1
|
Cui W, Wang Y, Zhang L, Liu F, Duan G, Chen S, Long J, Jin Y, Yang H. Recent advances in the use of resveratrol against Staphylococcus aureus infections (Review). MEDICINE INTERNATIONAL 2024; 4:67. [PMID: 39268247 PMCID: PMC11391518 DOI: 10.3892/mi.2024.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
As a notorious bacterial pathogen, Staphylococcus aureus (S. aureus) can readily induce infections in the community and hospital, causing significant morbidity and mortality. With the extensive rise of multiple resistance, conventional antibiotic therapy has rapidly become ineffective for related infections. Resveratrol is a naturally occurring polyphenolic substance that has been demonstrated to have effective antimicrobial activity against S. aureus. Resveratrol at sub-inhibitory doses can suppress the expression of virulence factors, contributing to attenuated biofilm formation, interference with quorum sensing and the inhibition of the production of toxins. As a promising efflux pump inhibitor, resveratrol enhances antibiotic susceptibility to a certain extent. In conjunction with conventional antibiotics, resveratrol displays unique synergistic effects with norfloxacin and aminoglycoside on S. aureus, yet antagonizes the lethal effects of daptomycin, oxacillin, moxifloxacin and levofloxacin. Nevertheless, given the low oral bioavailability of resveratrol, advanced formulations need to be developed to delay the rapid metabolism conversion to low or inactive conjugates. The present review discusses the antibacterial properties of resveratrol against S. aureus, in an aim to provide in-depth insight for researchers to address the challenges of antimicrobial resistance.
Collapse
Affiliation(s)
- Wenjing Cui
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou, Henan 450016, P.R. China
| | - Li Zhang
- Xinyang Center for Disease Control and Prevention, Xinyang, Henan 464000, P.R. China
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
2
|
Hamamoto H. Silkworm model of bacterial infection facilitates the identification of lysocin E, a potent, ultra-rapid bactericidal antibiotic. J Antibiot (Tokyo) 2024; 77:477-485. [PMID: 38773231 DOI: 10.1038/s41429-024-00739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
The development of novel antimicrobial agents is required to solve the problem of antimicrobial resistance. We established a quantitative method for evaluating the therapeutic efficacy of antimicrobial agents in a silkworm bacterial infection model. Pharmacokinetic factors are present in the silkworm as well as in mice, and evaluating the therapeutic efficacy of antimicrobial agents is possible in a silkworm infection model, comparable to that in a mammalian model. This silkworm model was used to screen for novel antimicrobial agents with therapeutic efficacy as an indicator. As a result, a new antibiotic, lysocin E, was discovered. Lysocin E has a completely different mechanism of action from existing antimicrobial agents, and its potent bactericidal activity leads to remarkable therapeutic efficacy in a mouse model. In this review, I describe the features of the silkworm model that have contributed to the discovery of lysocin E and its mechanisms of action.
Collapse
Affiliation(s)
- Hiroshi Hamamoto
- Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
3
|
Ravera S, Tancreda G, Vezzulli L, Schito AM, Panfoli I. Cirsiliol and Quercetin Inhibit ATP Synthesis and Decrease the Energy Balance in Methicillin-Resistant Staphylococcus aureus (MRSA) and Methicillin-Resistant Staphylococcus epidermidis (MRSE) Strains Isolated from Patients. Molecules 2023; 28:6183. [PMID: 37687012 PMCID: PMC10488605 DOI: 10.3390/molecules28176183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/19/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Polyphenols have attracted attention in the fight against antibiotic-resistant bacteria, as they show antibacterial action. Considering that polyphenols inhibit F1Fo-ATP synthase (ATP synthase) and that bacteria need a constant energy production to maintain their homeostasis, we evaluated the effect of two flavones, cirsiliol (tri-hy-droxy-6,7-dimethoxyflavone) and quercetin (3,3,4,5,7-pentahydroxyflavone), on energy production and intracellular ATP content in a methicillin-resistant Staphylococcus aureus (MRSA) strain and a methicillin-resistant Staphylococcus epidermidis (MRSE) strain isolated from patients, comparing the results to those obtained by treating the bacteria with oligomycin, a specific ATP synthase Fo moiety inhibitor. Real-time quantitative ATP synthesis and total ATP content of permeabilized Gram-positive bacteria were assayed by luminometry. The results showed that cirsiliol and quercetin inhibited ATP synthase and decreased the intracellular ATP levels in both strains, although the effect was higher in MRSE. In addition, while cirsiliol and quercetin acted immediately after the treatment, oligomycin inhibited ATP synthesis only after 30 min of incubation, suggesting that the different responses may depend on the different permeability of the bacterial wall to the three molecules. Thus, cirsiliol and quercetin could be considered potential additions to antibiotics due to their ability to target ATP synthase, against which bacteria cannot develop resistance.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.)
| | - Gabriele Tancreda
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy; (S.R.)
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
4
|
Delbrouck JA, Desgagné M, Comeau C, Bouarab K, Malouin F, Boudreault PL. The Therapeutic Value of Solanum Steroidal (Glyco)Alkaloids: A 10-Year Comprehensive Review. Molecules 2023; 28:4957. [PMID: 37446619 DOI: 10.3390/molecules28134957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.
Collapse
Affiliation(s)
- Julien A Delbrouck
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Christian Comeau
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - François Malouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
5
|
Lee BS, Singh S, Pethe K. Inhibiting respiration as a novel antibiotic strategy. Curr Opin Microbiol 2023; 74:102327. [PMID: 37235914 DOI: 10.1016/j.mib.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The approval of the first-in-class antibacterial bedaquiline for tuberculosis marks a breakthrough in antituberculosis drug development. The drug inhibits mycobacterial respiration and represents the validation of a wholly different metabolic process as a druggable target space. In this review, we discuss the advances in the development of mycobacterial respiratory inhibitors, as well as the potential of applying this strategy to other pathogens. The non-fermentative nature of mycobacteria explains their vulnerability to respiration inhibition, and we caution that this strategy may not be equally effective in other organisms. Conversely, we also showcase fundamental studies that reveal ancillary functions of the respiratory pathway, which are crucial to some pathogens' virulence, drug susceptibility and fitness, introducing another perspective of targeting bacterial respiration as an antibiotic strategy.
Collapse
Affiliation(s)
- Bei Shi Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| | - Samsher Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; National Centre for Infectious Diseases, Singapore 308442, Singapore.
| |
Collapse
|
6
|
Mackieh R, Al-Bakkar N, Kfoury M, Roufayel R, Sabatier JM, Fajloun Z. Inhibitors of ATP Synthase as New Antibacterial Candidates. Antibiotics (Basel) 2023; 12:antibiotics12040650. [PMID: 37107012 PMCID: PMC10135114 DOI: 10.3390/antibiotics12040650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
ATP, the power of all cellular functions, is constantly used and produced by cells. The enzyme called ATP synthase is the energy factory in all cells, which produces ATP by adding inorganic phosphate (Pi) to ADP. It is found in the inner, thylakoid and plasma membranes of mitochondria, chloroplasts and bacteria, respectively. Bacterial ATP synthases have been the subject of multiple studies for decades, since they can be genetically manipulated. With the emergence of antibiotic resistance, many combinations of antibiotics with other compounds that enhance the effect of these antibiotics have been proposed as approaches to limit the spread of antibiotic-resistant bacteria. ATP synthase inhibitors, such as resveratrol, venturicidin A, bedaquiline, tomatidine, piceatannol, oligomycin A and N,N-dicyclohexylcarbodiimide were the starting point of these combinations. However, each of these inhibitors target ATP synthase differently, and their co-administration with antibiotics increases the susceptibility of pathogenic bacteria. After a brief description of the structure and function of ATP synthase, we aim in this review to highlight therapeutic applications of the major bacterial ATP synthase inhibitors, including animal’s venoms, and to emphasize their importance in decreasing the activity of this enzyme and subsequently eradicating resistant bacteria as ATP synthase is their source of energy.
Collapse
|
7
|
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Int J Mol Sci 2023; 24:ijms24065417. [PMID: 36982498 PMCID: PMC10049701 DOI: 10.3390/ijms24065417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells.
Collapse
|
8
|
Wan Y, Wang X, Yang L, Li Q, Zheng X, Bai T, Wang X. Antibacterial Activity of Juglone Revealed in a Wound Model of Staphylococcus aureus Infection. Int J Mol Sci 2023; 24:ijms24043931. [PMID: 36835350 PMCID: PMC9963570 DOI: 10.3390/ijms24043931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
A serious problem currently facing the field of wound healing is bacterial infection, especially Staphylococcus aureus (S. aureus) infection. Although the application of antibiotics has achieved good effects, their irregular use has resulted in the emergence of drug-resistant strains. It is thus the purpose of this study to analyze whether the naturally extracted phenolic compound, juglone, can inhibit S. aureus in wound infection. The results show that the minimum inhibitory concentration (MIC) of juglone against S. aureus was 1000 μg/mL. Juglone inhibited the growth of S. aureus by inhibiting membrane integrity and causing protein leakage. At sub-inhibitory concentrations, juglone inhibited biofilm formation, the expression of α-hemolysin, the hemolytic activity, and the production of proteases and lipases of S. aureus. When applied to infected wounds in Kunming mice, juglone (50 μL juglone with a concentration of 1000 μg/mL) significantly inhibited the number of S. aureus and had a significant inhibitory effect on the expression of inflammatory mediators (TNF-α, IL-6 and IL-1β). Moreover, the juglone-treated group promoted wound healing. At the same time, in animal toxicity experiments, juglone had no obvious toxic effects on the main tissues and organs of mice, indicating that juglone has good biocompatibility and has the potential to be used in the treatment of wounds infected with S. aureus.
Collapse
|
9
|
Cofas-Vargas LF, Mendoza-Espinosa P, Avila-Barrientos LP, Prada-Gracia D, Riveros-Rosas H, García-Hernández E. Exploring the druggability of the binding site of aurovertin, an exogenous allosteric inhibitor of FOF1-ATP synthase. Front Pharmacol 2022; 13:1012008. [PMID: 36313289 PMCID: PMC9615146 DOI: 10.3389/fphar.2022.1012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to playing a central role in the mitochondria as the main producer of ATP, FOF1-ATP synthase performs diverse key regulatory functions in the cell membrane. Its malfunction has been linked to a growing number of human diseases, including hypertension, atherosclerosis, cancer, and some neurodegenerative, autoimmune, and aging diseases. Furthermore, inhibition of this enzyme jeopardizes the survival of several bacterial pathogens of public health concern. Therefore, FOF1-ATP synthase has emerged as a novel drug target both to treat human diseases and to combat antibiotic resistance. In this work, we carried out a computational characterization of the binding sites of the fungal antibiotic aurovertin in the bovine F1 subcomplex, which shares a large identity with the human enzyme. Molecular dynamics simulations showed that although the binding sites can be described as preformed, the inhibitor hinders inter-subunit communications and exerts long-range effects on the dynamics of the catalytic site residues. End-point binding free energy calculations revealed hot spot residues for aurovertin recognition. These residues were also relevant to stabilize solvent sites determined from mixed-solvent molecular dynamics, which mimic the interaction between aurovertin and the enzyme, and could be used as pharmacophore constraints in virtual screening campaigns. To explore the possibility of finding species-specific inhibitors targeting the aurovertin binding site, we performed free energy calculations for two bacterial enzymes with experimentally solved 3D structures. Finally, an analysis of bacterial sequences was carried out to determine conservation of the aurovertin binding site. Taken together, our results constitute a first step in paving the way for structure-based development of new allosteric drugs targeting FOF1-ATP synthase sites of exogenous inhibitors.
Collapse
Affiliation(s)
- Luis Fernando Cofas-Vargas
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
| | - Paola Mendoza-Espinosa
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | | | - Diego Prada-Gracia
- Unidad de Investigación en Biología Computacional y Diseño de Fármacos, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City, Mexico
| | - Enrique García-Hernández
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Mexico City, Mexico
- *Correspondence: Enrique García-Hernández,
| |
Collapse
|
10
|
Zhou S, Rao Y, Li J, Huang Q, Rao X. Staphylococcus aureus small-colony variants: Formation, infection, and treatment. Microbiol Res 2022; 260:127040. [DOI: 10.1016/j.micres.2022.127040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
11
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
12
|
Xiang L, Wang Y, Lan J, Na F, Wu S, Gong Y, Du H, Shao B, Xie G. HIF-1-dependent heme synthesis promotes gemcitabine resistance in human non-small cell lung cancers via enhanced ABCB6 expression. Cell Mol Life Sci 2022; 79:343. [PMID: 35661930 PMCID: PMC11072486 DOI: 10.1007/s00018-022-04360-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/16/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Gemcitabine is commonly used to treat various cancer types, including human non-small cell lung cancer (NSCLC). However, even cases that initially respond rapidly commonly develop acquired resistance, limiting our ability to effectively treat advanced NSCLC. To gain insight for developing a strategy to overcome gemcitabine resistance, the present study investigated the mechanism of gemcitabine resistance in NSCLC according to the involvement of ATP-binding cassette subfamily B member 6 (ABCB6) and heme biosynthesis. First, an analysis of ABCB6 expression in human NSCLCs was found to be associated with poor prognosis and gemcitabine resistance in a hypoxia-inducible factor (HIF)-1-dependent manner. Further experiments showed that activation of HIF-1α/ABCB6 signaling led to intracellular heme metabolic reprogramming and a corresponding increase in heme biosynthesis to enhance the activation and accumulation of catalase. Increased catalase levels diminished the effective levels of reactive oxygen species, thereby promoting gemcitabine-based resistance. In a mouse NSCLC model, inhibition of HIF-1α or ABCB6, in combination with gemcitabine, strongly restrained tumor proliferation, increased tumor cell apoptosis, and prolonged animal survival. These results suggest that, in combination with gemcitabine-based chemotherapy, targeting HIF-1α/ABCB6 signaling could result in enhanced tumor chemosensitivity and, thus, may improve outcomes in NSCLC patients.
Collapse
Affiliation(s)
- Lisha Xiang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongsheng Wang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Lan
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feifei Na
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuang Wu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China
| | - Yuzhu Gong
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China
| | - Hanjian Du
- Department of Neurosurgery, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Renmin south road 3 section, Chengdu, 610041, China.
| | - Ganfeng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
13
|
Computational Design of Inhibitors Targeting the Catalytic β Subunit of Escherichia coli FOF1-ATP Synthase. Antibiotics (Basel) 2022; 11:antibiotics11050557. [PMID: 35625201 PMCID: PMC9138118 DOI: 10.3390/antibiotics11050557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
With the uncontrolled growth of multidrug-resistant bacteria, there is an urgent need to search for new therapeutic targets, to develop drugs with novel modes of bactericidal action. FoF1-ATP synthase plays a crucial role in bacterial bioenergetic processes, and it has emerged as an attractive antimicrobial target, validated by the pharmaceutical approval of an inhibitor to treat multidrug-resistant tuberculosis. In this work, we aimed to design, through two types of in silico strategies, new allosteric inhibitors of the ATP synthase, by targeting the catalytic β subunit, a centerpiece in communication between rotor subunits and catalytic sites, to drive the rotary mechanism. As a model system, we used the F1 sector of Escherichia coli, a bacterium included in the priority list of multidrug-resistant pathogens. Drug-like molecules and an IF1-derived peptide, designed through molecular dynamics simulations and sequence mining approaches, respectively, exhibited in vitro micromolar inhibitor potency against F1. An analysis of bacterial and Mammalia sequences of the key structural helix-turn-turn motif of the C-terminal domain of the β subunit revealed highly and moderately conserved positions that could be exploited for the development of new species-specific allosteric inhibitors. To our knowledge, these inhibitors are the first binders computationally designed against the catalytic subunit of FOF1-ATP synthase.
Collapse
|
14
|
Targeting the ATP synthase in bacterial and fungal pathogens – beyond Mycobacterium tuberculosis. J Glob Antimicrob Resist 2022; 29:29-41. [DOI: 10.1016/j.jgar.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
|
15
|
Hughes T, Azim S, Ahmad Z. Inhibition of Escherichia coli ATP synthase by dietary ginger phenolics. Int J Biol Macromol 2021; 182:2130-2143. [PMID: 34087308 DOI: 10.1016/j.ijbiomac.2021.05.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
For centuries, dietary ginger has been known for its antioxidant, anticancer, and antibacterial properties. In the current study, we examined the link between antibacterial properties of 7 dietary ginger phenolics (DGPs)-gingerenone A, 6-gingerol, 8-gingerol, 10-gingerol, paradol, 6-shogaol, and zingerone-and inhibition of bacterial ATP synthase. DGPs caused complete (100%) inhibition of wild-type Escherichia coli membrane-bound F1Fo ATP synthase, but partial and variable (0%-87%) inhibition of phytochemical binding site mutant enzymes αR283D, αE284R, βV265Q, and γT273A. The mutant enzyme ATPase activity was 16-fold to 100-fold lower than that of the wild-type enzyme. The growth of wild-type, null, and mutant strains in the presence of the 7 DGPs were abrogated to variable degrees on limiting glucose and succinate media. DGPs-caused variable inhibitory profiles of wild-type and mutant ATP synthase confirm that residues of α-, β-, and γ-subunits are involved in the formation of phytochemical binding site. The variable degree of growth in the presence of DGPs also indicates the possibility of molecular targets other than ATP synthase. Our results establish that antibacterial properties of DGPs can be linked to the binding and inhibition of bacterial ATP synthase. Therefore, bacterial ATP synthase is a valuable molecular target for DGPs.
Collapse
Affiliation(s)
- Taurin Hughes
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA
| | - Samiya Azim
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
| | - Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA.
| |
Collapse
|