1
|
Pardi N, Krammer F. mRNA vaccines for infectious diseases - advances, challenges and opportunities. Nat Rev Drug Discov 2024; 23:838-861. [PMID: 39367276 DOI: 10.1038/s41573-024-01042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/06/2024]
Abstract
The concept of mRNA-based vaccines emerged more than three decades ago. Groundbreaking discoveries and technological advancements over the past 20 years have resolved the major roadblocks that initially delayed application of this new vaccine modality. The rapid development of nucleoside-modified COVID-19 mRNA vaccines demonstrated that this immunization platform is easy to develop, has an acceptable safety profile and can be produced at a large scale. The flexibility and ease of antigen design have enabled mRNA vaccines to enter development for a wide range of viruses as well as for various bacteria and parasites. However, gaps in our knowledge limit the development of next-generation mRNA vaccines with increased potency and safety. A deeper understanding of the mechanisms of action of mRNA vaccines, application of novel technologies enabling rational antigen design, and innovative vaccine delivery strategies and vaccination regimens will likely yield potent novel vaccines against a wide range of pathogens.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
3
|
Choi MJ, Oh SH, Song YK, Ki SH. Adverse events associated with SARS-CoV-2 neutralizing monoclonal antibodies using the FDA adverse event reporting system database. Toxicol Res 2024; 40:673-682. [PMID: 39345748 PMCID: PMC11436521 DOI: 10.1007/s43188-024-00256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
The purpose of this study was to analyze the important medical events (IMEs) of anti-severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) monoclonal antibodies using the reports from the United States Food and Drug Administration (US FDA) adverse event reporting system (FAERS) and to detect safety signals. In this study, data from the FAERS from January 2020 to December 2022 were used to investigate signals associated with five monoclonal antibody products (bamlanivimab, bamlanivimab/etesevimab, bebtelovimab, casirivimab/imdevimab, sotrovimab) in coronavirus disease 2019 (COVID-19) patients and one monoclonal antibody product (tixagevimab/cilgavimab) in patients wherein COVID-19 vaccination was not recommended. Disproportionality analyses were conducted using the reporting odds ratio, and an information component to identify safety signals. There were 17,937,860 drug AE reports associated with all drugs in the FAERS documented during research period. Among them, 42,642 were AE reports associated with anti-SARS-CoV-2 monoclonal antibodies. The SOCs including respiratory, thoracic and mediastinal, and vascular disorders were frequently reported for all the six products. The three most commonly detected IMEs were hypoxia, COVID-19 pneumonia, and anaphylactic reaction due to SARS-CoV-2 neutralizing antibodies. Even though the purposes of use were different, the types of signals between drugs were similar. Careful monitoring of these AEs should be considered for certain COVID-19 patients, at risk, when they are treated with monoclonal antibody products.
Collapse
Affiliation(s)
- Min Joung Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-gu, Gwangju, 61452 Republic of Korea
| | - Se-Hun Oh
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-Si, Gyeonggi-do 14662 Republic of Korea
| | - Yun-Kyoung Song
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-Si, Gyeonggi-do 14662 Republic of Korea
| | - Sung Hwan Ki
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
4
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
5
|
Kothari M, Wanjari A, Acharya S, Karwa V, Chavhan R, Kumar S, Kadu A, Patil R. A Comprehensive Review of Monoclonal Antibodies in Modern Medicine: Tracing the Evolution of a Revolutionary Therapeutic Approach. Cureus 2024; 16:e61983. [PMID: 38983999 PMCID: PMC11231668 DOI: 10.7759/cureus.61983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
Monoclonal antibodies (mAbs) have emerged as potent therapeutic agents, revolutionizing the landscape of modern medicine. This comprehensive review traces the evolution of mAbs from their inception to their current prominence, highlighting key milestones in their development and exploring their diverse therapeutic applications. Beginning with an overview of their molecular structure and mechanisms of action, we delve into the production and engineering of mAbs, including hybridoma technology and recombinant DNA techniques. Therapeutic applications across various medical disciplines, including cancer treatment, autoimmune diseases, and infectious diseases, are examined in detail, showcasing the significant clinical successes of mAbs. Furthermore, this review discusses the challenges and opportunities in manufacturing scalability, cost-effectiveness, and access to therapies. Looking ahead, the implications of mAbs in future research and clinical practice are explored, emphasizing the potential for next-generation mAbs, personalized medicine, and integration with emerging modalities such as immunotherapy and gene therapy. In conclusion, the evolution of monoclonal antibodies underscores their transformative impact on healthcare and their continued promise to advance the frontiers of medicine.
Collapse
Affiliation(s)
- Manjeet Kothari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Vineet Karwa
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Roma Chavhan
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Ajinkya Kadu
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| | - Rajvardhan Patil
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institution of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Bauernfeind C, Zettl I, Ivanova T, Goryainova O, Weijler AM, Pranz B, Drescher A, Focke-Tejkl M, Pavkov-Keller T, Eckl-Dorna J, Tillib SV, Flicker S. Trimeric Bet v 1-specific nanobodies cause strong suppression of IgE binding. Front Immunol 2024; 15:1343024. [PMID: 38784378 PMCID: PMC11112410 DOI: 10.3389/fimmu.2024.1343024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
Background Around 20% of the population in Northern and Central Europe is affected by birch pollen allergy, with the major birch pollen allergen Bet v 1 as the main elicitor of allergic reactions. Together with its cross-reactive allergens from related trees and foods, Bet v 1 causes an impaired quality of life. Hence, new treatment strategies were elaborated, demonstrating the effectiveness of blocking IgG antibodies on Bet v 1-induced IgE-mediated reactions. A recent study provided evidence for the first time that Bet v 1-specific nanobodies reduce patients´ IgE binding to Bet v 1. In order to increase the potential to outcompete IgE recognition of Bet v 1 and to foster cross-reactivity and cross-protection, we developed Bet v 1-specific nanobody trimers and evaluated their capacity to suppress polyclonal IgE binding to corresponding allergens and allergen-induced basophil degranulation. Methods Nanobody trimers were engineered by adding isoleucine zippers, thus enabling trimeric formation. Trimers were analyzed for their cross-reactivity, binding kinetics to Bet v 1, and related allergens, and patients' IgE inhibition potential. Finally, their efficacy to prevent basophil degranulation was investigated. Results Trimers showed enhanced recognition of cross-reactive allergens and increased efficiency to reduce IgE-allergen binding compared to nanobody monomers. Furthermore, trimers displayed slow dissociation rates from allergens and suppressed allergen-induced mediator release. Conclusion We generated high-affine nanobody trimers that target Bet v 1 and related allergens. Trimers blocked IgE-allergen interaction by competing with IgE for allergen binding. They inhibited IgE-mediated release of biological mediators, demonstrating a promising potential to prevent allergic reactions caused by Bet v 1 and relatives.
Collapse
Affiliation(s)
- Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tatiana Ivanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Oksana Goryainova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Pranz
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Margarete Focke-Tejkl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Julia Eckl-Dorna
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Sergei V. Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Sun W, Wu Y, Ying T. Progress in novel delivery technologies to improve efficacy of therapeutic antibodies. Antiviral Res 2024; 225:105867. [PMID: 38521465 DOI: 10.1016/j.antiviral.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Monoclonal antibody-based therapeutics have achieved remarkable success in treating a wide range of human diseases. However, conventional systemic delivery methods have limitations in insufficient target tissue permeability, high costs, repeated administrations, etc. Novel technologies have been developed to address these limitations and further enhance antibody therapy. Local antibody delivery via respiratory tract, gastrointestinal tract, eye and blood-brain barrier have shown promising results in increasing local concentrations and overcoming barriers. Nucleic acid-encoded antibodies expressed from plasmid DNA, viral vectors or mRNA delivery platforms also offer advantages over recombinant proteins such as sustained expression, rapid onset, and lower costs. This review summarizes recent advances in antibody delivery methods and highlights innovative technologies that have potential to expand therapeutic applications of antibodies.
Collapse
Affiliation(s)
- Wenli Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China.
| |
Collapse
|
8
|
Wang S, Zhu Z, Li J. Pharmacokinetic Analyses of a Lipid Nanoparticle-Encapsulated mRNA-Encoded Antibody against Rift Valley Fever Virus. Mol Pharm 2024; 21:1342-1352. [PMID: 38295278 DOI: 10.1021/acs.molpharmaceut.3c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Rift Valley fever virus (RVFV) could cause an emergency illness characterized by fever, muscle pain, and even death in humans or ruminants. However, there are no approved antiviral drugs that prevent or treat RVFV infection. While therapeutic antibodies have shown promising potential for prevention or treatment in several studies, many studies are ongoing, especially in the field of infectious diseases. Among these studies, the mRNA-LNP platform shows great potential for application, following the COVID-19 pandemic. Previously, we have obtained a neutralizing antibody against RVFV, which was named A38 protein and verified to have a high binding and neutralization ability. In this study, we aimed to identify an effectively optimized sequence and expressed the prioritized mRNA-encoded antibody in vitro. Notably, we effectively expressed mRNA-encoded protein and used the mRNA-LNP platform to generate A38-mRNA-LNP. Pharmacokinetic experiments were conducted in vivo and set up in two groups of mRNA-A38 group and A38 protein group, which were derived from mRNA-LNP and plasmid DNA-expressed proteins, respectively. A38-mRNA-LNPs were administrated by intramuscular injection, A38 proteins were administrated by intravenous administration, and their unique ability to maintain long-lasting protein concentrations by mRNA-encoded protein was demonstrated with the mRNA-encoded protein providing a longer circulating half-life compared to injection of the free A38 protein. These preclinical data on the mRNA-encoded antibody highlighted its potential to prevent infectious diseases in the future.
Collapse
Affiliation(s)
- Shuo Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Ziling Zhu
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianmin Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
9
|
Singh R, Chandley P, Rohatgi S. Recent Advances in the Development of Monoclonal Antibodies and Next-Generation Antibodies. Immunohorizons 2023; 7:886-897. [PMID: 38149884 PMCID: PMC10759153 DOI: 10.4049/immunohorizons.2300102] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023] Open
Abstract
mAbs are highly indispensable tools for diagnostic, prophylactic, and therapeutic applications. The first technique, hybridoma technology, was based on fusion of B lymphocytes with myeloma cells, which resulted in generation of single mAbs against a specific Ag. Along with hybridoma technology, several novel and alternative methods have been developed to improve mAb generation, ranging from electrofusion to the discovery of completely novel technologies such as B cell immortalization; phage, yeast, bacterial, ribosome, and mammalian display systems; DNA/RNA encoded Abs; single B cell technology; transgenic animals; and artificial intelligence/machine learning. This commentary outlines the evolution, methodology, advantages, and limitations of various mAb production techniques. Furthermore, with the advent of next-generation Ab technologies such as single-chain variable fragments, nanobodies, bispecific Abs, Fc-engineered Abs, Ab biosimilars, Ab mimetics, and Ab-drug conjugates, the healthcare and pharmaceutical sectors have become resourceful to develop highly specific mAb treatments against various diseases such as cancer and autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Rohit Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| |
Collapse
|