1
|
Lo CH. TNF receptors: Structure-function relationships and therapeutic targeting strategies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184394. [PMID: 39442606 DOI: 10.1016/j.bbamem.2024.184394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Tumor necrosis factor receptors (TNFR1 and TNFR2) play key roles in mediating inflammatory response and cell death signaling, which are associated with autoimmune disorders, neurodegenerative diseases, and cancers. The structure-function relationships of TNF receptors and their ligands determine the activation or inhibition of downstream signaling pathways. Available crystal structures have provided critical insights into the therapeutic targeting strategies of TNF receptors and their signaling networks. In this review, we discuss the potential of targeting receptor-ligand and receptor-receptor interactions in a competitive manner as well as perturbing receptor conformational dynamics through an allosteric mechanism to modulate TNF receptor signaling. We propose that conformational states of TNF receptors can act as a molecular switch in determining their functions and are important therapeutic targets. The knowledge of the structure-function relationships of TNF receptors can be applied to translational high-throughput drug screening and design of novel receptor-specific modulators with enhanced pharmacological properties.
Collapse
MESH Headings
- Humans
- Structure-Activity Relationship
- Signal Transduction/drug effects
- Ligands
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Animals
- Protein Conformation
- Receptors, Tumor Necrosis Factor, Type II/chemistry
- Receptors, Tumor Necrosis Factor, Type II/metabolism
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Department of Biology, Syracuse University, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, NY 13244, USA.
| |
Collapse
|
2
|
Lambuk F, Nordin NA, Mussa A, Lambuk L, Ahmad S, Hassan R, Kadir R, Mohamud R, Yahya NK. Towards understanding the role of nanomedicine in targeting TNFR2 in rheumatoid arthritis. Immunology 2024; 173:622-633. [PMID: 39191474 DOI: 10.1111/imm.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the synovium and progressive joint destruction which significantly affects both quality of life and socioeconomic status. Admittedly, various treatments are available, but they are usually accompanied by various side effects, from mild to severe, and potentially with adverse events. Tumour necrosis factor-alpha (TNF-α) plays a crucial role in the pathophysiology of RA. It promotes inflammatory, apoptosis and necroptosis via TNF receptor-1 (TNFR1) but elicit anti-inflammatory effects via TNFR2. Herein, targeting TNFR2 has gained attention in RA studies. Understanding the role of nanomedicine in modulating TNFR2 signalling may be the instrument in development of RA therapies. Nanotechnology has made a significant progress in treating various conditions of diseases since its inception. Due to this, nanomedicine has emerged as a promising therapeutics approach for RA. Recent studies have demonstrated the potential of nanomedicine in RA theranostics, combining therapy and diagnostics for improved treatment outcomes. Owing to the challenges and advancements in the field of nanotechnology, nanoparticles are seen as an applicable candidate in the treatment of RA. In this review, we provide an overview of the role of nanomedicine in targeting TNFR2 for the treatment of RA and highlight the limitations of current therapies as well as the potential of nanocarriers with controlled drug release and active targeting abilities.
Collapse
Affiliation(s)
- Fatmawati Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Suhana Ahmad
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nurul Khaiza Yahya
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
3
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
4
|
Thougaard E, Nielsen PV, Forsberg A, Phuong V, Velasco AM, Wlodarczyk A, Wajant H, Lang I, Mikkelsen JD, Clausen BH, Brambilla R, Lambertsen KL. Systemic treatment with a selective TNFR2 agonist alters the central and peripheral immune responses and transiently improves functional outcome after experimental ischemic stroke. J Neuroimmunol 2023; 385:578246. [PMID: 37988839 DOI: 10.1016/j.jneuroim.2023.578246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Ischemic stroke often leaves survivors with permanent disabilities and therapies aimed at limiting detrimental inflammation and improving functional outcome are still needed. Tumor necrosis factor (TNF) levels increase rapidly after ischemic stroke, and while signaling through TNF receptor 1 (TNFR1) is primarily detrimental, TNFR2 signaling mainly has protective functions. We therefore investigated how systemic stimulation of TNFR2 with the TNFR2 agonist NewSTAR2 affects ischemic stroke in mice. We found that NewSTAR2 treatment induced changes in peripheral immune cell numbers and transiently affected microglial numbers and neuroinflammation. However, this was not sufficient to improve long-term functional outcome after stroke in mice.
Collapse
Affiliation(s)
- Estrid Thougaard
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark.
| | - Pernille Vinther Nielsen
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, 5000 Odense C, Denmark.
| | - Amalie Forsberg
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark.
| | - Victoria Phuong
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark.
| | - Aitana Martínez Velasco
- Neurobiology Research Unit, University Hospital Rigshospitalet, Inge Lehmanns Vej 6, 2100 Copenhagen, Denmark
| | - Agnieszka Wlodarczyk
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark.
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, Würzburg 97080, Germany.
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, Würzburg 97080, Germany.
| | - Jens D Mikkelsen
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; Neurobiology Research Unit, University Hospital Rigshospitalet, Inge Lehmanns Vej 6, 2100 Copenhagen, Denmark; Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Bettina Hjelm Clausen
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark.
| | - Roberta Brambilla
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark; The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Lois Pope LIFE Center, Miami, FL 33136, USA.
| | - Kate Lykke Lambertsen
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, J. B. Winsløwsvej 21 st, 5000 Odense C, Denmark; BRIDGE - Brain Research - Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000 Odense C, Denmark; Department of Neurology, Odense University Hospital, J.B. Winsløwsvej 4, 5000 Odense C, Denmark.
| |
Collapse
|
5
|
Pati S, Singh Gautam A, Dey M, Tiwari A, Kumar Singh R. Molecular and functional characteristics of receptor-interacting protein kinase 1 (RIPK1) and its therapeutic potential in Alzheimer's disease. Drug Discov Today 2023; 28:103750. [PMID: 37633326 DOI: 10.1016/j.drudis.2023.103750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Inflammation and cell death processes positively control the organ homeostasis of an organism. Receptor-interacting protein kinase 1 (RIPK1), a member of the RIPK family, is a crucial regulator of cell death and inflammation, and control homeostasis at the cellular and tissue level. Necroptosis, a programmed form of necrosis-mediated cell death and tumor necrosis factor (TNF)-induced necrotic cell death, is mostly regulated by RIPK1 kinase activity. Thus, RIPK1 has recently emerged as an upstream kinase that controls multiple cellular pathways and participates in regulating inflammation and cell death. All the major cell types in the central nervous system (CNS) have been found to express RIPK1. Selective inhibition of RIPK1 has been shown to prevent neuronal cell death, which could ultimately lead to a significant reduction of neurodegeneration and neuroinflammation. In addition, the kinase structure of RIPK1 is highly conducive to the development of specific pharmacological small-molecule inhibitors. These factors have led to the emergence of RIPK1 as an important therapeutic target for Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Satyam Pati
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Mangaldeep Dey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Aman Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-sisendi Road, Sarojini Nagar, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
6
|
O’Connor LM, O’Connor BA, Zeng J, Lo CH. Data Mining of Microarray Datasets in Translational Neuroscience. Brain Sci 2023; 13:1318. [PMID: 37759919 PMCID: PMC10527016 DOI: 10.3390/brainsci13091318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Data mining involves the computational analysis of a plethora of publicly available datasets to generate new hypotheses that can be further validated by experiments for the improved understanding of the pathogenesis of neurodegenerative diseases. Although the number of sequencing datasets is on the rise, microarray analysis conducted on diverse biological samples represent a large collection of datasets with multiple web-based programs that enable efficient and convenient data analysis. In this review, we first discuss the selection of biological samples associated with neurological disorders, and the possibility of a combination of datasets, from various types of samples, to conduct an integrated analysis in order to achieve a holistic understanding of the alterations in the examined biological system. We then summarize key approaches and studies that have made use of the data mining of microarray datasets to obtain insights into translational neuroscience applications, including biomarker discovery, therapeutic development, and the elucidation of the pathogenic mechanisms of neurodegenerative diseases. We further discuss the gap to be bridged between microarray and sequencing studies to improve the utilization and combination of different types of datasets, together with experimental validation, for more comprehensive analyses. We conclude by providing future perspectives on integrating multi-omics, to advance precision phenotyping and personalized medicine for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lance M. O’Connor
- College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Blake A. O’Connor
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA;
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| |
Collapse
|
7
|
Ortí-Casañ N, Boerema AS, Köpke K, Ebskamp A, Keijser J, Zhang Y, Chen T, Dolga AM, Broersen K, Fischer R, Pfizenmaier K, Kontermann RE, Eisel ULM. The TNFR1 antagonist Atrosimab reduces neuronal loss, glial activation and memory deficits in an acute mouse model of neurodegeneration. Sci Rep 2023; 13:10622. [PMID: 37391534 PMCID: PMC10313728 DOI: 10.1038/s41598-023-36846-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/11/2023] [Indexed: 07/02/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) and its key role in modulating immune responses has been widely recognized as a therapeutic target for inflammatory and neurodegenerative diseases. Even though inhibition of TNF-α is beneficial for the treatment of certain inflammatory diseases, total neutralization of TNF-α largely failed in the treatment of neurodegenerative diseases. TNF-α exerts distinct functions depending on interaction with its two TNF receptors, whereby TNF receptor 1 (TNFR1) is associated with neuroinflammation and apoptosis and TNF receptor 2 (TNFR2) with neuroprotection and immune regulation. Here, we investigated the effect of administering the TNFR1-specific antagonist Atrosimab, as strategy to block TNFR1 signaling while maintaining TNFR2 signaling unaltered, in an acute mouse model for neurodegeneration. In this model, a NMDA-induced lesion that mimics various hallmarks of neurodegenerative diseases, such as memory loss and cell death, was created in the nucleus basalis magnocellularis and Atrosimab or control protein was administered centrally. We showed that Atrosimab attenuated cognitive impairments and reduced neuroinflammation and neuronal cell death. Our results demonstrate that Atrosimab is effective in ameliorating disease symptoms in an acute neurodegenerative mouse model. Altogether, our study indicates that Atrosimab may be a promising candidate for the development of a therapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Ate S Boerema
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Applied Research Center, Van Hall Larenstein University of Applied Science, Leeuwarden, The Netherlands
| | - Karina Köpke
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Amber Ebskamp
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Keijser
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Tingting Chen
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Roman Fischer
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Gogishvili D, Vromen EM, Koppes-den Hertog S, Lemstra AW, Pijnenburg YAL, Visser PJ, Tijms BM, Del Campo M, Abeln S, Teunissen CE, Vermunt L. Discovery of novel CSF biomarkers to predict progression in dementia using machine learning. Sci Rep 2023; 13:6531. [PMID: 37085545 PMCID: PMC10121677 DOI: 10.1038/s41598-023-33045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Providing an accurate prognosis for individual dementia patients remains a challenge since they greatly differ in rates of cognitive decline. In this study, we used machine learning techniques with the aim to identify cerebrospinal fluid (CSF) biomarkers that predict the rate of cognitive decline within dementia patients. First, longitudinal mini-mental state examination scores (MMSE) of 210 dementia patients were used to create fast and slow progression groups. Second, we trained random forest classifiers on CSF proteomic profiles and obtained a well-performing prediction model for the progression group (ROC-AUC = 0.82). As a third step, Shapley values and Gini feature importance measures were used to interpret the model performance and identify top biomarker candidates for predicting the rate of cognitive decline. Finally, we explored the potential for each of the 20 top candidates in internal sensitivity analyses. TNFRSF4 and TGF [Formula: see text]-1 emerged as the top markers, being lower in fast-progressing patients compared to slow-progressing patients. Proteins of which a low concentration was associated with fast progression were enriched for cell signalling and immune response pathways. None of our top markers stood out as strong individual predictors of subsequent cognitive decline. This could be explained by small effect sizes per protein and biological heterogeneity among dementia patients. Taken together, this study presents a novel progression biomarker identification framework and protein leads for personalised prediction of cognitive decline in dementia.
Collapse
Affiliation(s)
- Dea Gogishvili
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Eleonora M Vromen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Sascha Koppes-den Hertog
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Barcelonabeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Sanne Abeln
- Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- CWI, Amsterdam , The Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Ortí-Casañ N, Wajant H, Kuiperij HB, Hooijsma A, Tromp L, Poortman IL, Tadema N, de Lange JH, Verbeek MM, De Deyn PP, Naudé PJ, Eisel UL. Activation of TNF Receptor 2 Improves Synaptic Plasticity and Enhances Amyloid-β Clearance in an Alzheimer's Disease Mouse Model with Humanized TNF Receptor 2. J Alzheimers Dis 2023; 94:977-991. [PMID: 37355890 PMCID: PMC10578215 DOI: 10.3233/jad-221230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Tumor necrosis factor-alpha (TNF-α) is a master cytokine involved in a variety of inflammatory and neurological diseases, including Alzheimer's disease (AD). Therapies that block TNF-α proved ineffective as therapeutic for neurodegenerative diseases, which might be explained by the opposing functions of the two receptors of TNF (TNFRs): while TNFR1 stimulation mediates inflammatory and apoptotic pathways, activation of TNFR2 is related to neuroprotection. Despite the success of targeting TNFR2 in a transgenic AD mouse model, research that better mimics the human context is lacking. OBJECTIVE The aim of this study is to investigate whether stimulation of TNFR2 with a TNFR2 agonist is effective in activating human TNFR2 and attenuating AD neuropathology in the J20xhuTNFR2-k/i mouse model. METHODS Transgenic amyloid-β (Aβ)-overexpressing mice containing a human extracellular TNFR2 domain (J20xhuTNFR2-k/i) were treated with a TNFR2 agonist (NewStar2). After treatment, different behavioral tests and immunohistochemical analysis were performed to assess different parameters, such as cognitive functions, plaque deposition, synaptic plasticity, or microglial phagocytosis. RESULTS Treatment with NewStar2 in J20xhuTNFR2-k/i mice resulted in a drastic decrease in plaque load and beta-secretase 1 (BACE-1) compared to controls. Moreover, TNFR2 stimulation increased microglial phagocytic activity, leading to enhanced Aβ clearance. Finally, activation of TNFR2 rescued cognitive impairments and improved synaptic plasticity. CONCLUSION Our findings demonstrate that activation of human TNFR2 ameliorates neuropathology and improves cognitive functions in an AD mouse model. Moreover, our study confirms that the J20xhuTNFR2-k/i mouse model is suitable for testing human TNFR2-specific compounds.
Collapse
Affiliation(s)
- Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Harald Wajant
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Annelien Hooijsma
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leon Tromp
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Isabelle L. Poortman
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Norick Tadema
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Julia H.E. de Lange
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter P. De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Petrus J.W. Naudé
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Rangan P, Lobo F, Parrella E, Rochette N, Morselli M, Stephen TL, Cremonini AL, Tagliafico L, Persia A, Caffa I, Monacelli F, Odetti P, Bonfiglio T, Nencioni A, Pigliautile M, Boccardi V, Mecocci P, Pike CJ, Cohen P, LaDu MJ, Pellegrini M, Xia K, Tran K, Ann B, Chowdhury D, Longo VD. Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in Alzheimer's models. Cell Rep 2022; 40:111417. [PMID: 36170815 PMCID: PMC9648488 DOI: 10.1016/j.celrep.2022.111417] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effects of fasting-mimicking diet (FMD) cycles in reducing many aging and disease risk factors indicate it could affect Alzheimer's disease (AD). Here, we show that FMD cycles reduce cognitive decline and AD pathology in E4FAD and 3xTg AD mouse models, with effects superior to those caused by protein restriction cycles. In 3xTg mice, long-term FMD cycles reduce hippocampal Aβ load and hyperphosphorylated tau, enhance genesis of neural stem cells, decrease microglia number, and reduce expression of neuroinflammatory genes, including superoxide-generating NADPH oxidase (Nox2). 3xTg mice lacking Nox2 or mice treated with the NADPH oxidase inhibitor apocynin also display improved cognition and reduced microglia activation compared with controls. Clinical data indicate that FMD cycles are feasible and generally safe in a small group of AD patients. These results indicate that FMD cycles delay cognitive decline in AD models in part by reducing neuroinflammation and/or superoxide production in the brain.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Fleur Lobo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Edoardo Parrella
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, Brescia, BS 25123, Italy
| | - Nicolas Rochette
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Terri-Leigh Stephen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Anna Laura Cremonini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Patrizio Odetti
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, Genova, GE 16132, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Martina Pigliautile
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Virginia Boccardi
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christian J Pike
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Pinchas Cohen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy., Los Angeles, CA 90089-0191, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr. E., Los Angeles, CA 90095, USA
| | - Kyle Xia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Katelynn Tran
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Brandon Ann
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Dolly Chowdhury
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St., Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano, MI 20139, Italy.
| |
Collapse
|
11
|
Zahedipour F, Hosseini SA, Henney NC, Barreto GE, Sahebkar A. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen Res 2022; 17:1675-1684. [PMID: 35017414 PMCID: PMC8820712 DOI: 10.4103/1673-5374.332128] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Inflammatory processes and proinflammatory cytokines have a key role in the cellular processes of neurodegenerative diseases and are linked to the pathogenesis of functional and mental health disorders. Tumor necrosis factor alpha has been reported to play a major role in the central nervous system in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis and many other neurodegenerative diseases. Therefore, a potent proinflammatory/proapoptotic tumor necrosis factor alpha could be a strong candidate for targeted therapy. Plant derivatives have now become promising candidates as therapeutic agents because of their antioxidant and chemical characteristics, and anti-inflammatory features. Recently, phytochemicals including flavonoids, terpenoids, alkaloids, and lignans have generated interest as tumor necrosis factor alpha inhibitor candidates for a number of diseases involving inflammation within the nervous system. In this review, we discuss how phytochemicals as tumor necrosis factor alpha inhibitors are a therapeutic strategy targeting neurodegeneration.
Collapse
Affiliation(s)
- Fatemeh Zahedipour
- Department of Medical Biotechnology, School of Medicine; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology, School of Medicine; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neil C Henney
- Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - George E Barreto
- Department of Biological Sciences; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Cytokines and Transgenic Matrix in Autoimmune Diseases: Similarities and Differences. Biomedicines 2020; 8:biomedicines8120559. [PMID: 33271810 PMCID: PMC7761121 DOI: 10.3390/biomedicines8120559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases are increasingly recognized as disease entities in which dysregulated cytokines contribute to tissue-specific inflammation. In organ-specific and multiorgan autoimmune diseases, the cytokine profiles show some similarities. Despite these similarities, the cytokines have different roles in the pathogenesis of different diseases. Altered levels or action of cytokines can result from changes in cell signaling. This article describes alterations in the JAK-STAT, TGF-β and NF-κB signaling pathways, which are involved in the pathogenesis of multiple sclerosis and systemic lupus erythematosus. There is a special focus on T cells in preclinical models and in patients afflicted with these chronic inflammatory diseases.
Collapse
|
13
|
Ellman DG, Lund MC, Nissen M, Nielsen PS, Sørensen C, Lester EB, Thougaard E, Jørgensen LH, Nedospasov SA, Andersen DC, Stubbe J, Brambilla R, Degn M, Lambertsen KL. Conditional Ablation of Myeloid TNF Improves Functional Outcome and Decreases Lesion Size after Spinal Cord Injury in Mice. Cells 2020; 9:E2407. [PMID: 33153044 PMCID: PMC7692197 DOI: 10.3390/cells9112407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition consisting of an instant primary mechanical injury followed by a secondary injury that progresses for weeks to months. The cytokine tumor necrosis factor (TNF) plays an important role in the pathophysiology of SCI. We investigated the effect of myeloid TNF ablation (peripheral myeloid cells (macrophages and neutrophils) and microglia) versus central myeloid TNF ablation (microglia) in a SCI contusion model. We show that TNF ablation in macrophages and neutrophils leads to reduced lesion volume and improved functional outcome after SCI. In contrast, TNF ablation in microglia only or TNF deficiency in all cells had no effect. TNF levels tended to be decreased 3 h post-SCI in mice with peripheral myeloid TNF ablation and was significantly decreased 3 days after SCI. Leukocyte and microglia populations and all other cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and IFNγ) and chemokines (CCL2, CCL5, and CXCL1) investigated, in addition to TNFR1 and TNFR2, were comparable between genotypes. Analysis of post-SCI signaling cascades demonstrated that the MAPK kinase SAPK/JNK decreased and neuronal Bcl-XL levels increased post-SCI in mice with ablation of TNF in peripheral myeloid cells. These findings demonstrate that peripheral myeloid cell-derived TNF is pathogenic in SCI.
Collapse
Affiliation(s)
- Ditte Gry Ellman
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (D.G.E.); (M.C.L.); (M.N.); (P.S.N.); (C.S.); (E.B.L.); (E.T.); (R.B.)
| | - Minna Christiansen Lund
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (D.G.E.); (M.C.L.); (M.N.); (P.S.N.); (C.S.); (E.B.L.); (E.T.); (R.B.)
| | - Maiken Nissen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (D.G.E.); (M.C.L.); (M.N.); (P.S.N.); (C.S.); (E.B.L.); (E.T.); (R.B.)
| | - Pernille Sveistrup Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (D.G.E.); (M.C.L.); (M.N.); (P.S.N.); (C.S.); (E.B.L.); (E.T.); (R.B.)
| | - Charlotte Sørensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (D.G.E.); (M.C.L.); (M.N.); (P.S.N.); (C.S.); (E.B.L.); (E.T.); (R.B.)
| | - Emilie Boye Lester
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (D.G.E.); (M.C.L.); (M.N.); (P.S.N.); (C.S.); (E.B.L.); (E.T.); (R.B.)
| | - Estrid Thougaard
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (D.G.E.); (M.C.L.); (M.N.); (P.S.N.); (C.S.); (E.B.L.); (E.T.); (R.B.)
| | - Louise Helskov Jørgensen
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; (L.H.J.); (D.C.A.)
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences and Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Ditte Caroline Andersen
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; (L.H.J.); (D.C.A.)
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark
- Danish Center for Regenerative Medicine, Odense University Hospital, 5000 Odense, Denmark
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Roberta Brambilla
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (D.G.E.); (M.C.L.); (M.N.); (P.S.N.); (C.S.); (E.B.L.); (E.T.); (R.B.)
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matilda Degn
- Pediatric Oncology Laboratory, Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (D.G.E.); (M.C.L.); (M.N.); (P.S.N.); (C.S.); (E.B.L.); (E.T.); (R.B.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIGDE—Brain Research—Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
14
|
Wang Y, Meagher RB, Ambati S, Ma P, Phillips BG. Patients with obstructive sleep apnea have suppressed levels of soluble cytokine receptors involved in neurodegenerative disease, but normal levels with airways therapy. Sleep Breath 2020; 25:1641-1653. [PMID: 33037528 PMCID: PMC8376707 DOI: 10.1007/s11325-020-02205-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/13/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Purpose Obstructive sleep apnea (OSA) results in systemic intermittent hypoxia. By one model, hypoxic stress signaling in OSA patients alters the levels of inflammatory soluble cytokines TNF and IL6, damages the blood brain barrier, and activates microglial targeting of neuronal cell death to increase the risk of neurodegenerative disorders and other diseases. However, it is not yet clear if OSA significantly alters the levels of the soluble isoforms of TNF receptors TNFR1 and TNFR2 and IL6 receptor (IL6R) and co-receptor gp130, which have the potential to modulate TNF and IL6 signaling. Methods Picogram per milliliter levels of the soluble isoforms of these four cytokine receptors were estimated in OSA patients, in OSA patients receiving airways therapy, and in healthy control subjects. Triplicate samples were examined using Bio-Plex fluorescent bead microfluidic technology. The statistical significance of cytokine data was estimated using the nonparametric Wilcoxon rank-sum test. The clustering of these high-dimensional data was visualized using t-distributed stochastic neighbor embedding (t-SNE). Results OSA patients had significant twofold to sevenfold reductions in the soluble serum isoforms of all four cytokine receptors, gp130, IL6R, TNFR1, and TNFR2, as compared with control individuals (p = 1.8 × 10−13 to 4 × 10−8). Relative to untreated OSA patients, airways therapy of OSA patients had significantly higher levels of gp130 (p = 2.8 × 10−13), IL6R (p = 1.1 × 10−9), TNFR1 (p = 2.5 × 10−10), and TNFR2 (p = 5.7 × 10−9), levels indistinguishable from controls (p = 0.29 to 0.95). The data for most airway-treated patients clustered with healthy controls, but the data for a few airway-treated patients clustered with apneic patients. Conclusions Patients with OSA have aberrantly low levels of four soluble cytokine receptors associated with neurodegenerative disease, gp130, IL6R, TNFR1, and TNFR2. Most OSA patients receiving airways therapy have receptor levels indistinguishable from healthy controls, suggesting a chronic intermittent hypoxia may be one of the factors contributing to low receptor levels in untreated OSA patients. Electronic supplementary material The online version of this article (10.1007/s11325-020-02205-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Wang
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, 30602, USA.,Clinical and Translational Research Unit, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
15
|
Association of Tumor Necrosis Factor Receptor 1 Promoter Gene Polymorphisms (-580 A/G and -609 G/T) and TNFR1 Serum Levels with the Susceptibility to Gastric Precancerous Lesions and Gastric Cancer Related to H. pylori Infection in a Moroccan Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2451854. [PMID: 33029495 PMCID: PMC7532377 DOI: 10.1155/2020/2451854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/11/2023]
Abstract
Chronic inflammation due to H. pylori infection is the risk factor of gastric cancer (GC). Through its receptor (TNFR1), TNF-α plays a fundamental role in inflammatory, infectious, and tumor processes. Dysregulation of TNFR1 gene expression could impact many biological processes that can lead to cancer. This study is aimed at evaluating the association of TNFR1 promoter gene polymorphisms (-580 A/G and -609 G/T) and TNFR1 serum levels with GC and precancerous lesion susceptibility. Patients suffering from gastric lesions (65 chronic gastritis, 50 precancerous lesions, and 40 GC) related to H. pylori infection and 63 healthy controls (HC) were involved in this study. Individuals are genotyped by TNFR1 gene promoter sequencing, and TNFR1 serum levels were measured by the ELISA quantitative method. Concerning TNFR1 -609 G/T locus, we noticed that the T allele was associated with an attenuated susceptibility to GC (OR = 0.4; p value = 0.02). At the genotypic level and under the recessive model, the TNFR1 -609 TT genotype showed a decreased risk of GC (OR = 0.3, p value = 0.03) compared to the combined (GG/GT) genotypes. TNFR1 serum levels have been increased together with gastric lesion severity (p value < 0.05). The TNFR1 -609 TT genotype seemed linked to a low level of sTNFR1 compared to GT and GG genotypes (p value = 0.07). Concerning TNFR1 -580 A/G locus, no significant relation was noticed between this polymorphism and GC susceptibility, as well as with the TNFR1 serum level. Our results suggest that the TNFR1 -609 T allele appears to have a protective effect against GC. High levels of TNFR1 serum levels seemed to be associated with the aggressiveness of gastric lesions. Therefore, our results suggest that TNFR1 -609 T/G polymorphism and the TNFR1 serum levels may be related to GC susceptibility.
Collapse
|
16
|
Guarnieri G, Sarchielli E, Comeglio P, Herrera-Puerta E, Piaceri I, Nacmias B, Benelli M, Kelsey G, Maggi M, Gallina P, Vannelli GB, Morelli A. Tumor Necrosis Factor α Influences Phenotypic Plasticity and Promotes Epigenetic Changes in Human Basal Forebrain Cholinergic Neuroblasts. Int J Mol Sci 2020; 21:E6128. [PMID: 32854421 PMCID: PMC7504606 DOI: 10.3390/ijms21176128] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
TNFα is the main proinflammatory cytokine implicated in the pathogenesis of neurodegenerative disorders, but it also modulates physiological functions in both the developing and adult brain. In this study, we investigated a potential direct role of TNFα in determining phenotypic changes of a recently established cellular model of human basal forebrain cholinergic neuroblasts isolated from the nucleus basalis of Meynert (hfNBMs). Exposing hfNBMs to TNFα reduced the expression of immature markers, such as nestin and β-tubulin III, and inhibited primary cilium formation. On the contrary, TNFα increased the expression of TNFα receptor TNFR2 and the mature neuron marker MAP2, also promoting neurite elongation. Moreover, TNFα affected nerve growth factor receptor expression. We also found that TNFα induced the expression of DNA-methylation enzymes and, accordingly, downregulated genes involved in neuronal development through epigenetic mechanisms, as demonstrated by methylome analysis. In summary, TNFα showed a dual role on hfNBMs phenotypic plasticity, exerting a negative influence on neurogenesis despite a positive effect on differentiation, through mechanisms that remain to be elucidated. Our results help to clarify the complexity of TNFα effects in human neurons and suggest that manipulation of TNFα signaling could provide a potential therapeutic approach against neurodegenerative disorders.
Collapse
Affiliation(s)
- Giulia Guarnieri
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.S.); (G.B.V.)
| | - Erica Sarchielli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.S.); (G.B.V.)
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | | | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy; (I.P.); (B.N.)
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy; (I.P.); (B.N.)
| | - Matteo Benelli
- Bioinformatics Unit, Hospital of Prato, Azienda USL Toscana Centro, 50122 Prato, Italy;
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1TN, UK
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Pasquale Gallina
- Neurosurgical Unit, Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50134 Florence, Italy;
| | - Gabriella Barbara Vannelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.S.); (G.B.V.)
| | - Annamaria Morelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (E.S.); (G.B.V.)
| |
Collapse
|
17
|
Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020; 60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Although it has been initially synthesized for therapeutic purposes and currently FDA-approved and prescribed for obesity, attention-deficit/hyperactivity disorder, narcolepsy and depression, methamphetamine became a recreational drug that is nowadays massively manufactured illegally. Because it is a powerful and extremely addictive psychotropic agent, its abuse has turned out to become a major health problem worldwide. Importantly, the numerous effects triggered by this drug induce neurotoxicity in the brain ultimately leading to serious neurological impairments, tissue damage and neuropsychological disturbances that are reminiscent to most of the symptoms observed in Alzheimer's disease and other pathological manifestations in aging brain. In this context, there is a growing number of compelling evidence linking methamphetamine abuse with a higher probability of developing premature Alzheimer's disease and consequent neurodegeneration. This review proposes to establish a broad assessment of the effects that this drug can generate at the cellular and molecular levels in connection with the development of the age-related Alzheimer's disease. Altogether, the objective is to warn against the long-term effects that methamphetamine abuse may convey on young consumers and the increased risk of developing this devastating brain disorder at later stages of their lives, but also to discuss a more recently emerging concept suggesting a possible use of methamphetamine for treating this pathology under proper and strictly controlled conditions.
Collapse
|
18
|
Sharma B, Dabur R. Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. Curr Med Chem 2020; 27:2161-2188. [DOI: 10.2174/0929867326666181129095309] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Background:
Metabolic pathways perturbations lead to skeletal muscular atrophy in the
cachexia and sarcopenia due to increased catabolism. Pro-inflammatory cytokines induce the catabolic
pathways that impair the muscle integrity and function. Hence, this review primarily concentrates
on the effects of pro-inflammatory cytokines in regulation of skeletal muscle metabolism.
Objective:
This review will discuss the role of pro-inflammatory cytokines in skeletal muscles during
muscle wasting conditions. Moreover, the coordination among the pro-inflammatory cytokines
and their regulated molecular signaling pathways which increase the protein degradation will be
discussed.
Results:
During normal conditions, pro-inflammatory cytokines are required to balance anabolism
and catabolism and to maintain normal myogenesis process. However, during muscle wasting their
enhanced expression leads to marked destructive metabolism in the skeletal muscles. Proinflammatory
cytokines primarily exert their effects by increasing the expression of calpains and E3
ligases as well as of Nf-κB, required for protein breakdown and local inflammation. Proinflammatory
cytokines also locally suppress the IGF-1and insulin functions, hence increase the
FoxO activation and decrease the Akt function, the central point of carbohydrates lipid and protein
metabolism.
Conclusion:
Current advancements have revealed that the muscle mass loss during skeletal muscular
atrophy is multifactorial. Despite great efforts, not even a single FDA approved drug is available
in the market. It indicates the well-organized coordination among the pro-inflammatory cytokines
that need to be further understood and explored.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| | - Rajesh Dabur
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| |
Collapse
|
19
|
Praça FG, Viegas JSR, Peh HY, Garbin TN, Medina WSG, Bentley MVLB. Microemulsion co-delivering vitamin A and vitamin E as a new platform for topical treatment of acute skin inflammation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110639. [PMID: 32204073 DOI: 10.1016/j.msec.2020.110639] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 01/03/2020] [Indexed: 11/19/2022]
Abstract
In this study, we developed a water-in-oil microemulsion containing vitamin A (retinol) and vitamin E (α-tocopherol), which serves as a multifunctional nanosystem that co-delivers antioxidants and displayed additive effect against acute skin inflammation. Microemulsion (ME) was prepared by mixing a surfactant blend (Tween 80 and propylene glycol, 5:1) with isopropyl myristate and water (ratio of 50:40:10, respectively). Vitamin A (0.05% w/w concentration) and/or vitamin E (0.1% w/w concentration) were incorporated into the surfactant mixture of ME by stirring with a magnetic stirrer for 30 min. This multifunctional ME displayed physical stability, with low cytotoxicity in 3T3 cell line, as well as cellular internalization into the cytosol. In vivo treatments using ME delivering α-tocopherol reduced dermal expression of TNF-α by 1.3-fold (p < 0.01), when compared to unloaded ME treatment group. When retinol was added into the ME containing α-tocopherol, it further reduced TNF-α expression by 2-fold (p < 0.001), suggesting the additive effect of vitamin E and vitamin A in the treatment against skin inflammation. In conclusion, we successfully developed the use of water-in-oil ME to pack both vitamin E and vitamin A, and demonstrated for the first time its anti-inflammatory potential when applied topically to TPA-induced inflamed skin.
Collapse
Affiliation(s)
- Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Maria Vitoria Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
20
|
Ozgur O, Vugar Ali T, Iskender Samet D, Meside G, Lutfiye T, Servet Birgin I, Hakan AK. Pro-inflammatory cytokine and vascular adhesion molecule levels in manganese and lead-exposed workers. ACTA ACUST UNITED AC 2019. [DOI: 10.17352/2455-8591.000020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Pinyopornpanish K, Chattipakorn N, Chattipakorn SC. Lipocalin-2: Its perspectives in brain pathology and possible roles in cognition. J Neuroendocrinol 2019; 31:e12779. [PMID: 31393997 DOI: 10.1111/jne.12779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Lipocalin-2 (LCN2) has been known to play an important role in pathological conditions, specifically in response to inflammation, infection and injury to cells. Recently, several research teams have been interested in investigating its association with cognition during the progression of pathology. Previous studies have demonstrated that LCN2 is not correlated with cognitive function under normal physiological conditions, although LCN2 has been negatively associated with cognition and some neuropathologies. Increasing LCN2 production is associated with reduced cognitive performance in a rodent model. However, further studies are needed to explore the potential underlying mechanisms of LCN2 on cognitive dysfunction, as well as its clinical relevance. This review aims to summarise the evidence available from in vitro, in vivo and clinical studies concerning the possible role of LCN2 on cognitive function following the onset of pathological conditions. Any contradictory evidence is also assessed and presented.
Collapse
Affiliation(s)
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
22
|
Morris G, Walker AJ, Berk M, Maes M, Puri BK. Cell Death Pathways: a Novel Therapeutic Approach for Neuroscientists. Mol Neurobiol 2018; 55:5767-5786. [PMID: 29052145 PMCID: PMC5994217 DOI: 10.1007/s12035-017-0793-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 02/08/2023]
Abstract
In the first part, the following mechanisms involved in different forms of cell death are considered, with a view to identifying potential therapeutic targets: tumour necrosis factor receptors (TNFRs) and their engagement by tumour necrosis factor-alpha (TNF-α); poly [ADP-ribose] polymerase (PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-Jun N-terminal kinase (JNK) axis; lysosomal permeability; activation of programmed necrotic cell death; oxidative stress, caspase-3 inhibition and parthanatos; activation of inflammasomes by reactive oxygen species and the development of pyroptosis; oxidative stress, calcium dyshomeostasis and iron in the development of lysosomal-mediated necrosis and lysosomal membrane permeability; and oxidative stress, lipid peroxidation, iron dyshomeostasis and ferroptosis. In the second part, there is a consideration of the role of lethal and sub-lethal activation of these pathways in the pathogenesis and pathophysiology of neurodegenerative and neuroprogressive disorders, with particular reference to the TNF-α-TNFR signalling axis; dysregulation of ASK-1-JNK signalling; prolonged or chronic PARP-1 activation; the role of pyroptosis and chronic inflammasome activation; and the roles of lysosomal permeabilisation, necroptosis and ferroptosis. Finally, it is suggested that, in addition to targeting oxidative stress and inflammatory processes generally, neuropsychiatric disorders may respond to therapeutic targeting of TNF-α, PARP-1, the Nod-like receptor NLRP3 inflammasome and the necrosomal molecular switch receptor-interacting protein kinase-3, since their widespread activation can drive and/or exacerbate peripheral inflammation and neuroinflammation even in the absence of cell death. To this end, the use is proposed of a combination of the tetracycline derivative minocycline and N-acetylcysteine as adjunctive treatment for a range of neuropsychiatric disorders.
Collapse
Affiliation(s)
- G Morris
- , Bryn Road Seaside 87, Llanelli, Wales, , SA15 2LW, UK
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - A J Walker
- School of Medicine, Deakin University, Geelong, 3220, Australia
| | - M Berk
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - M Maes
- School of Medicine, Deakin University, Geelong, 3220, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - B K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0HS, UK.
| |
Collapse
|
23
|
Paulino LRFM, Cunha EV, Barbalho Silva AW, Souza GB, Lopes EPF, Donato MAM, Peixoto CA, Matos-Brito BG, van den Hurk R, Silva JRV. Effects of tumour necrosis factor-alpha and interleukin-1 beta on in vitro development of bovine secondary follicles. Reprod Domest Anim 2018; 53:997-1005. [DOI: 10.1111/rda.13199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/30/2017] [Accepted: 04/02/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ellen V. Cunha
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral Brazil
| | | | - Glaucinete B. Souza
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral Brazil
| | - Ewerton P. F. Lopes
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral Brazil
| | | | | | - Bruno G. Matos-Brito
- Biotechnology Nucleus of Sobral - NUBIS; Federal University of Ceara; Sobral Brazil
| | - Robert van den Hurk
- Department of Pathobiology; Faculty of Veterinary; Utrecht University; Utrecht The Netherlands
| | | |
Collapse
|
24
|
Pegoretti V, Baron W, Laman JD, Eisel ULM. Selective Modulation of TNF-TNFRs Signaling: Insights for Multiple Sclerosis Treatment. Front Immunol 2018; 9:925. [PMID: 29760711 PMCID: PMC5936749 DOI: 10.3389/fimmu.2018.00925] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Autoimmunity develops when self-tolerance mechanisms are failing to protect healthy tissue. A sustained reaction to self is generated, which includes the generation of effector cells and molecules that destroy tissues. A way to restore this intrinsic tolerance is through immune modulation that aims at refurbishing this immunologically naïve or unresponsive state, thereby decreasing the aberrant immune reaction taking place. One major cytokine has been shown to play a pivotal role in several autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS): tumor necrosis factor alpha (TNFα) modulates the induction and maintenance of an inflammatory process and it comes in two variants, soluble TNF (solTNF) and transmembrane bound TNF (tmTNF). tmTNF signals via TNFR1 and TNFR2, whereas solTNF signals mainly via TNFR1. TNFR1 is widely expressed and promotes mainly inflammation and apoptosis. Conversely, TNFR2 is restricted mainly to immune and endothelial cells and it is known to activate the pro-survival PI3K-Akt/PKB signaling pathway and to sustain regulatory T cells function. Anti-TNFα therapies are successfully used to treat diseases such as RA, colitis, and psoriasis. However, clinical studies with a non-selective inhibitor of TNFα in MS patients had to be halted due to exacerbation of clinical symptoms. One possible explanation for this failure is the non-selectivity of the treatment, which avoids TNFR2 stimulation and its immune and tissue protective properties. Thus, a receptor-selective modulation of TNFα signal pathways provides a novel therapeutic concept that might lead to new insights in MS pathology with major implications for its effective treatment.
Collapse
Affiliation(s)
- Valentina Pegoretti
- Department of Molecular Neurobiology (GELIFES), University of Groningen, Groningen, Netherlands
| | - Wia Baron
- Department of Cell Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology (GELIFES), University of Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
Fischer R, Marsal J, Guttà C, Eisler SA, Peters N, Bethea JR, Pfizenmaier K, Kontermann RE. Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2. Sci Rep 2017; 7:6607. [PMID: 28747780 PMCID: PMC5529482 DOI: 10.1038/s41598-017-06993-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) is known to mediate immune suppression and tissue regeneration. Interestingly, the transmembrane form of tumor necrosis factor (tmTNF) is necessary to robustly activate TNFR2. To characterize the stoichiometry and composition of tmTNF during TNFR2 activation, we constructed differently oligomerized single chain TNF ligands (scTNF) comprised of three TNF homology domain (THD) protomers that mimic tmTNF. Using a variety of cellular and in vivo assays, we can show that higher oligomerization of the scTNF trimers results in more efficient TNF/TNFR2 clustering and subsequent signal transduction. Importantly, the three-dimensional orientation of the scTNF trimers impacts the bioactivity of the oligomerized scTNF ligands. Our data unravel the organization of tmTNF-mimetic scTNF ligands capable of robustly activating TNFR2 and introduce novel TNFR2 agonists that hold promise as therapeutics to treat a variety of diseases.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany. .,Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA, 19104, USA.
| | - Jessica Marsal
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology, Nobelstraße 15, University of Stuttgart, Stuttgart, Germany
| | - Nathalie Peters
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - John R Bethea
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
26
|
Akash MSH, Rehman K, Liaqat A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J Cell Biochem 2017; 119:105-110. [PMID: 28569437 DOI: 10.1002/jcb.26174] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022]
Abstract
Pathogenesis of type 2 diabetes mellitus (T2DM) and development of insulin resistance are characterized by multi-stimuli factors notably glucolipotoxicity, generation of reactive oxygen species (ROS), epigenetic factors, activation of various transcriptional mediated pathways along with the augmented levels of various pro-inflammatory cytokines. Among the various pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) is one the most important pro-inflammatory mediator that is critically involved in the development of insulin resistance and pathogenesis of T2DM. TNF-α is mainly produced in adipocytes and/or peripheral tissues, and induces tissue-specific inflammation through the involvement of generation of ROS and activation of various transcriptional mediated pathways. The raised level of TNF-α induces insulin resistance in adipocytes and peripheral tissues by impairing the insulin signaling through serine phosphorylation that leads to the development of T2DM. Anti-TNF-α treatment strategies have been developed to reduce the incidence of insulin resistance and development of T2DM. In this article, we have briefly described how TNF-α plays crucial role to induce insulin resistance and pathogenesis of T2DM. To block the inflammatory responses by blocking TNF-α and TNF-α signaling may be an effective strategy for the treatment of insulin resistance and T2DM. J. Cell. Biochem. 119: 105-110, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Kanwal Rehman
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Aamira Liaqat
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan.,Department of Biochemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
27
|
Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration. Proc Natl Acad Sci U S A 2016; 113:12304-12309. [PMID: 27791020 DOI: 10.1073/pnas.1605195113] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the recognized role of tumor necrosis factor (TNF) in inflammation and neuronal degeneration, anti-TNF therapeutics failed to treat neurodegenerative diseases. Animal disease models had revealed the antithetic effects of the two TNF receptors (TNFR) in the central nervous system, whereby TNFR1 has been associated with inflammatory degeneration and TNFR2 with neuroprotection. We here show the therapeutic potential of selective inhibition of TNFR1 and activation of TNFR2 by ATROSAB, a TNFR1-selective antagonistic antibody, and EHD2-scTNFR2, an agonistic TNFR2-selective TNF, respectively, in a mouse model of NMDA-induced acute neurodegeneration. Coadministration of either ATROSAB or EHD2-scTNFR2 into the magnocellular nucleus basalis significantly protected cholinergic neurons and their cortical projections against cell death, and reverted the neurodegeneration-associated memory impairment in a passive avoidance paradigm. Simultaneous blocking of TNFR1 and TNFR2 signaling, however, abrogated the therapeutic effect. Our results uncover an essential role of TNFR2 in neuroprotection. Accordingly, the therapeutic activity of ATROSAB is mediated by shifting the balance of the antithetic activity of endogenous TNF toward TNFR2, which appears essential for neuroprotection. Our data also explain earlier results showing that complete blocking of TNF activity by anti-TNF drugs was detrimental rather than protective and argue for the use of next-generation TNFR-selective TNF therapeutics as an effective approach in treating neurodegenerative diseases.
Collapse
|