1
|
Zeng P, Wang H, Zhang P, Leung SSY. Unearthing naturally-occurring cyclic antibacterial peptides and their structural optimization strategies. Biotechnol Adv 2024; 73:108371. [PMID: 38704105 DOI: 10.1016/j.biotechadv.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural products with antibacterial activity are highly desired globally to combat against multidrug-resistant (MDR) bacteria. Antibacterial peptide (ABP), especially cyclic ABP (CABP), is one of the abundant classes. Most of them were isolated from microbes, demonstrating excellent bactericidal effects. With the improved proteolytic stability, CABPs are normally considered to have better druggability than linear peptides. However, most clinically-used CABP-based antibiotics, such as colistin, also face the challenges of drug resistance soon after they reached the market, urgently requiring the development of next-generation succedaneums. We present here a detail review on the novel naturally-occurring CABPs discovered in the past decade and some of them are under clinical trials, exhibiting anticipated application potential. According to their chemical structures, they were broadly classified into five groups, including (i) lactam/lactone-based CABPs, (ii) cyclic lipopeptides, (iii) glycopeptides, (iv) cyclic sulfur-rich peptides and (v) multiple-modified CABPs. Their chemical structures, antibacterial spectrums and proposed mechanisms are discussed. Moreover, engineered analogs of these novel CABPs are also summarized to preliminarily analyze their structure-activity relationship. This review aims to provide a global perspective on research and development of novel CABPs to highlight the effectiveness of derivatives design in identifying promising antibacterial agents. Further research efforts in this area are believed to play important roles in fighting against the multidrug-resistance crisis.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Honglan Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
2
|
Lacey HJ, Chen R, Vuong D, Fisher MF, Lacey E, Rutledge PJ, Piggott AM. Suertides A-C: selective antibacterial cyclic hexapeptides from Amycolatopsis sp. MST-135876v3. J Antibiot (Tokyo) 2022; 75:483-490. [PMID: 35882958 PMCID: PMC9359914 DOI: 10.1038/s41429-022-00544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Amycolatopsis sp. MST-135876 was isolated from soil collected from the riverbank of El Pont de Suert, Catalonia, Spain. Cultivation of MST-135876 on a range of media led to the discovery of a previously unreported dichlorinated cyclic hexapeptide, suertide A (d-Ser, 5-Cl-d-Trp, 6-Cl-d-Trp, l-Ile, d-Val, d-Glu), featuring an unprecedented pair of adjacent 5/6-chlorotryptophan residues. Supplementing the growth medium with KBr resulted in production of the mono- and dibrominated analogues suertides B and C, respectively. Suertides A–C displayed selective activity against Bacillus subtilis (MIC 1.6 µg ml−1) and Staphylococcus aureus (MIC 3.1, 6.3, and 12.5 µg ml−1, respectively), while suertides A and B showed appreciable activity against methicillin-resistant S. aureus (MIC 1.6 and 6.3 µg ml−1, respectively).
Collapse
Affiliation(s)
- Heather J Lacey
- Microbial Screening Technologies, Sydney, NSW, 2164, Australia. .,School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Rachel Chen
- Microbial Screening Technologies, Sydney, NSW, 2164, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Sydney, NSW, 2164, Australia
| | - Mark F Fisher
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Sydney, NSW, 2164, Australia.,School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
3
|
Studies on the secondary metabolism of Rosellinia and Dematophora strains (Xylariaceae) from Iran. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractThe xylariaceous genus Dematophora has recently been resurrected and segregated from Rosellinia based on a molecular phylogeny and morphological characters. This was an important taxonomic change because Dematophora in the current sense contains several important pathogens, while Rosellinia is limited to mainly saprotrophic species that have an endophytic stage in their life cycle and may even have beneficial effects on the host plants. During our ongoing work on the functional biodiversity of the Xylariales, we have encountered new strains of rosellinoid Xylariaceae from Iran and have studied their mycelial cultures for secondary metabolites in an attempt to establish further chemotaxonomic affinities. In the process, we isolated and identified 13 compounds, of which rosellisteroid (1), the cichorine derivative 2, and the alkaloid 3 are new. Out of these, nine were tested for their antimicrobial affinities with cytochalasin E (6) exhibiting weak activity against Schizosaccharomyces pombe. The cytotoxicity of three cytochalasin derivatives was examined and their effects on the F-actin cytoskeletal organization studied by fluorescence microscopy using fluorescent phalloidin. Cytochalasin E (6) and Δ6,12-cytochalasin E (7) showed strong and irreversible action on actin, while cytochalasin K (8) exhibited weaker, reversible effects.
Collapse
|
4
|
Babadi ZK, Garcia R, Ebrahimipour GH, Risdian C, Kämpfer P, Jarek M, Müller R, Wink J. Corallococcus soli sp. Nov., a Soil Myxobacterium Isolated from Subtropical Climate, Chalus County, Iran, and Its Potential to Produce Secondary Metabolites. Microorganisms 2022; 10:microorganisms10071262. [PMID: 35888982 PMCID: PMC9323933 DOI: 10.3390/microorganisms10071262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
A novel myxobacterial strain ZKHCc1 1396T was isolated in 2017 from a soil sample collected along Chalus Road connecting Tehran and Mazandaran, Iran. It was a Gram-negative, rod-shaped bacterial strain that displayed the general features of Corallococcus, including gliding and fruiting body formation on agar and microbial lytic activity. Strain ZKHCc1 1396T was characterized as an aerobic, mesophilic, and chemoheterotrophic bacterium resistant to many antibiotics. The major cellular fatty acids were branched-chain iso-C17:0 2-OH, iso-C15:0, iso-C17:1, and iso-C17:0. The strain showed the highest 16S rRNA gene sequence similarity to Corallococcusterminator CA054AT (99.67%) and C. praedator CA031BT (99.17%), and formed a novel branch both in the 16S rRNA gene sequence and phylogenomic tree. The genome size was 9,437,609 bp, with a DNA G + C content of 69.8 mol%. The strain had an average nucleotide identity (ANI) value lower than the species cut-off (95%), and with the digital DNA–DNA hybridization (dDDH) below the 70% threshold compared to the closest type strains. Secondary metabolite and biosynthetic gene cluster analyses revealed the strain’s potential to produce novel compounds. Based on polyphasic taxonomic characterization, we propose that strain ZKHCc1 1396T represents a novel species, Corallococcus soli sp. nov. (NCCB 100659T = CIP 111634T).
Collapse
Affiliation(s)
- Zahra Khosravi Babadi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University GC, Tehran 1983969411, Iran;
- Microbial Strain Collection, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
- Correspondence: (Z.K.B.); (J.W.); Tel.: +98-021-29905901 (Z.K.B.); +49-531-61814223 (J.W.); Fax: +98-021-22431664 (Z.K.B.); +49-531-61819499 (J.W.)
| | - Ronald Garcia
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (R.G.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Gholam Hossein Ebrahimipour
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University GC, Tehran 1983969411, Iran;
| | - Chandra Risdian
- Microbial Strain Collection, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
- Research Unit for Clean Technology, National Research and Innovation Agency (BRIN), Bandung 40135, Indonesia
| | - Peter Kämpfer
- Department of Applied Microbiology, Justus Liebig University Gießen, 35392 Gießen, Germany;
| | - Michael Jarek
- Genome Analytics, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany; (R.G.); (R.M.)
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Joachim Wink
- Microbial Strain Collection, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
- Correspondence: (Z.K.B.); (J.W.); Tel.: +98-021-29905901 (Z.K.B.); +49-531-61814223 (J.W.); Fax: +98-021-22431664 (Z.K.B.); +49-531-61819499 (J.W.)
| |
Collapse
|
5
|
Pira H, Risdian C, Müsken M, Schupp PJ, Wink J. Photobacterium arenosum WH24, Isolated from the Gill of Pacific Oyster Crassostrea gigas from the North Sea of Germany: Co-cultivation and Prediction of Virulence. Curr Microbiol 2022; 79:219. [PMID: 35704100 PMCID: PMC9200695 DOI: 10.1007/s00284-022-02909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Cream colored bacteria from marine agar, strain WH24, WH77, and WH80 were isolated from the gill of the Crassostrea gigas a Pacific oyster with a filter-feeding habit that compels accompanying bacteria to demonstrate a high metabolic capacity, has proven able to colonize locations with changing circumstances. Based on the 16S rRNA gene sequence, all strains had high similarity to Photobacterium arenosum CAU 1568T (99.72%). This study involved phenotypic traits, phylogenetic analysis, antimicrobial activity evaluation, genome mining, Co-cultivation experiments, and chemical studies of crude extracts using HPLC and LC-HRESIMS. Photobacterium arenosum WH24 and Zooshikella harenae WH53Twere co-cultivated for 3 days in a rotary shaker at 160 rpm at 30 °C, and LC-MS monitored the chemical profiles of the co-cultures on the third day. The UV chromatograms of the extracts of the co-cultivation experiments show that Zooshikella harenae WH53T could be inhibited by strain WH24. The high virulence of Photobacterium arenosum WH24 was confirmed by genome analysis. Gene groups with high virulence potential were detected: tssA (ImpA), tssB (ImpB/vipA), tssC (ImpC/vipB), tssE, tssF (ImpG/vasA), tssG (ImpH/vasB), tssM (IcmF/vasK), tssJ (vasD), tssK (ImpJ/vasE), tssL (ImpK/vasF), clpV (tssH), vasH, hcp, lapP, plpD, and tpsB family.
Collapse
Affiliation(s)
- Hani Pira
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany
| | - Chandra Risdian
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany
- Research Unit for Clean Technology, National Research and Innovation Agency (BRIN), Bandung, 40135, Indonesia
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment, University Oldenburg, Oldenburg, Germany
| | - Joachim Wink
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124, Brunswick, Germany.
| |
Collapse
|
6
|
Complete Genome Sequence of Amycolatopsis sp. CA-230715, Encoding a 35-Module Type I Polyketide Synthase. Microbiol Resour Announc 2021; 10:e0080521. [PMID: 34553997 PMCID: PMC8459652 DOI: 10.1128/mra.00805-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the sequencing, assembly, and annotation of the genome of Amycolatopsis sp. CA-230715, a potentially interesting producer of natural products. The genome of CA-230715 was sequenced using PacBio, Illumina, and Nanopore technologies. It consists of a circular 10,363,158-nucleotide (nt) chromosome and a circular 12,080-nt plasmid.
Collapse
|