1
|
Méndez-Martínez Y, Valensuela-Barros HA, Cruz-Quintana Y, Botello-León A, Muñoz-Mestanza RD, Orellana-Castro GL, Angulo C. Effect of Dietary Supplementation with Organic Silicon on the Growth Performance, Blood Biochemistry, Digestive Enzymes, Morphohistology, Intestinal Microbiota and Stress Resistance in Juvenile Hybrid Tilapia ( Oreochromis mossambicus × Oreochromis niloticus). BIOLOGY 2024; 13:531. [PMID: 39056723 PMCID: PMC11273911 DOI: 10.3390/biology13070531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
In recent decades, interest has been aroused worldwide in the use of silicon in nutrition; however, information on its effect on nutrition and metabolism of fish is limited. The objective of the research was to evaluate the effect of dietary supplementation with organic silicon on the growth performance, blood biochemistry, digestive enzymes, morphohistology and intestinal microbiota and stress resistance in hybrid Tilapia (Oreochromis mossambicus × Oreochromis niloticus). Methodologically, six levels of organic silicon (DOS) [control (0), 10, 20, 30, 40 and 50 mg·kg-1] were used to feed juvenile fish (initial weight 7.51 ± 0.25 g) grown for eight weeks in 18 aquariums (15 fish/aquarium). The results indicated that growth performance showed differences (p < 0.05) for specific growth rate, feed conversion and survival. Triglycerides, cholesterol and glucose, transaminases and digestive enzymes were significantly influenced by DOS levels. The histological study confirmed that the administered diets did not cause damage and induced significant morphological changes in the proximal intestine. The 16S rRNA gene sequencing analysis of the gut microbiota showed a high diversity and richness of OTU/Chao-1, with Fusobacteria, Proteobacteria, Bacteroidetes and Acidobacteria predominating in the DOS treatments compared to the control (p < 0.05). Induction of hypoxia stress after the feeding period showed a significant relative survival rate of 83.33% in fish fed 50 mg·kg-1. It is concluded that the DOS treatments performed better than the control treatment in most of the variables analysed. DOS had no negative effects on the fish. The results showed that up to 50 mg·kg-1 DOS improved digestive, metabolic and growth performance in hybrid Tilapia.
Collapse
Affiliation(s)
- Yuniel Méndez-Martínez
- Experimental Aquaculture Laboratory, Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo (UTEQ), Av. Quito Km. 1 1/2 via a Santo Domingo de los Tsáchilas, Quevedo 120301, Los Ríos, Ecuador; (H.A.V.-B.); (R.D.M.-M.)
| | - Helen A. Valensuela-Barros
- Experimental Aquaculture Laboratory, Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo (UTEQ), Av. Quito Km. 1 1/2 via a Santo Domingo de los Tsáchilas, Quevedo 120301, Los Ríos, Ecuador; (H.A.V.-B.); (R.D.M.-M.)
| | - Yanis Cruz-Quintana
- Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental (SAISA), Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí (UTM), c/Gonzalo Loor Velasco s/n, Bahía de Caráquez 130104, Manabí, Ecuador;
| | - Aroldo Botello-León
- Aquaculture Laboratory, Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres de Esmeraldas (UTLVTE), Km 18 via Aeropuerto, San Mateo 080150, Esmeraldas, Ecuador;
| | - Roberto D. Muñoz-Mestanza
- Experimental Aquaculture Laboratory, Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo (UTEQ), Av. Quito Km. 1 1/2 via a Santo Domingo de los Tsáchilas, Quevedo 120301, Los Ríos, Ecuador; (H.A.V.-B.); (R.D.M.-M.)
| | - Grace L. Orellana-Castro
- Experimental Aquaculture Laboratory, Facultad de Ciencias Pecuarias y Biológicas, Universidad Técnica Estatal de Quevedo (UTEQ), Av. Quito Km. 1 1/2 via a Santo Domingo de los Tsáchilas, Quevedo 120301, Los Ríos, Ecuador; (H.A.V.-B.); (R.D.M.-M.)
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politecnico Nacional #195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| |
Collapse
|
2
|
Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M, Vijayaram S, Rohani MF, Van Doan H, Sun YZ. Comparative Effect of Chemical and Green Zinc Nanoparticles on the Growth, Hematology, Serum Biochemical, Antioxidant Parameters, and Immunity in Serum and Mucus of Goldfish, Carassius auratus (Linnaeus, 1758). Biol Trace Elem Res 2024; 202:1264-1278. [PMID: 37434037 DOI: 10.1007/s12011-023-03753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023]
Abstract
Recently, nano feed supplement research has great attention to improving healthy aquatic production and improving the aquatic environment. With the aims of the present study, chemical and green synthesized nanoparticles are characterized by various instrumentation analyses, namely UV-Vis spectrophotometry (UV-Vis), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, and scanning electron microscope (SEM). After characterization analysis of these nanoparticles utilized in aquatic animals, the composition ratio is as follows: controls (without ZnO-NPs (0 mg/L)), T1 (0.9 mg/L ZnO-NPs), T2 (1.9 mg/L ZnO-NPs), T3 (0.9 mg/L GZnO-NPs), T4 (1.9 mg/L GZnO-NPs). SEM investigation report demonstrates that the structure of the surface of green synthesized zinc oxide nanoparticles (GZnO-NPs) was conical shape and the size ranging was from 60 to 70 nm. Concerning hematological parameters, the quantity of hemoglobin increased in different doses of green zinc nanoparticles, but the values of MCV and MCH decreased somewhat. However, this decrease was the highest in the T2 group. Total protein and albumin decreased in T2 and triglyceride, cholesterol, glucose, cortisol, creatinine, and urea increased, while in T3 and T4 groups, changes in biochemical parameters were evaluated as positive. Mucosal and serum immunological parameters in the T2 group showed a significant decrease compared to other groups. In zinc nanoparticles, with increasing dose, oxidative damage is aggravated, so in the T2 group, a decrease in antioxidant enzymes and an increase in MDA were seen compared to other groups. In this regard, the concentration of liver enzymes AST and ALT increased in the T2 group compared with control and other groups. This can confirm liver damage in this dose compared with control and other groups. This research work suggests that green synthesized form of zinc nanoparticles in higher doses have less toxic effects in comparison to the chemical form of zinc nanoparticles and can act as suitable nutrient supplements in aquatic animals.
Collapse
Affiliation(s)
- Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | | | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
3
|
Guo Y, Awais MM, Fei S, Xia J, Sun J, Feng M. Applications and Potentials of a Silk Fibroin Nanoparticle Delivery System in Animal Husbandry. Animals (Basel) 2024; 14:655. [PMID: 38396623 PMCID: PMC10885876 DOI: 10.3390/ani14040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Silk fibroin (SF), a unique natural polymeric fibrous protein extracted from Bombyx mori cocoons, accounts for approximately 75% of the total mass of silk. It has great application prospects due to its outstanding biocompatibility, biodegradability, low immunogenicity, and mechanical stability. Additionally, it is non-toxic and environmentally friendly. Nanoparticle delivery systems constructed with SF can improve the bioavailability of the carriers, increase the loading rates, control the release behavior of the deliverables, and enhance their action efficiencies. Animal husbandry is an integral part of agriculture and plays a vital role in the development of the rural economy. However, the pillar industry experiences a lot of difficulties, like drug abuse while treating major animal diseases, and serious environmental pollution, restricting sustainable development. Interestingly, the limited use cases of silk fibroin nanoparticle (SF NP) delivery systems in animal husbandry, such as veterinary vaccines and feed additives, have shown great promise. This paper first reviews the SF NP delivery system with regard to its advantages, disadvantages, and applications. Moreover, we describe the application status and developmental prospects of SF NP delivery systems to provide theoretical references for further development in livestock production and promote the high-quality and healthy development of animal husbandry.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (M.M.A.); (S.F.); (J.X.); (J.S.)
| |
Collapse
|
4
|
Zhou M, Huang F, Du X, Liu G, Wang C. Analysis of the Differentially Expressed Proteins in Donkey Milk in Different Lactation Stages. Foods 2023; 12:4466. [PMID: 38137269 PMCID: PMC10742469 DOI: 10.3390/foods12244466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Proteins in donkey milk (DM) have special biological activities. However, the bioactive proteins and their expression regulation in donkey milk are still unclear. Thus, the differentially expressed proteins (DEPs) in DM in different lactation stages were first investigated by data-independent acquisition (DIA) proteomics. A total of 805 proteins were characterized in DM. The composition and content of milk proteins varied with the lactation stage. A total of 445 candidate DEPs related to biological processes and molecular functions were identified between mature milk and colostrum. The 219 down-regulated DEPs were mainly related to complement and coagulation cascades, staphylococcus aureus infection, systemic lupus erythematosus, prion diseases, AGE-RAGE signaling pathways in diabetic complications, and pertussis. The 226 up-regulated DEPs were mainly involved in metabolic pathways related to nutrient (fat, carbohydrate, nucleic acid, and vitamin) metabolism. Some other DEPs in milk from the lactation period of 30 to 180 days also had activities such as promoting cell proliferation, promoting antioxidant, immunoregulation, anti-inflammatory, and antibacterial effects, and enhancing skin moisture. DM can be used as a nutritional substitute for infants, as well as for cosmetic and medical purposes. Our results provide important insights for understanding the bioactive protein differences in DM in different lactation stages.
Collapse
Affiliation(s)
- Miaomiao Zhou
- School of Agricultural Science and Engineering, Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China (C.W.)
| | | | | | | | | |
Collapse
|
5
|
Vakurov A, Drummond-Brydson R, William N, Sanver D, Bastús N, Moriones OH, Puntes V, Nelson AL. Heterogeneous Rate Constant for Amorphous Silica Nanoparticle Adsorption on Phospholipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5372-5380. [PMID: 35471829 PMCID: PMC9097521 DOI: 10.1021/acs.langmuir.1c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The interaction of amorphous silica nanoparticles with phospholipid monolayers and bilayers has received a great deal of interest in recent years and is of importance for assessing potential cellular toxicity of such species, whether natural or synthesized for the purpose of nanomedical drug delivery and other applications. This present communication studies the rate of silica nanoparticle adsorption on to phospholipid monolayers in order to extract a heterogeneous rate constant from the data. This rate constant relates to the initial rate of growth of an adsorbed layer of nanoparticles as SiO2 on a unit area of the monolayer surface from unit concentration in dispersion. Experiments were carried out using the system of dioleoyl phosphatidylcholine (DOPC) monolayers deposited on Pt/Hg electrodes in a flow cell. Additional studies were carried out on the interaction of soluble silica with these layers. Results show that the rate constant is effectively constant with respect to silica nanoparticle size. This is interpreted as indicating that the interaction of hydrated SiO2 molecular species with phospholipid polar groups is the molecular initiating event (MIE) defined as the initial interaction of the silica particle surface with the phospholipid layer surface promoting the adsorption of silica nanoparticles on DOPC. The conclusion is consistent with the observed significant interaction of soluble SiO2 with the DOPC layer and the established properties of the silica-water interface.
Collapse
Affiliation(s)
- Alex Vakurov
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Rik Drummond-Brydson
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Nicola William
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Didem Sanver
- Department
of Food Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya 42050, Turkey
| | - Neus Bastús
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Oscar H. Moriones
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Universitat
Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - V. Puntes
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Fundacio
Hospital Universitari Vall D’Hebron - Institut De Recerca, Passeig Vall D Hebron, 119-129, Barcelona 08035, Spain
- ICREA, Pg. Lluıs Companys 23, Barcelona 08010, Spain
| | | |
Collapse
|
6
|
Arshad MA, Ebeid HM, Hassan FU. Revisiting the Effects of Different Dietary Sources of Selenium on the Health and Performance of Dairy Animals: a Review. Biol Trace Elem Res 2021; 199:3319-3337. [PMID: 33188458 DOI: 10.1007/s12011-020-02480-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023]
Abstract
Selenium (Se) is one of the most important essential trace elements in livestock production. It is a structural component in at least 25 selenoproteins such as the iodothyronine deiodinases and thioredoxin reductases as selenocysteine at critical positions in the active sites of these enzymes. It is also involved in the synthesis of the thyroid hormone and influences overall body metabolism. Selenium being a component of the glutathione peroxidase enzyme also plays a key role in the antioxidant defense system of animals. Dietary requirements of Se in dairy animals depend on physiological status, endogenous Se content, Se source, and route of administration. Most of the dietary Se is absorbed through the duodenum in ruminants and also some portion through the rumen wall. Inorganic Se salts such as Na-selenate and Na-selenite have shown lower bioavailability than organic and nano-Se. Selenium deficiency has been associated with reproductive disorders such as retained placenta, abortion, early embryonic death, and infertility, together with muscular diseases (like white muscle disease and skeletal and cardiac muscle necrosis). The deficiency of Se can also affect the udder health particularly favoring clinical and subclinical mastitis, along with an increase of milk somatic cell counts in dairy animals. However, excessive Se supplementation (5 to 8 mg/kg DM) can lead to acute toxicity including chronic and acute selenosis. Se is the most vital trace element for the optimum performance of dairy animals. This review focuses to provide insights into the comparative efficacy of different forms of dietary Se (inorganic, organic, and nano-Se) on the health and production of dairy animals and milk Se content.
Collapse
Affiliation(s)
- Muhammad Adeel Arshad
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hossam Mahrous Ebeid
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, 12311, Egypt
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China.
| |
Collapse
|
7
|
Libera K, Konieczny K, Witkowska K, Żurek K, Szumacher-Strabel M, Cieslak A, Smulski S. The Association between Selected Dietary Minerals and Mastitis in Dairy Cows-A Review. Animals (Basel) 2021; 11:2330. [PMID: 34438787 PMCID: PMC8388399 DOI: 10.3390/ani11082330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this paper is to describe the association between selected dietary minerals and mastitis in dairy cows. Minerals are a group of nutrients with a proven effect on production and reproductive performance. They also strongly affect immune system function. In particular their deficiencies may result in immunosuppression, which is a predisposing factor for udder inflammation occurrence. The role of selected dietary minerals (including calcium, phosphorus, magnesium, selenium, copper and zinc) has been reviewed. Generally, minerals form structural parts of the body; as cofactors of various enzymes they are involved in nerve signaling, muscle contraction and proper keratosis. Their deficiencies lead to reduced activity of immune cells or malfunction of teat innate defense mechanisms, which in turn promote the development of mastitis. Special attention was also paid to minerals applied as nanoparticles, which in the future may turn out to be an effective tool against animal diseases, including mastitis. To conclude, minerals are an important group of nutrients, which should be taken into account on dairy farms when aiming to achieve high udder health status.
Collapse
Affiliation(s)
- Kacper Libera
- Department of Preclinical Sciences and Infection Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (K.L.); (K.W.); (K.Ż.)
| | - Kacper Konieczny
- Department of Internal Diseases and Diagnostics, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Katarzyna Witkowska
- Department of Preclinical Sciences and Infection Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (K.L.); (K.W.); (K.Ż.)
| | - Katarzyna Żurek
- Department of Preclinical Sciences and Infection Diseases, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (K.L.); (K.W.); (K.Ż.)
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| | - Sebastian Smulski
- Department of Internal Diseases and Diagnostics, Poznan University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| |
Collapse
|
8
|
Cameli N, Silvestri M, Mariano M, Berardesca E. Effects of food supplements and a topical solution containing nanosilicon on skin hydration, barrier function, and elasticity. J Cosmet Dermatol 2021; 20 Suppl 1:32-35. [PMID: 33934476 DOI: 10.1111/jocd.14099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Silicon is an abundant element in the human body and plays an important role in the skin, taking part in the synthesis of collagen and glycosaminoglycans. The use of nanotechnology methods, which processes materials at an atomic and molecular scale, has allowed the development of nanosilicons. AIMS The study evaluates the effectiveness of a food supplement and a topical solution containing nanosilicon in improving skin hydration and elasticity. METHODS A total of 30 female subjects were randomized to receive the placebo (n = 15) and the active compound (n = 15). All enrolled subjects took the food supplement twice a day for 20 days and then once a day for the next 20 days, and they also had to apply the nanosilicon solution on the right forearm four times a day. Evaluation of several parameters was performed after 20 and 40 days through the use of non-invasive instrumental methods (Corneometer® CM 825, Cutometer® MPA 580, Visioscan® VC, Tewameter® TM 200). RESULTS Both treatment groups showed a statistically significant improvement in barrier function and in skin hydration on the right forearm after 20 days; increase in skin elasticity was observed only in the group taking the active compound. CONCLUSIONS The study showed that the administration of a food supplement and a topical solution, both containing nanosilicon, improves hydration, elasticity, and skin barrier function.
Collapse
Affiliation(s)
- Norma Cameli
- San Gallicano Dermatological Institute (IRCCS, Rome, Italy
| | - Martina Silvestri
- Department of Health Sciences, Unit of Dermatology, Magna Graecia University, Catanzaro, Italy
| | - Maria Mariano
- San Gallicano Dermatological Institute (IRCCS, Rome, Italy
| | - Enzo Berardesca
- Phillip Frost, Department of Dermatology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|