratio (P < 0.05) in the finisher phase. Aluminosilicate was the only clay that increased (P < 0.05) secretory IgA concentration in both jejunum and ileum. In conclusion, clay minerals could be used as a growth promoter, especially during the finisher phase, without adversely affecting feed intake, liver function, and mineral metabolism in broiler chickens. Aluminosilicate was superior in improving the mucosal immunity status of broiler chickens.
Collapse
Affiliation(s)
- Mohammad Miftakhus Sholikin
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia; Meta-Analysis in Plant Science (MAPS) Research Group, Bandung 40621, Indonesia; Center for Tropical Animal Studies (CENTRAS), The Institute of Research and Community Empowerment of IPB (LPPM IPB), Bogor 16680, Indonesia.
| | - Sadarman
- Department of Animal Science, State Islamic University of Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta 57126, Indonesia; Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97331, OR, USA; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Ahmad Sofyan
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Barlah Rumhayati
- Chemistry Department, Faculty of Science, Brawijaya University, Malang 65145, Indonesia
| | - Cecep Hidayat
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Danung Nur Adli
- Feed and Animal Nutrition Department, Faculty of Animal Science, Universitas Brawijaya, Malang 65145, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Hardi Julendra
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
| | - Hendra Herdian
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Ifa Manzila
- Research Center for Horticultural and Estate Corps, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
| | - Mohammad Firdaus Hudaya
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
| | - Muhammad Ainsyar Harahap
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
| | - Novia Qomariyah
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Rahmat Budiarto
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jatinangor Sumedang 45363, Indonesia; Meta-Analysis in Plant Science (MAPS) Research Group, Bandung 40621, Indonesia
| | - Rantan Krisnan
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Santiananda Arta Asmarasari
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
| | - Sari Yanti Hayanti
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
| | - Teguh Wahyono
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Research Organization for Agriculture and Food, Gunungkidul 55861, Indonesia; Animal Feed and Nutrition Modelling (AFENUE) Research Group, IPB University, Bogor 16680, Indonesia
| | - Tri Puji Priyatno
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
| | - Tri Ujilestari
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Research Organization for Agriculture and Food, Gunungkidul 55861, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
| | - Wulandari Wulandari
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
| | - Nahrowi Nahrowi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia; Center for Tropical Animal Studies (CENTRAS), The Institute of Research and Community Empowerment of IPB (LPPM IPB), Bogor 16680, Indonesia
| |
Collapse
|
7
|
Additive Effects of Dietary Supplementation with Zeolite and Methyl-Sulfonyl-Methane on Growth Performance and Interleukin Levels of Broiler Chickens. J Poult Sci 2023; 60:2023003. [PMID: 36756049 PMCID: PMC9884634 DOI: 10.2141/jpsa.2023003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Silicate minerals are common additives in poultry feed. To assess their effects, we added zeolite (ZEO) and methyl-sulfonyl-methane (MSM) to broiler chicken diets. A total of 960 one-day-old Ross broiler chicks were randomly divided into four dietary groups with six replicates. Each broiler was maintained until it reached 35 days of age. A completely randomized 2 × 2 experimental design was used, with two ZEO (0 and 1.0%) and two MSM (0 and 0.10%) levels. We observed an additive effect (P<0.05) on interleukin-2 (IL-2) concentrations in broiler bursa and serum when both ZEO and MSM were present. Both ZEO or MSM produced significant (P<0.05) increases in body weight, weight gain, and feed intake. Both increased IL-2 and IL-6 levels in the bursa and serum. Neither affected the serum concentrations of albumin, AST, cholesterol, HDL cholesterol, glucose, total protein, or triglycerides. In summary, these results support supplementation with ZEO and MSM in broiler diets, both separately and in combination.
Collapse
|
8
|
An J, Lee J, Song M, Oh H, Kim Y, Chang S, Go Y, Song D, Cho H, Park H, Kim HB, Cho J. Effects of supplemental different clay minerals in broiler chickens under cyclic heat stress. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:113-131. [PMID: 37093908 PMCID: PMC10119463 DOI: 10.5187/jast.2022.e94] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/19/2023]
Abstract
The objective of this study was to investigate the effect of supplementing clay minerals and organic chromium in feed on broiler chicken under heat stress (HS). A total of 90 one-day-old broiler chicken (Arbor Acres) with an initial body weight of 45.0 ± 0.2 g were assigned to five treatment groups (six replications, three birds each cage): 1) NC group, basal diet under room temperature environment; 2) PC group, basal diet under high temperature (HT) environment; 3) ILT group, basal diet + 1% illite + HT; 4) ZLT group, basal diet + 1% zeolite + HT; 5) OC group, basal diet + 400 ppb/kg organic chromium + HT. The ILT and ZLT groups had significantly higher body weight than the PC group in 4 weeks. Apparent total tract digestibility of gross energy was increased in the ILT, ZLT, and OC groups compared to the PC group. The NC group had lower foot-pad dermatitis score than other groups. Escherichia coli population in the cecum and feces was decreased in the ZLT group than in the PC group. Lactobacillus in cecum and feces was significantly increased in the ZLT group than in the PC group. Regarding blood profiles, blood cortisol was decreased in the NC and ILT groups compared to the PC group. Water holding capacity and pH were increased in the ZLT group than the PC group. In conclusion, according to the results of growth performance, nutrients digestibility, bacteria counts, and meat characteristics, supplementation of the ZLT in broiler diet can alleviate HS.
Collapse
Affiliation(s)
- Jaewoo An
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Jihwan Lee
- Department of Poultry Science, University
of Georgia (UGA), Athens, GA 30602, USA
| | - Minho Song
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Hanjin Oh
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Yongju Kim
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Youngbin Go
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Dongcheol Song
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| | - Haeryoung Park
- Korea Agriculture Technology Promotion
Agency, Iksan 54667, Korea
| | - Hyeun Bum Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk
National University, Cheongju 28644, Korea
| |
Collapse
|
9
|
Biesek J, Banaszak M, Kądziołka K, Wlaźlak S, Adamski M. Growth of broiler chickens, and physical features of the digestive system, and leg bones after aluminosilicates used. Sci Rep 2022; 12:20425. [PMID: 36443386 PMCID: PMC9702739 DOI: 10.1038/s41598-022-25003-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The assessment of aluminosilicates' impact on the production of chickens, the physical features of the intestines, and leg bones was done. 500 Ross 308 chickens were used and divided into 5 groups. The control group was I. Groups II, III, IV, and V were fed with halloysite and zeolite (1:3 ratio) at 0,5% (1-35 days; starter, grower 1 and 2) and 1% (36-42 days; finisher) levels. Aluminosilicates were also used for the peat litter: II-500 g of halloysite/m2; III-250 g of halloysite/m2 and 250 g of zeolite/m2; IV-500 g of zeolite/m2; V-130 g halloysite/m2, 370 g zeolite/m2. During 42 days, growth and feed indicators were recorded. 10 birds from each group were selected for slaughter. The digestive tract, femur, and tibia bones were sampled, and physical features were analyzed (weight, length, and strength). A lower feed conversion ratio on days 23-35 was found in the groups with the aluminosilicates addition. In group V a lower weight of the gizzard was found than in group I. A liver weight was higher in group V than in group III. A higher strength of the femurs was demonstrated in group IV. The tibia bones were characterized by higher strength than the femurs of broiler chickens. The aluminosilicates to feed and litter had no adverse effect.
Collapse
Affiliation(s)
- Jakub Biesek
- grid.466210.70000 0004 4673 5993Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Mirosław Banaszak
- grid.466210.70000 0004 4673 5993Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Kamil Kądziołka
- grid.466210.70000 0004 4673 5993Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Sebastian Wlaźlak
- grid.466210.70000 0004 4673 5993Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Marek Adamski
- grid.466210.70000 0004 4673 5993Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
10
|
Du M, Chen Y, Wang S, Zhao H, Wen C, Zhou Y. Effects of dietary palygorskite supplementation on the growth performance, oxidative status, immune function, intestinal barrier and cecal microbial community of broilers. Front Microbiol 2022; 13:985784. [PMID: 36090069 PMCID: PMC9453597 DOI: 10.3389/fmicb.2022.985784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to investigate the effects of palygorskite (PAL) as an alternative to antibiotic on the growth performance, oxidative status, immune function, intestinal barrier and cecal microbial community of broilers. A total of 360 1-day-old male Ross-308 broilers were randomly allotted to three treatments with eight replicates. Broilers in the three groups were designated as follows: basal diet (CON group), basal diet+50 mg/kg chlorotetracycline (ANT group), and basal diet+ 10 g/kg PAL (PAL group). Supplementing PAL reduced feed to gain ratio in broilers during 22 to 42 days of age (P < 0.05), with its value being similar to that of the ANT group (P > 0.05). Broilers fed a PAL-supplemented diet exerted decreased contents of interferon-γ (IFN-γ) and interleukin-1β in serum, and the same reduction was found in jejunal IFN-γ level, when compared to the CON group (P < 0.05). Moreover, compared with the CON group, broilers after PAL treatment had a lower malondialdehyde content in jejunal mucosa (P < 0.05). Supplementing PAL elevated jejunal villus height (VH) and ratio of VH to crypt depth compared with the ANT group (P < 0.05). Cecal microbiota communities among the three groups were significant different, as demonstrated by distinct clusters from partial least squares discriminant analysis, although dietary treatments had no significant effects on the bacterial richness and diversity indices (P > 0.05). At genus level, the addition of PAL increased the relative abundance of norank_f__Barnesiellaceae and decreased that of unclassified_f__Oscillospiraceae in cecal digesta compared with those in the CON group (P < 0.05); the proportion of genus norank_f__Barnesiellaceae was increased by PAL treatment when compared with the ANT group (P < 0.05). Moreover, spearman's correlations showed that the modulation of cecal microflora composition by PAL supplementation was closely correlated with the promotion of growth performance (feed to gain ratio) and intestinal health-related (contents of malondialdehyde and IFN-γ, and VH value in jejunum) variables of broilers (P < 0.05). Taken together, dietary PAL could improve the growth performance, antioxidant capacity, and immune status, as well as intestinal barrier function in broilers, which might be partially associated with the alteration of cecal microbiota. Moreover, dietary PAL may be a promising alternative to antibiotic growth promoter for broilers.
Collapse
|
11
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 12: Tetracyclines: tetracycline, chlortetracycline, oxytetracycline, and doxycycline. EFSA J 2021; 19:e06864. [PMID: 34729092 PMCID: PMC8546800 DOI: 10.2903/j.efsa.2021.6864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The specific concentrations of tetracycline, chlortetracycline, oxytetracycline and doxycycline in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. The FARSC for these four tetracyclines was estimated. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tetracycline, chlortetracycline, oxytetracycline, whilst for doxycycline no suitable data for the assessment were available. Uncertainties and data gaps associated with the levels reported were addressed. It was recommended to perform further studies to supply more diverse and complete data related to the requirements for calculation of the FARSC for these antimicrobials.
Collapse
|
12
|
Ming D, Wang W, Huang C, Wang Z, Shi C, Ding J, Liu H, Wang F. Effects of Weaning Age at 21 and 28 Days on Growth Performance, Intestinal Morphology and Redox Status in Piglets. Animals (Basel) 2021; 11:2169. [PMID: 34438627 PMCID: PMC8388437 DOI: 10.3390/ani11082169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
The study objective was to assess effects of different weaning ages on growth performance, intestinal morphology and redox status in Duroc × Landrace × Large White piglets (n = 96) fed diets without antibiotic growth promoters. Piglets were selected from 24 litters based on similar body weight at 14 d of age. All piglets were allocated to two groups in a completely random design with six replicates and eight pigs per replicate (four barrows and four gilts), which were weaned at 21 (n = 48; BW = 6.87 ± 0.33 kg) and 28 (n = 48; BW = 8.49 ± 0.41 kg) days of age. After weaning, pigs were fed a corn-soybean meal-based diet. Average daily gain (ADG), average daily feed intake (ADFI), feed conversion (F:G), diarrhea incidence, gastrointestinal pH, intestinal morphology and redox status were determined. Pigs weaned at 28 d displayed increased ADG from d 8 to 14 (p < 0.01) compared with pigs weaned at 21 d. Pigs weaned at 28 d had a higher ADFI from d 0 to 7 (p < 0.01), d 8 to 14 (p < 0.01), d 15 to 28 (p < 0.05) and during the entire experimental period (p < 0.01) compared with pigs weaned at 21 d. Pigs weaned at 21 d had an improved F:G from d 15 to 28 (p < 0.05) compared with pigs weaned at 28 d. Pigs weaned at 28 d had decreased diarrhea incidence from d 8 to 14 (p < 0.01) and the entire experimental period (p < 0.01) compared with pigs weaned at 21 d. On d 28, the pH of the stomach contents in pigs weaned at 21 d was significantly higher compared with pigs weaned at 28 d (p < 0.01). On d 14, the morphology of the duodenum, jejunum and ileum in pigs weaned at 28 d was improved compared with pigs weaned at 21 d. During the experiment period, the antioxidant abilities of pigs weaned at 28 d of the heart, liver, kidney, intestinal and serum were better than pigs weaned at 21 d. In conclusion, intestinal morphology, pH of the stomach and antioxidant status of pigs weaned at 28 d were better than pigs weaned at 21 d. These factors supported better growth performance and decreased diarrhea incidence.
Collapse
Affiliation(s)
- Dongxu Ming
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.M.); (W.W.); (C.H.); (Z.W.); (C.S.); (F.W.)
| | - Wenhui Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.M.); (W.W.); (C.H.); (Z.W.); (C.S.); (F.W.)
| | - Caiyun Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.M.); (W.W.); (C.H.); (Z.W.); (C.S.); (F.W.)
| | - Zijie Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.M.); (W.W.); (C.H.); (Z.W.); (C.S.); (F.W.)
| | - Chenyu Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.M.); (W.W.); (C.H.); (Z.W.); (C.S.); (F.W.)
| | - Jian Ding
- National Animal Husbandry Service, Building No. 20, Maizidian Street, Beijing 100125, China;
| | - Hu Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.M.); (W.W.); (C.H.); (Z.W.); (C.S.); (F.W.)
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (D.M.); (W.W.); (C.H.); (Z.W.); (C.S.); (F.W.)
| |
Collapse
|
13
|
Effects of Diet Supplemented with Excess Pyrroloquinoline Quinone Disodium on Growth Performance, Blood Parameters and Redox Status in Weaned Pigs. Animals (Basel) 2021; 11:ani11020359. [PMID: 33535427 PMCID: PMC7912013 DOI: 10.3390/ani11020359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Weaning is a vital process for weaned pigs since piglets are exposed to psychologic and environmental stresses. These stresses converge on the pig to cause low feed consumption and weight gain meanwhile increased risk of diarrhea and mortality during the early postweaning period. The use of antibiotic growth promoters to help prevent weaning stress in weaned pigs has been forbidden in the European Union, Korea, Japan and China. Pyrroloquinoline quinone disodium (PQQ·Na2) is increasing interest in use of alternatives to in-feed antibiotics. In this study, we found PQQ·Na2 can improve growth performance meanwhile improves antioxidant status of weaned pigs. A high oral dose of PQQ·Na2 does not appear to have harmful effects on weaned pigs. Abstract The research was implemented to assess the safety of feeding excess of pyrroloquinoline quinone disodium (PQQ·Na2) to 108 Duroc × Landrace × Large White weaned pigs (BW = 8.38 ± 0.47 kg). Pigs were weaned at 28 d and randomly distributed to one of three diets with six replicates and six pigs per replicate (three males and three females). Pigs in the control group were fed a corn-soybean meal-based diet (without growth promoter) while the two experimental diets were supplied with 7.5 and 75.0 mg/kg PQQ·Na2, respectively. Average daily gain (ADG), average daily feed intake (ADFI), feed conversion (F:G), diarrhea incidence, hematology, serum biochemistry, organ index and general health were determined. Diets supplementation with 7.5 mg/kg PQQ·Na2 in weaned pigs could increase ADG during the entire experimental period (p < 0.05). And there was a tendency to decrease F:G (p = 0.063). The F:G of weaned pigs fed 7.5 and 75.0 mg/kg PQQ·Na2 supplemented diets was decreased by 9.83% and 8.67%, respectively, compared to the control group. Moreover, pigs had reduced diarrhea incidence (p < 0.01) when supplemented with PQQ·Na2. No differences were observed between pigs supplemented with 0.0, 7.5 and 75.0 mg/kg PQQ·Na2 diets on hematological and serum biochemical parameters as well as histological assessment of heart, liver, spleen, lung and kidney. At day 14, pigs had increased activity of glutathione peroxidase (GSH-Px) (p < 0.05), catalase (CAT) (p < 0.05) and total antioxidant capacity (T-AOC) (p < 0.05), and the serum concentration of malondialdehyde (MDA) was decreased (p < 0.01) with PQQ·Na2 supplementation. At day 28, pigs had increased activities of total superoxide dismutase (T-SOD) (p < 0.01), GSH-Px (p < 0.01), CAT (p < 0.05) and T-AOC (p < 0.01), and serum concentration of MDA was lower (p < 0.01) with PQQ·Na2 supplementation. In conclusion, PQQ·Na2 can improve weaned pigs growth performance and serum antioxidant status. Meanwhile high PQQ·Na2 inclusion of 75.0 mg/kg does not appear to result in harmful effects on growth performance of pigs.
Collapse
|