1
|
Ugochi UJ, Obinna AC, Emeka EA, Oluchi AE, Makeri D, Theophilus P, Agwu E. Therapeutic potential of Chromolaena odorata, Vernonia amygdalina, and Cymbopogon citratus against pathogenic Bacteria. Sci Rep 2025; 15:217. [PMID: 39747504 PMCID: PMC11696516 DOI: 10.1038/s41598-024-84696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Antimicrobial resistance poses a global public health threat, compelling the search for alternative treatments, especially in resource-limited settings. The increasing ineffectiveness of traditional antibiotics has intensified the need to explore medicinal plants as viable therapeutic options. This study sought to compare the efficacy of certain medicinal plants used in Owerri, Nigeria, for treating pathogenic bacteria against traditional commercial antibiotics. We tested graded concentrations (25 mg/ml, 50 mg/ml, 75 mg/ml, and 100 mg/ml) of ethanolic extracts of Awolowo leaf (Chromolaena odorata), Bitter leaf (Vernonia amygdalina), and Lemon grass leaf (Cymbopogon citratus) against Salmonella spp, Klebsiella spp, Escherichia coli, and Staphylococcus aureus employing the agar well diffusion method to measure zones of inhibition. Commercial antibiotics studied included: Pefloxacin, Gentamycin, Ampiclox, Zinnacef, Amoxicillin, Rocephin, Ciprofloxacin, Streptomycin, Septrin and Erythromycin, Sparfloxacin Amoxicillin, Augmentin, and Tarivid. Each experiment was conducted in triplicate to ensure accuracy and reproducibility. Results were analyzed descriptively and presented as mean zones of inhibition and standard deviations. One to three plant species exhibited antibacterial activities (zones of inhibition) across 25-100 mg/ml concentrations. In contrast, some or all antibiotics only exhibited antibacterial activities at 100 mg/ml concentration (none at 25-75 mg/ml concentrations). Zones of inhibition (10.3-14.1 mm) of all three plant species against E.coli and Klebsiella at 100 mg/ml concentration were higher than those of 8-10 antibiotics. C. odorata had shown high zones of inhibition of 11.8 and 11.0 mm against Salmonella spp. and S. aureus at 100 mg/ml concentration, which were higher than those of eight antibiotics. The other two plant species (C. citratus and V. amygdalina) had exhibited low zones of inhibition against Salmonella spp. and S. aureus, which were higher than those of 3 or 4 antibiotics at 100 mg/ml concentration. In general, the antibacterial activities of the three plant species across 25-100 mg/ml concentrations were higher than those of many antibiotics. To a large extent, the efficacy of medicinal plant extracts across different concentrations against bacterial strains was higher than that of many antibiotics. Those plant species have therefore shown some potential to be used as alternative or complementary therapeutics to antibiotics in addressing antibiotic resistance. Since the promising findings were based on an in vitro study, we recommend clinical trials to establish safe and effective doses of those plant extracts in humans.
Collapse
Affiliation(s)
- Udensi Justina Ugochi
- Department of Environmental Health Science, Federal University of Technology, Owerri, Nigeria
| | | | - Emedoh Andrew Emeka
- Department of Chemical Pathology, Imo State Teaching Hospital, Orlu, Nigeria
| | - Anyanwu Emilia Oluchi
- Department of Environmental Health Science, Federal University of Technology, Owerri, Nigeria
| | - Danladi Makeri
- Departmment of Microbiology and Immunology, Kampala International University, Ishaka, Uganda.
| | - Pius Theophilus
- Department of Medical Laboratory Science, Kampala International University, Ishaka, Uganda
| | - Ezera Agwu
- Departmment of Microbiology and Immunology, Kampala International University, Ishaka, Uganda
- Department of Microbiology and Parasitology, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
2
|
Edres HA, Elmassry IH, Lebda MA, Othman SI, El-Karim DRSG, Rudayni HA, Ebied SKM, Allam AA, Hashem AE. Berberine and Cyperus rotundus extract nanoformulations protect the rats against Staphylococcus-induced mastitis via antioxidant and anti-inflammatory activities: role of MAPK signaling. Cell Biochem Biophys 2024:10.1007/s12013-024-01628-8. [PMID: 39707026 DOI: 10.1007/s12013-024-01628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
Berberine (BER) and Cyperus rotundus rhizomes extract (CRE) are phytochemicals characterized by broad-spectrum pharmacological activity that could tackle the side effects of conventional mastitis therapies, however, they undergo a modest bioavailability. In the current study, nanoformulations of BER and CRE chitosan hydrogel (BER/CH-NPs, CRE/CH-NPs) were investigated for their antibacterial, antioxidant, anti-inflammatory and anti-apoptotic effects against S. aureus-induced mastitis in a rat model. The experiment was conducted on 80 early lactating female albino rats allocated into 6 groups; control, mastitis, BER/CH-NPs (1 and 0.5 mg), CRE/CH-NPs (0.5 and 0.25 mg), BER/CH-NPs + CRE/CH-NPs (0.5 + 0.25 and 0.25 + 0.125 mg). The nanoparticles were given by oral gavage once every other day from day 2 to day 12 after parturition. On the 13th day, intra-mammary inoculation with 100 µl of S. aureus suspension containing 2.1 × 108 CFU/ml in all groups except the control group. The results expressed the effect of BER/CH-NPs and CRE/CH-NPs on mammary gland tissue including significantly diminished viable bacterial load as well as attenuated the levels of MPO, MDA, caspase-3 with elevating Nrf2 level, and modulating glutathione redox. Also, the nanoformulations resulted in attenuation of the mRNA expression of TLR2, NOD2, Keap-1 and MAPK signaling pathway additional to the immune reactivity of NF-κB P65 and p-ERK as well as the preservation of the regular alveolar architecture. The supplementation of the berberine and Cyperus rotundus extract nanoformulations could be a prospective protective approach against Staphylococcal mastitis via their antibacterial, antioxidant, antiapoptotic, anti-inflammatory and modulation of MAPK signaling pathway.
Collapse
Affiliation(s)
- Hanan A Edres
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Ingi H Elmassry
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt.
| | - Sarah I Othman
- Department of Biology, college of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Dina R S Gad El-Karim
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Hassan A Rudayni
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
| | - Sawsan Kh M Ebied
- Bacteriology Unit, Animal Health Research Institute, Alexandria Province, Alexandria, 21944, Egypt
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211, Egypt
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11623, Saudi Arabia
| | - Aml E Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| |
Collapse
|
3
|
Park I, Nam H, Ravichandran S, Wall EH, Lillehoj HS. Molecular responses to clove and oregano essential oils are associated with reduced inflammation and improved gut barrier function in broiler chickens. Poult Sci 2024; 104:104713. [PMID: 39721262 DOI: 10.1016/j.psj.2024.104713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
In vitro tests were conducted to characterize the host-mediated responses of chickens to Clove Essential Oil (CEO) and Oregano Essential Oil (OEO). Chicken macrophage cells (CMCs), chicken intestinal epithelial cells (IECs), quail muscle cells (QMCs), and chicken embryonic muscle cells (EMCs) were utilized in these assays. EMCs were collected from the 13-day-old embryo during egg incubation and all cell lines were seeded at 2 × 105/mL in a 24-well plate. In CMCs, an inflammatory response was induced by stimulating with 1.0 µg/mL of Lipopolysaccharide (LPS). To induce muscle cell differentiation, 0.5 % FBS was used in QMCs and 2.0 % FBS in EMCs. Three different concentrations (1.0, 10.0, and 100 µg/mL) of CEO and OEO were administered. qRT-PCR was used to measure gene expression levels of IL-1β and IL-8 from CMCs, occludin, ZO-1, and MUC2 from IECs, and Pax7 and MyoG from QMCs and EMCs. Cytotoxic effects of CEO and OEO were determined using an MTT assay; CEO and OEO did not show cytotoxicity at concentrations below 0.1 mg/mL in CMCs, IECs, QMCs, and EMCs. CEO reduced (P < 0.05) the LPS-induced increase of IL-1β and IL-8 in CMCs and increased (P < 0.05) ZO-1 and MUC2 in IECs. OEO suppressed (P < 0.05) the release of IL-8, increased ZO-1, and Pax7. Both CEO and OEO demonstrated microbicidal activity against sporozoite of E. tenella and C. perfringens bacteria, but only at doses 10-100 × higher than those that would be used in feed. These findings support our previous findings on other phytochemicals; both CEO and OEO are promising candidates for improved resilience in chickens not due to their direct antimicrobial effects, but due to gut physiological responses that take place at the level of the host.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory United States Department of Agriculture-Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory United States Department of Agriculture-Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | | | - Emma H Wall
- Nutreco Exploration, Nutreco, the Netherlands
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory United States Department of Agriculture-Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
4
|
Arumugam P. Emerging role of natural product-derived phytochemicals in the green synthesis of metal nanoparticles: a paradigm shift in sustainable nanotechnology. Nat Prod Res 2024:1-2. [PMID: 39588734 DOI: 10.1080/14786419.2024.2432012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Affiliation(s)
- Priyadharsan Arumugam
- Department of Cariology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Coyago-Cruz E, Barrigas A, Guachamin A, Heredia-Moya J, Zuñiga-Miranda J, Vera E. Bioactive Composition of Tropical Flowers and Their Antioxidant and Antimicrobial Properties. Foods 2024; 13:3766. [PMID: 39682838 DOI: 10.3390/foods13233766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
This study evaluated tropical flower petals' bioactive compounds and antioxidant and antimicrobial properties. The physicochemical characteristics, carotenoids, phenolics, anthocyanins, organic acids, and antioxidant activity of 67 flowers were analyzed. In addition, the antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans, Candida albicans, and Candida tropicalis of 35 species was determined. A 2 × 3 experimental design was used for the extraction of carotenoids and phenolics, including solvents and ultrasonic agitation times. The mixture of methanol-acetone-dichloromethane (1:1:2) and acetone-methanol (2:1) resulted in the highest concentration of carotenoids, while acidified 80% methanol favoured phenolic extraction. Renealmia alpinia was extremely rich in carotenoids (292.5 mg β-carotene/g DW), Pleroma heteromallum in anthocyanins (7.35 mg C-3-gl/g DW), while a high content of citric acid was found in Hibiscus rosa-sinensis (17,819 mg/100 g DW). On the other hand, Thibaudia floribunda showed the highest antioxidant activity (7.8 mmol Trolox equivalent/g DW). The main phenolics were m-coumaric acid in Acalypha poiretii (12,044 mg/100 g DW), 4-hydroxybenzoic acid in Brugmansia arborea (10,729 mg/100 g DW), and kaempferol in Dahlia pinnata (8236 mg/100 g DW). The extract of Acalypha poiretii, Brownea macrophylla, and Cavendishia nobilis showed antibacterial activity, while the extract of Pleroma heteromallum was the only one active against Candida albicans. These findings highlight the potential health benefits from certain tropical flowers.
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Alejandro Barrigas
- Maestría en Productos Farmacéuticos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Aida Guachamin
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Johana Zuñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Edwin Vera
- Departamento de Ciencia de los Alimentos y Biotecnología, Facultad de Ingeniería Química, Escuela Politécnica Nacional, Quito 170524, Ecuador
| |
Collapse
|
6
|
Caioni G, Reyes CP, Laurenti D, Chiaradia C, Dainese E, Mattioli R, Di Risola D, Santavicca E, Francioso A. Biochemistry and Future Perspectives of Antibiotic Resistance: An Eye on Active Natural Products. Antibiotics (Basel) 2024; 13:1071. [PMID: 39596764 PMCID: PMC11591525 DOI: 10.3390/antibiotics13111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Antibiotic resistance poses a serious threat to the current healthcare system, negatively impacting the effectiveness of many antimicrobial treatments. The situation is exacerbated by the widespread overuse and abuse of available antibiotics, accelerating the evolution of resistance. Thus, there is an urgent need for novel approaches to therapy to overcome established resistance mechanisms. Plants produce molecules capable of inhibiting bacterial growth in various ways, offering promising paths for the development of alternative antibiotic medicine. This review emphasizes the necessity of research efforts on plant-derived chemicals in the hopes of finding and creating novel drugs that can successfully target resistant bacterial populations. Investigating these natural chemicals allows us to improve our knowledge of novel antimicrobial pathways and also expands our antibacterial repertoire with novel molecules. Simultaneously, it is still necessary to utilize present antibiotics sparingly; prudent prescribing practices must be encouraged to extend the effectiveness of current medications. The combination of innovative drug research and responsible drug usage offers an integrated strategy for managing the antibiotic resistance challenge.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| | - Carolina Pérez Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Instituto Universitario de Bio-Orgánica “Antonio González”, University of La Laguna, 38206 San Cristobal de La Laguna, Spain;
| | - Davide Laurenti
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Carmen Chiaradia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| | - Roberto Mattioli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Daniel Di Risola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | | | - Antonio Francioso
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| |
Collapse
|
7
|
Ghosh S, Basu S, Anbarasu A, Ramaiah S. A Comprehensive Review of Antimicrobial Agents Against Clinically Important Bacterial Pathogens: Prospects for Phytochemicals. Phytother Res 2024. [PMID: 39496516 DOI: 10.1002/ptr.8365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/06/2024]
Abstract
Antimicrobial resistance (AMR) hinders the effective treatment of a range of bacterial infections, posing a serious threat to public health globally, as it challenges the currently available antimicrobial drugs. Among the various modes of antimicrobial action, antimicrobial agents that act on membranes have the most promising efficacy. However, there are no consolidated reports on the shortcomings of these drugs, existing challenges, or the potential applications of phytochemicals that act on membranes. Therefore, in this review, we have addressed the challenges and focused on various phytochemicals as antimicrobial agents acting on the membranes of clinically important bacterial pathogens. Antibacterial phytochemicals comprise diverse group of agents found in a wide range of plants. These compounds have been found to disrupt cell membranes, inhibit enzymes, interfere with protein synthesis, generate reactive oxygen species, modulate quorum sensing, and inhibit bacterial adhesion, making them promising candidates for the development of novel antibacterial therapies. Recently, polyphenolic compounds have been reported to have proven efficacy against nosocomial multidrug-resistant pathogens. However, more high-quality studies, improved standards, and the adoption of rules and regulations are required to firmly confirm the clinical efficacy of phytochemicals derived from plants. Identifying potential challenges, thrust areas of research, and considering viable approaches is essential for the successful clinical translation of these compounds.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| | - Soumya Basu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biotechnology, National Institute of Science and Technology (NIST), Berhampur, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Biotechnology, SBST, VIT, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, India
- Department of Bio Sciences, SBST, VIT, Vellore, India
| |
Collapse
|
8
|
Metuge JA, Betow JY, Bekono BD, Tjegbe MJM, Ndip RN, Ntie-Kang F. Effects of some anti-ulcer and anti-inflammatory natural products on cyclooxygenase and lipoxygenase enzymes: insights from in silico analysis. In Silico Pharmacol 2024; 12:97. [PMID: 39498163 PMCID: PMC11531464 DOI: 10.1007/s40203-024-00269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Gastric and duodenal ulcers are increasingly becoming global health burdens. The side effects of conventional treatments such as non-steroid anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), antibiotics, and cytoprotective agents have necessitated the search for new medications. Plants are a rich source of active metabolites and herbal medicines have been used in the treatment of ulcers and cancers. In this study, we used in silico methods like molecular docking and MM-GBSA calculations to evaluate the effects of some anti-ulcer and anti-inflammatory phytochemicals on some key enzymes, cyclooxygenase (COX), and lipoxygenase (LOX), which are implicated in the protection and destruction of the gastric mucosa. The phytochemicals were retrieved from the literature and docked toward the binding sites of the three enzymes (COX-1, COX-2, and 5-LOX). Five compounds, rhamnetin, kaempferol, rutin, rosmarinic acid, and chlorogenic acid were observed to putatively bind to cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) but not to cyclooxygenase 1 (COX-1). The interaction mechanisms between these phytochemicals and the target proteins are discussed. The compounds' drug metabolism, pharmacokinetics, and toxicity have been evaluated to assess their suitability as potential next-generation anti-ulcer and anti-inflammatory drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00269-2.
Collapse
Affiliation(s)
- Jonathan A. Metuge
- Department of Natural Resources and Environmental Sciences, Alabama A&M University, Huntsville, USA
| | - Jude Y. Betow
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Boris D. Bekono
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Roland N. Ndip
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Jena B, Singh SS, Chakrabortty S, Behera SK, Tripathy SK, Lundborg CS, Kumar R, Ali Khan M, Jeon BH, Mishra A. Understanding the antibacterial mechanism of a phytochemical derived from Urginea indica against Methicillin-Resistant Staphylococcus aureus: A phytochemical perspective to impede antibiotics resistance. J IND ENG CHEM 2024; 139:213-224. [DOI: 10.1016/j.jiec.2024.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Coyago-Cruz E, Alarcón A, Guachamin A, Méndez G, Osorio E, Heredia-Moya J, Zuñiga-Miranda J, Beltrán-Sinchiguano E, Vera E. Functional, Antioxidant, Antibacterial, and Antifungal Activity of Edible Flowers. Antioxidants (Basel) 2024; 13:1297. [PMID: 39594439 PMCID: PMC11590945 DOI: 10.3390/antiox13111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Edible flowers have been used since ancient times, but their potential for improving human health has not been explored. This study aimed to evaluate the profile of bioactive compounds (organic acids, phenolics, and carotenoids) and the antioxidant and antimicrobial activity of nine flower varieties with high concentrations of carotenoids or total phenolic compounds. Ninety-three edible flowers were analysed for physicochemical characteristics, total phenolic and carotenoid concentrations, and antioxidant activity (ABTS). Bioactive profiles were determined by rapid resolution liquid chromatography (RRLC), and antimicrobial activity was determined against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus mutans, and Candida albicans and Candida tropicalis. Chrysanthemum x hybrid orange, Helianthus annuus yellow, Tagetes patula orange, Canna indica red, and Hibiscus rosa-sinensis (orange1 and yellow) showed significant concentrations of total carotenoids. In contrast, Pelargonium hortorum orange2, Hibiscus rosa-sinensis red1, and Rosa x hybrid variety medium yellow showed high levels of total phenolics. The predominant compounds in these species were citric acid (991.4 mg/g DW in Hibiscus rosa-sinensis red1), 4-hydroxybenzoic acid (936.2 mg/100 g DW in P. hortorum orange2), kaempferol (971. 9 mg/100 g DW in T. patula orange), quercetin glucoside (958.8 in C. x hybrid), quercetin (919.3 mg/100 g DW in T. patula), α-carotene, and β-carotene in T. patula orange (989.5 and 601.2 mg/100 g DW, respectively). Regarding antimicrobial activity, T. patula orange and P. hortorum orange2 inhibited bacterial growth, while C. x hybrid orange and P. hortorum orange2 inhibited Candida albicans, and the latter inhibited Candida tropicalis. These results indicate the potential of edible flowers as a natural source of bioactive compounds and as a tool in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Alejandro Alarcón
- Maestría en Productos Farmacéuticos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Aida Guachamin
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Gabriela Méndez
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Edison Osorio
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de octubre N2422 y Wilson, Quito 170109, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Johana Zuñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | | | - Edwin Vera
- Departamento de Ciencia de los Alimentos y Biotecnología, Facultad de Ingeniería Química, Escuela Politécnica Nacional, Quito 170524, Ecuador
| |
Collapse
|
11
|
Tiwana G, Cock IE, Cheesman MJ. Combinations of Terminalia bellirica (Gaertn.) Roxb. and Terminalia chebula Retz. Extracts with Selected Antibiotics Against Antibiotic-Resistant Bacteria: Bioactivity and Phytochemistry. Antibiotics (Basel) 2024; 13:994. [PMID: 39452260 PMCID: PMC11504310 DOI: 10.3390/antibiotics13100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has arisen due to antibiotic overuse and misuse. Antibiotic resistance renders standard treatments less effective, making it difficult to control some infections, thereby increasing morbidity and mortality. Medicinal plants are attracting increased interest as antibiotics lose efficacy. This study evaluates the antibacterial activity of solvent extracts prepared using Terminalia bellirica and Terminalia chebula fruit against six bacterial pathogens using disc diffusion and broth microdilution assays. The aqueous and methanol extracts of T. bellirica and T. chebula showed substantial zones of inhibition (ZOIs) against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). The activity against those bacteria was strong, with minimum inhibitory concentrations (MIC) ranging from 94 µg/mL to 392 µg/mL. Additionally, the T. bellirica methanolic extract showed noteworthy antibacterial activity against Escherichia coli and an extended spectrum β-lactamase (ESBL) E. coli strain (MIC values of 755 µg/mL for both). The aqueous T. bellirica and T. chebula extracts also inhibited Klebsiella pneumoniae growth (MIC values of 784 µg/mL and 556 µg/mL, respectively). The corresponding methanolic extracts also inhibited ESBL K. pneumoniae growth (MIC values of 755 µg/mL and 1509 µg/mL, respectively). Eighteen additive interactions were observed when extracts were combined with reference antibiotics. Strong antagonism occurred when any of the extracts were mixed with polymyxin B. Liquid chromatography-mass spectroscopy (LC-MS) analysis of the extracts revealed several interesting flavonoids and tannins, including 6-galloylglucose, 1,2,6-trigalloyl-β-D-glucopyranose, 6-O-[(2E)-3-phenyl-2-propenoyl]-1-O-(3,4,5-trihydroxybenzoyl)-β-D-glucopyranose, propyl gallate, methyl gallate, sanguiin H4, hamamelitannin, pyrogallol, gallic acid, ellagic acid, chebulic acid, and chebuloside II. All extracts were nontoxic in brine shrimp assays. This lack of toxicity, combined with their antibacterial activities, suggests that these plant species may be promising sources of antibacterial compound(s) that warrant further study.
Collapse
Affiliation(s)
- Gagan Tiwana
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| | - Ian Edwin Cock
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia;
| | - Matthew James Cheesman
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| |
Collapse
|
12
|
Wetzel AJ, Laux G, Joos S, Musselmann B, Valentini J. Exploring the association between phytopharmaceutical use and antibiotic prescriptions in upper respiratory infections: results from a German cohort study evaluating the impact of naturopathy qualifications of general practitioners using routine data. Front Med (Lausanne) 2024; 11:1440632. [PMID: 39493721 PMCID: PMC11527615 DOI: 10.3389/fmed.2024.1440632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
Background Antibiotic resistance is a significant global health threat, exacerbated by inappropriate prescribing practices, particularly for upper respiratory infections that are predominantly viral. Complementary and Integrative Medicine (CIM), including the use of phytopharmaceuticals, offers a potential strategy to reduce antibiotic prescriptions. Objective This study aimed to describe the impact of General Practitioners' (GPs) naturopathy (NP) qualifications and phytopharmaceutical prescriptions on the rate of antibiotic prescribing for upper respiratory infections (RTI). Methods We conducted a retrospective cohort study using routine data from the CONTinuous morbidity registration Epidemiologic NeTwork (CONTENT), which includes over 200,000 patients across four federal states in Germany. The study included data from n = 36 GPs who recorded at least one ICD-10 diagnosis of RTI. Antibiotic and phytopharmaceutical prescriptions were identified and analyzed through mixed-effects logistic regression models to explore the influence of GPs' naturopathy qualifications and phytopharmaceutical use on antibiotic prescribing patterns. Results The study included 40,344 patients managed by 36 GPs. Prescriptions of phytopharmaceuticals significantly reduced the likelihood of antibiotic use (OR 0.48, 95% CI 0.45-0.52). Additionally, holding a naturopathy qualification was associated with lower rates of antibiotic prescriptions (OR 0.73, 95% CI 0.69-0.78). The interaction between naturopathy qualification and phytopharmaceutical prescriptions also showed a significant effect (OR 1.43, 95% CI 1.27-1.62). Patient's year of birth influenced prescribing patterns indicating a reduction of antibiotic prescriptions for younger patients, while patients' gender did not reveal a significant effect. Conclusion Prescriptions of phytopharmaceuticals were significantly associated with a decrease antibiotic prescriptions among GPs, especially when combined with naturopathy qualifications. Training in naturopathic approaches could enhance antibiotic stewardship efforts in primary care settings, suggesting that broader integration of CIM elements into medical training could be beneficial in mitigating antibiotic resistance.
Collapse
Affiliation(s)
- Anna-Jasmin Wetzel
- Institute of General Practice and Interprofessional Care, Tübingen University Hospital, Tübingen, Germany
| | - Gunter Laux
- Department of General Medicine and Health Service, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Joos
- Institute of General Practice and Interprofessional Care, Tübingen University Hospital, Tübingen, Germany
| | | | - Jan Valentini
- Institute of General Practice and Interprofessional Care, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
13
|
Altwaim SA, Alsaady IM, Gattan HS, Alruhaili MH, Khateb AM, El-Daly MM, Dubey A, Dwivedi VD, Azhar EI. Exploring the anti-protozoal mechanisms of Syzygium aromaticum phytochemicals targeting Cryptosporidium parvum lactate dehydrogenase through molecular dynamics simulations. Arch Biochem Biophys 2024; 760:110124. [PMID: 39154815 DOI: 10.1016/j.abb.2024.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Cryptosporidium parvum (C. parvum), a protozoan parasite, is known to induce significant gastrointestinal disease in humans. Lactate dehydrogenase (LDH), a protein of C. parvum, has been identified as a potential therapeutic target for developing effective drugs against infection. This study utilized a computational drug discovery approach to identify potential drug molecules against the LDH protein of C. parvum. In the present investigation, we conducted a structure-based virtual screening of 55 phytochemicals from the Syzygium aromaticum (S. aromaticum). This process identified four phytochemicals, including Gallotannin 23, Eugeniin, Strictinin, and Ellagitannin, that demonstrated significant binding affinity and dynamic stability with LDH protein. Interestingly, these four compounds have been documented to possess antibacterial, antiviral, anti-inflammatory, and antioxidant properties. The docked complexes were simulated for 100 ns using Desmond to check the dynamic stability. Finally, the free binding energy was computed from the last 10ns MD trajectories. Gallotannin 23 and Ellagitannin exhibited considerable binding affinity and stability with the target protein among all four phytochemicals. These findings suggest that these predicted phytochemicals from S. aromaticum could be further explored as potential hit candidates for developing effective drugs against C. parvum infection. The in vitro and in vivo experimental validation is still required to confirm their efficacy and safety as LDH inhibitors.
Collapse
Affiliation(s)
- Sarah A Altwaim
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine. King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Isra M Alsaady
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Hattan S Gattan
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Mohammed H Alruhaili
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine. King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Aiah M Khateb
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Madinah, 42353, Saudi Arabia
| | - Mai M El-Daly
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 20136, Saudi Arabia
| | - Amit Dubey
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, 605102, India; Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
| | - Esam I Azhar
- Special Infectious Agents Unit - BSL3, King Fahd Medical Research Centre, Jeddah, 20136, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 20136, Saudi Arabia.
| |
Collapse
|
14
|
Ganesan A, Rengarajan J. Green synthesis of chitosan nanoparticles using Cassia fistula leaf extract: evaluation of antimicrobial, antioxidant, antibiofilm, and cytotoxic activities. 3 Biotech 2024; 14:223. [PMID: 39247455 PMCID: PMC11379835 DOI: 10.1007/s13205-024-04073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024] Open
Abstract
The emerging field of green synthesis within nanobiotechnology presents significant environmental and economic advantages compared to conventional methodologies. This study investigates the synthesis and application of chitosan nanoparticles (ChNPs) using Cassia fistula (CF) leaf extract as a sustainable, and bio-based approach. Characterization of CF-ChNPs confirmed effective bioconversion and also demonstrated significant antimicrobial activity. Notably, CF-ChNPs demonstrated a remarkable antimicrobial effect against Pseudomonas aeruginosa, with a zone of inhibition of 17 ± 0.2 mm surpassing the impact on other organisms tested. The CF-ChNPs exhibited an initial burst release of 28 ± 0.28% after 2 h, gradually achieving a controlled release of 76.3 ± 0.43% within 24 h. In addition, CF-ChNPs exhibited an antioxidant activity of 43.1 ± 0.48% and showed excellent antibiofilm activity against Staphylococcus aureus in comparison to other organisms. The cell viability assay results have confirmed that CF-ChNPs do not have any negative impact on the viability of L929 fibroblasts, further highlighting their potential as versatile nanomaterials for treating microbial infections and other therapeutic applications.
Collapse
Affiliation(s)
- Anusiya Ganesan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603 203 India
| | - Jaiganesh Rengarajan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603 203 India
| |
Collapse
|
15
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
16
|
Awari A, Kumar M, Kaushik D, Amarowicz R, Proestos C, Wahab R, Khan MR, Tomasevic I, Oz E, Oz F. Proximate Analysis and Techno-Functional Properties of Berberis aristata Root Powder: Implications for Food Industry Applications. Foods 2024; 13:2802. [PMID: 39272566 PMCID: PMC11395431 DOI: 10.3390/foods13172802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Berberis aristata, commonly known as Indian barberry, has been traditionally used for its medicinal properties. Despite its recognized pharmacological benefits, its potential application in the food industry remains underexplored. This study aims to investigate the proximate analysis and techno-functional properties of Berberis aristata root powder to evaluate its feasibility as a functional food ingredient. The root powder of Berberis aristata was subjected to proximate analysis to determine its moisture, ash, protein, fat, fiber, and carbohydrate content. Techno-functional properties, including water and oil absorption capacity, emulsifying and foaming properties, and bulk density, were evaluated using standardized analytical techniques. The proximate analysis revealed a high fiber content and a significant number of bioactive compounds. The root powder exhibited favorable water and oil absorption capacities, making it suitable for use as a thickening and stabilizing agent. Emulsifying and foaming properties were comparable to conventional food additives, indicating their potential in various food formulations. The findings suggest that Berberis aristata root powder possesses desirable techno-functional properties that could be leveraged in the food industry. Its high fiber content and bioactive compounds offer additional health benefits, making it a promising candidate for functional food applications. Further research on its incorporation into different food matrices and its sensory attributes is recommended to fully establish its utility.
Collapse
Affiliation(s)
- Ankita Awari
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Rizwan Wahab
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- German Institute of Food Technologies (DIL), 49610 Quakenbrück, Germany
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum 25240, Türkiye
| |
Collapse
|
17
|
Mnisi TJ, Matotoka MM, Masoko P. Antioxidant, antibacterial, and anti-biofilm activities of selected indigenous plant species against nosocomial bacterial pathogens. Lett Appl Microbiol 2024; 77:ovae080. [PMID: 39198017 DOI: 10.1093/lambio/ovae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/26/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
Biofilms are responsible for over 60% of nosocomial infections. The focus of this study was to investigate the antioxidant, antibacterial, antibiofilm, and anti-motility activities of Gardenia volkensii, Carissa bispinosa, Peltophorum africanum, and Senna petersiana. Antioxidant activity was evaluated using free radical (DPPH) scavenging and ferric reducing power assays. Antibacterial and antibiofilm activities were evaluated using the broth micro-dilution and the crystal violet assays, respectively. Anti-motility was evaluated using anti-swarming activities, and the brine shrimp lethality assay was used for cytotoxicity. Gardenia volkensii and C. bispinosa acetone extracts had low EC50 values of 9.59 and 9.99 μg ml-1on the free-radical scavenging activity, respectively. All the plant extracts demonstrated broad-spectrum antibacterial activity against Klebsiella pneumoniae, Pseudomonasa aeruginosa, Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus [minimum inhibitory concentration (MIC) < 0.63 mg ml-1]. The initial cell adherence stage of P. aeruginosa and E. coli was the most susceptible stage where sub-MICs resulted in inhibitions >50%. Peltophorum africanum had the least cytotoxic effects. All extracts had anti-motility activity against P. aeruginosa and E. coli. This study showed that not only do the plants have strong antibacterial activity but had noteworthy inhibition (>50%) of initial cell adherence and may be suitable candidates for the treatment of nosocomial pathogens.
Collapse
Affiliation(s)
- Talita J Mnisi
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Mashilo M Matotoka
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Peter Masoko
- Faculty of Science and Agriculture, Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| |
Collapse
|
18
|
Guedes BN, Krambeck K, Durazzo A, Lucarini M, Santini A, Oliveira MBPP, Fathi F, Souto EB. Natural antibiotics against antimicrobial resistance: sources and bioinspired delivery systems. Braz J Microbiol 2024; 55:2753-2766. [PMID: 38888693 PMCID: PMC11405619 DOI: 10.1007/s42770-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
The current burden associated to multidrug resistance, and the emerging superbugs, result in a decreased and even loss of antibiotic efficacy, which poses significant challenges in the treatment of infectious diseases. This situation has created a high demand for the discovery of novel antibiotics that are both effective and safe. However, while antibiotics play a crucial role in preventing and treating diseases, they are also associated with adverse effects. The emergence of multidrug-resistant and the extensive appearance of drug-resistant microorganisms, has become one of the major hurdles in healthcare. Addressing this problem will require the development of at least 20 new antibiotics by 2060. However, the process of designing new antibiotics is time-consuming. To overcome the spread of drug-resistant microbes and infections, constant evaluation of innovative methods and new molecules is essential. Research is actively exploring alternative strategies, such as combination therapies, new drug delivery systems, and the repurposing of existing drugs. In addition, advancements in genomic and proteomic technologies are aiding in the identification of potential new drug targets and the discovery of new antibiotic compounds. In this review, we explore new sources of natural antibiotics from plants, algae other sources, and propose innovative bioinspired delivery systems for their use as an approach to promoting responsible antibiotic use and mitigate the spread of drug-resistant microbes and infections.
Collapse
Affiliation(s)
- Beatriz N Guedes
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Karolline Krambeck
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, Guarda, 6300-035, Portugal
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, Rome, 00178, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, Rome, 00178, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Napoli, 80131, Italy
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, Porto, 4050-313, Portugal
| | - Faezeh Fathi
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, Porto, 4050-313, Portugal.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.
| |
Collapse
|
19
|
Soni S, Gambhir L, Sharma G, Sharma A, Kapoor N. Unraveling the treasure trove of phytochemicals in mitigating the Salmonella enterica infection. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01192-x. [PMID: 39212846 DOI: 10.1007/s12223-024-01192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Foodborne diseases triggered by various infectious micro-organisms are contributing significantly to the global disease burden as well as to increasing mortality rates. Salmonella enterica belongs to the most prevalent form of bacteria accountable for significant burden of foodborne illness across the globe. The conventional therapeutic approach to cater to Salmonella enterica-based infections relies on antibiotic therapy, but the rapid emergence of the antibiotic resistance strains of Salmonella sp. necessitates the development of alternative treatment and prevention strategies. In light of this growing concern, the scientific community is rigorously exploring novel phytochemicals harnessed from medicinally important plants as a promising approach to curb Salmonella enterica infections. A variety of phytochemicals belonging to alkaloids, phenols, flavonoid, and terpene classes are reported to exhibit their inhibitory activity against bacterial cell communication, membrane proteins, efflux pumps, and biofilm formation among drug resistant Salmonella strains. The present review article delves to discuss the emergence of antibiotic resistance among Salmonella enterica strains, various plant sources, identification of phytochemicals, and the current state of research on the use of phytochemicals as antimicrobial agents against Salmonella enterica, shedding light on the promising potential of phytochemicals in the fight against this pathogen.
Collapse
Affiliation(s)
- Saurabh Soni
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, 248001, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, 303303, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India.
| |
Collapse
|
20
|
Chihomvu P, Ganesan A, Gibbons S, Woollard K, Hayes MA. Phytochemicals in Drug Discovery-A Confluence of Tradition and Innovation. Int J Mol Sci 2024; 25:8792. [PMID: 39201478 PMCID: PMC11354359 DOI: 10.3390/ijms25168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Phytochemicals have a long and successful history in drug discovery. With recent advancements in analytical techniques and methodologies, discovering bioactive leads from natural compounds has become easier. Computational techniques like molecular docking, QSAR modelling and machine learning, and network pharmacology are among the most promising new tools that allow researchers to make predictions concerning natural products' potential targets, thereby guiding experimental validation efforts. Additionally, approaches like LC-MS or LC-NMR speed up compound identification by streamlining analytical processes. Integrating structural and computational biology aids in lead identification, thus providing invaluable information to understand how phytochemicals interact with potential targets in the body. An emerging computational approach is machine learning involving QSAR modelling and deep neural networks that interrelate phytochemical properties with diverse physiological activities such as antimicrobial or anticancer effects.
Collapse
Affiliation(s)
- Patience Chihomvu
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - A. Ganesan
- School of Chemistry, Pharmacy & Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mawz 616, Oman;
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolic, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB21 6GH, UK;
| | - Martin A. Hayes
- Compound Synthesis and Management, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
21
|
Angelini P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:746. [PMID: 39200046 PMCID: PMC11350763 DOI: 10.3390/antibiotics13080746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
22
|
Ghiaee Shamloo A, Zarrinfar H, Jaafari MR, Yadegari MH. Inhibitory effect of Nigella sativa oil loaded to liposomal nanocarriers on Candida parapsilosis isolates. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:560-568. [PMID: 39267937 PMCID: PMC11389775 DOI: 10.18502/ijm.v16i4.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background and Objectives Candida parapsilosis is the second most common species causing infectious diseases and can lead to biofilm resistance. This study aims to adjust and synthesize a liposomal compound of Nigella sativa and evaluate its antifungal properties against C. parapsilosis isolates. Materials and Methods The liposomal formulation of N. sativa was optimized through the utilization of transmission electron microscopy (TEM), particle size analysis, zeta potential measurement, and UV-visible spectrophotometry. Furthermore, an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was conducted on peripheral blood mononuclear cells (PBMCs). The antifungal efficacy was evaluated in accordance with the M27-A3 guideline. Results The minimum inhibitory concentrations (MICs) of N. sativa oil and the liposomal formulation on C. parapsilosis isolates ranged from 128 to 8 µg/mL and from 250 to 31.25 µg/mL, respectively. The MIC50 and MIC90 values of N. sativa oil and the liposomal formulation were 125, 187, and 32, 96 µg/mL, respectively. The viability percentage of cells treated with the liposomal formulation and free N. sativa oil was 91% and 85%, respectively. Conclusion The cytotoxicity of free N. sativa was significantly reduced when using nanoliposomes. The liposomal form of N. sativa showed greater antifungal properties compared to the free N. sativa extract against C. parapsilosis isolates.
Collapse
Affiliation(s)
- Ardalan Ghiaee Shamloo
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Yadegari
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Chakraborty S, Baindara P, Sharma P, Jose T A, V K, Manoharan R, Mandal SM. Anti-Biofilm Action of Cineole and Hypericum perforatum to Combat Pneumonia-Causing Drug-Resistant P. aeruginosa. Antibiotics (Basel) 2024; 13:689. [PMID: 39199989 PMCID: PMC11350762 DOI: 10.3390/antibiotics13080689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Hospital-acquired antibiotic-resistant pneumonia is one of the major causes of mortality around the world that pose a catastrophic threat. Pseudomonas aeruginosa is one of the most significant opportunistic pathogens responsible for hospital-acquired pneumonia and gained resistance to the majority of conventional antibiotics. There is an urgent need for antibiotic alternatives to control drug-resistant pneumonia and other related respiratory infections. In the present study, we explored the antibacterial potential of cineole in combination with homeopathic medicines against biofilm-forming drug-resistant P. aeruginosa. Out of 26 selected and screened homeopathic medicines, Hypericum Perforatum (HyPer) was found to eradicate biofilm-forming drug-resistant P. aeruginosa most effectively when used in combination with cineole. Interestingly, the synergistic action of HyPer and cineole was also found to be similarly effective against planktonic cells of P. aeruginosa. Further, the potential synergistic killing mechanisms of cineole and HyPer were determined by analyzing zeta membrane potential, outer membrane permeability, and DNA release from P. aeruginosa cells upon treatment with cineole and HyPer. Additionally, molecular docking analysis revealed strong binding affinities of hypericin (an active ingredient of HyPer) with the PqsA (a quorum sensing protein) of P. aeruginosa. Overall, our findings revealed the potential synergistic action of cineole and HyPer against biofilm-forming drug-resistant P. aeruginosa. Cineole and HyPer could be used in combination with other bronchodilators as inhalers to control the biofilm-forming drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur 721302, India;
| | - Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Pralay Sharma
- National Institute of Homoeopathy, Block-GE, Sector-III, Salt Lake, Kolkata 700106, India; (P.S.); (A.J.T.); (K.V.)
| | - Austin Jose T
- National Institute of Homoeopathy, Block-GE, Sector-III, Salt Lake, Kolkata 700106, India; (P.S.); (A.J.T.); (K.V.)
| | - Kumaravel V
- National Institute of Homoeopathy, Block-GE, Sector-III, Salt Lake, Kolkata 700106, India; (P.S.); (A.J.T.); (K.V.)
| | - Raja Manoharan
- National Institute of Homoeopathy, Block-GE, Sector-III, Salt Lake, Kolkata 700106, India; (P.S.); (A.J.T.); (K.V.)
| | - Santi M. Mandal
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur 721302, India;
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Tiwana G, Cock IE, Cheesman MJ. Phyllanthus niruri Linn.: Antibacterial Activity, Phytochemistry, and Enhanced Antibiotic Combinatorial Strategies. Antibiotics (Basel) 2024; 13:654. [PMID: 39061336 PMCID: PMC11273511 DOI: 10.3390/antibiotics13070654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) is a global public health threat caused by the misuse and overuse of antibiotics. It leads to infections becoming difficult to treat, causing serious illness, disability, and death. Current antibiotic development is slow, with only 25% of current antibiotics exhibiting novel mechanisms against critical pathogens. Traditional medicinal plants' secondary metabolites offer potential for developing novel antibacterial compounds. These compounds, often with strong antimicrobial activity, can be used to develop safe and effective antibacterial chemotherapies. This study investigated the antibacterial activity of Phyllanthus niruri Linn. extracts against a panel of bacterial pathogens using disc diffusion and microdilution assays and quantified by calculation of minimum inhibition concentration (MIC). Additionally, the effects of combinations of the extracts and selected conventional antibiotics were examined by sum of fractional inhibition concentration (ƩFIC) calculation and isobologram analysis. Liquid chromatography-mass spectrometry (LC-MS) phytochemistry analysis was used to identify noteworthy compounds in the active extracts and the Artemia nauplii bioassay was used to evaluate toxicity. The aqueous and methanolic extracts exhibited notable antibacterial activity in the broth microdilution assay against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) (MIC = 669 µg/mL and 738 µg/mL, respectively). The methanolic extract also showed noteworthy antibacterial action in the broth assay against Klebsiella pneumoniae (MIC = 738 µg/mL). The aqueous extract had noteworthy growth inhibitory activity against Bacillus cereus (MIC = 669 µg/mL), whilst the methanolic extract demonstrated good antibacterial activity against that bacterium (MIC = 184 µg/mL). The aqueous and methanol extracts showed minimal antibacterial action against Shigella flexneri and Shigella sonnei. The extracts were subjected to LC-MS analysis, which revealed several interesting phytochemicals, including a variety of flavonoids and tannins. The antibacterial activity and lack of toxicity of the P. niruri extracts indicates that they may be worthwhile targets for antibiotic development and further mechanistic and phytochemistry studies are required.
Collapse
Affiliation(s)
- Gagan Tiwana
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| | - Ian E. Cock
- School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia;
| | - Matthew J. Cheesman
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia;
| |
Collapse
|
25
|
Mir RA, Tyagi A, Hussain SJ, Almalki MA, Zeyad MT, Deshmukh R, Ali S. Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities. PLANTS (BASEL, SWITZERLAND) 2024; 13:1467. [PMID: 38891276 PMCID: PMC11174376 DOI: 10.3390/plants13111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal 191201, India;
| | - Mohammed A. Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh 123031, India;
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
26
|
Gopikrishnan M, Haryini S, C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J Basic Microbiol 2024; 64:e2300579. [PMID: 38308076 DOI: 10.1002/jobm.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In recent years, antibiotic therapy has encountered significant challenges due to the rapid emergence of multidrug resistance among bacteria responsible for life-threatening illnesses, creating uncertainty about the future management of infectious diseases. The escalation of antimicrobial resistance in the post-COVID era compared to the pre-COVID era has raised global concern. The prevalence of nosocomial-related infections, especially outbreaks of drug-resistant strains of Staphylococcus aureus, have been reported worldwide, with India being a notable hotspot for such occurrences. Various virulence factors and mutations characterize nosocomial infections involving S. aureus. The lack of proper alternative treatments leading to increased drug resistance emphasizes the need to investigate and examine recent research to combat future pandemics. In the current genomics era, the application of advanced technologies such as next-generation sequencing (NGS), machine learning (ML), and quantum computing (QC) for genomic analysis and resistance prediction has significantly increased the pace of diagnosing drug-resistant pathogens and insights into genetic intricacies. Despite prompt diagnosis, the elimination of drug-resistant infections remains unattainable in the absence of effective alternative therapies. Researchers are exploring various alternative therapeutic approaches, including phage therapy, antimicrobial peptides, photodynamic therapy, vaccines, host-directed therapies, and more. The proposed review mainly focuses on the resistance journey of S. aureus over the past decade, detailing its resistance mechanisms, prevalence in the subcontinent, innovations in rapid diagnosis of the drug-resistant strains, including the applicants of NGS and ML application along with QC, it helps to design alternative novel therapeutics approaches against S. aureus infection.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sree Haryini
- Department of Biomedical Sciences, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Department of Integrative Biology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
27
|
Basharat Z, Ahmed I, Alnasser SM, Meshal A, Waheed Y. Exploring Lead-Like Molecules of Traditional Chinese Medicine for Treatment Quest against Aliarcobacter butzleri: In Silico Toxicity Assessment, Dynamics Simulation, and Pharmacokinetic Profiling. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9377016. [PMID: 39282570 PMCID: PMC11401669 DOI: 10.1155/2024/9377016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 09/19/2024]
Abstract
Background Aliarcobacter butzleri is a Gram-negative, curved or spiral-shaped, microaerophilic bacterium and causes human infections, specifically diarrhea, fever, and sepsis. The research objective of this study was to employ computer-aided drug design techniques to identify potential natural product inhibitors of a vital enzyme in this bacterium. The pyrimidine biosynthesis pathway in its core genome fraction is crucial for its survival and presents a potential target for novel therapeutics. Hence, novel small molecule inhibitors were identified (from traditional Chinese medicinal (TCM) compound library) against it, which may be used for possible curbing of infection by A. butzleri. Methods. A comprehensive subtractive genomics approach was utilized to identify a key enzyme (orotidine-5'-phosphate decarboxylase) cluster conserved in the core genome fraction of A. butzleri. It was selected for inhibitor screening due to its vital role in pyrimidine biosynthesis. TCM library (n > 36,000 compounds) was screened against it using pharmacophore model based on orotidylic acid (control), and the obtained lead-like molecules were subjected to structural docking using AutoDock Vina. The top-scoring compounds, ZINC70454134, ZINC85632684, and ZINC85632721, underwent further scrutiny via a combination of physiological-based pharmacokinetics, toxicity assessment, and atomic-scale dynamics simulations (100 ns). Results Among the screened compounds, ZINC70454134 displayed the most favorable characteristics in terms of binding, stability, absorption, and safety parameters. Overall, traditional Chinese medicine (TCM) compounds exhibited high bioavailability, but in diseased states (cirrhosis, renal impairment, and steatosis), there was a significant decrease in absorption, Cmax, and AUC of the compounds compared to the healthy state. Furthermore, MD simulation demonstrated that the ODCase-ZINC70454134 complex had a superior overall binding affinity, supported by PCA proportion of variance and eigenvalue rank analysis. These favorable characteristics underscore its potential as a promising drug candidate. Conclusion The computer-aided drug design approach employed for this study helped expedite the discovery of antibacterial compounds against A. butzleri, offering a cost-effective and efficient approach to address infection by it. It is recommended that ZINC70454134 should be considered for further experimental analysis due to its indication as a potential therapeutic agent for combating A. butzleri infections. This study provides valuable insights into the molecular basis of biophysical inhibition of A. butzleri through TCM compounds.
Collapse
Affiliation(s)
| | - Ibrar Ahmed
- Alpha Genomics (Private) Limited, Islamabad 45710, Pakistan
- Group of Biometrology, The Korea Research Institute of Standards and Science (KRISS), Yuseong District, Daejeon 34113, Republic of Korea
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Alotaibi Meshal
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
28
|
Mancuso G, Trinchera M, Midiri A, Zummo S, Vitale G, Biondo C. Novel Antimicrobial Approaches to Combat Bacterial Biofilms Associated with Urinary Tract Infections. Antibiotics (Basel) 2024; 13:154. [PMID: 38391540 PMCID: PMC10886225 DOI: 10.3390/antibiotics13020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Urinary tract infections (UTIs) are prevalent bacterial infections in both community and healthcare settings. They account for approximately 40% of all bacterial infections and require around 15% of all antibiotic prescriptions. Although antibiotics have traditionally been used to treat UTIs for several decades, the significant increase in antibiotic resistance in recent years has made many previously effective treatments ineffective. Biofilm on medical equipment in healthcare settings creates a reservoir of pathogens that can easily be transmitted to patients. Urinary catheter infections are frequently observed in hospitals and are caused by microbes that form a biofilm after a catheter is inserted into the bladder. Managing infections caused by biofilms is challenging due to the emergence of antibiotic resistance. Biofilms enable pathogens to evade the host's innate immune defences, resulting in long-term persistence. The incidence of sepsis caused by UTIs that have spread to the bloodstream is increasing, and drug-resistant infections may be even more prevalent. While the availability of upcoming tests to identify the bacterial cause of infection and its resistance spectrum is critical, it alone will not solve the problem; innovative treatment approaches are also needed. This review analyses the main characteristics of biofilm formation and drug resistance in recurrent uropathogen-induced UTIs. The importance of innovative and alternative therapies for combatting biofilm-caused UTI is emphasised.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Marilena Trinchera
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Giulia Vitale
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
29
|
Bosma ML, McGuire JA, DelSasso A, Milleman J, Milleman K. Efficacy of flossing and mouth rinsing regimens on plaque and gingivitis: a randomized clinical trial. BMC Oral Health 2024; 24:178. [PMID: 38310236 PMCID: PMC10837857 DOI: 10.1186/s12903-024-03924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND To investigate the effects of combinations of mechanical (brushing and flossing) and chemotherapeutic regimens which included essential oils (EO) non-alcohol and alcohol-containing mouthrinses compared to brushing only in the prevention and reduction of plaque, gingivitis, and gingival bleeding. METHODS This was a randomized, virtually supervised, examiner blind, controlled clinical trial. Following informed consent and screening, subjects (N = 270) with gingivitis were randomly assigned to one of the following regimens: (1) Brush Only (B, n = 54); (2) Brush/Rinse (EO alcohol-containing mouthrinse) (BA, n = 54); (3) Brush/Rinse (EO non-alcohol containing mouthrinse) (BZ, n = 54); (4) Brush/Floss (BF, n = 54); (5) Brush/Floss/Rinse (EO non-alcohol containing mouthrinse) (BFZ, n = 54). Unflavored waxed dental floss (REACH unflavored waxed dental floss), and fluoridated toothpaste (Colgate Cavity Protection) were used. Examinations included oral hard and soft tissue, plaque, gingivitis, gingival bleeding, probing depth and bleeding on probing. RESULTS After 12 weeks, both BA and BZ and the BFZ group were superior in reducing interproximal plaque (30.8%, 18.2%, 16.0%, respectively), gingivitis (39.0%, 36.9%, 36.1%, respectively), and bleeding (67.8%, 73.6%, 79.8%, respectively) compared to B. The BF group did not provide significant reductions in interproximal plaque but did reduce interproximal gingivitis (5.1%, p = 0.041) at Week 4 and bleeding at Weeks 4 and 12 (34.6%, 31.4%, p < 0.001 respectively) compared to B. The BFZ group did not significantly reduce interproximal plaque, gingivitis or bleeding compared to BZ. CONCLUSIONS This study demonstrated that the addition of EO non-alcohol containing mouthrinse to the manual toothbrushing and flossing regimen further reduces plaque, gingivitis and bleeding showing that addition of EO mouthrinses (alcohol or non-alcohol containing) to the oral hygiene regimen provides sustained reductions in plaque to help maintain gingival health after a dental prophylaxis. Dental professional recommendation of the addition of an EO non-alcohol containing mouthrinse to daily oral hygiene routines of brushing or brushing and flossing should be considered to aid supragingival plaque control and improve gingivitis prevention. STUDY REGISTRY NUMBER NCT05600231.
Collapse
Affiliation(s)
- Mary Lynn Bosma
- Johnson & Johnson Consumer, 199 Grandview Road, Skillman, NJ, 08558, USA
| | - James A McGuire
- Johnson & Johnson Consumer, 199 Grandview Road, Skillman, NJ, 08558, USA.
| | - Alicia DelSasso
- Johnson & Johnson Consumer, 199 Grandview Road, Skillman, NJ, 08558, USA
| | - Jeffery Milleman
- Salus Research, 1220 Medical Park Drive, Building 4, IN, Fort Wayne, 46825, USA
| | - Kimberly Milleman
- Salus Research, 1220 Medical Park Drive, Building 4, IN, Fort Wayne, 46825, USA
| |
Collapse
|
30
|
Nasra S, Meghani N, Kumar A. Nanoemulsion-Based System as a Novel and Promising Approach for Enhancing the Antimicrobial and Antitumoral Activity of Thymus vulgaris (L.) Oil in Human Hepatocellular Carcinoma Cells. Appl Biochem Biotechnol 2024; 196:949-970. [PMID: 37273096 DOI: 10.1007/s12010-023-04571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The utilisation of medicinal plants and their essential oils is receiving more attention due to the ineffectiveness of current therapeutic methods in the treatment of various cancers and the rising incidence of bacterial antibiotic resistance. Thymol, an active ingredient of Thymus vulgaris, is known to have hepatoprotective, antibacterial, and antioxidant properties. To overcome major obstacles to their usage, such as quick oxidation and high volatility, plant essential oils must be administered through a system to improve the delivery of their active pharmaceutical ingredient. The bioavailability of active substances may be enhanced by the colloidal dispersion nanoemulsion. Therefore, this study aims to derive a comparative evaluation of the thyme oil nanoemulsion formulation and the characterisation of its antibacterial and antitumorigenic activities. A nanoemulsion (NE) with a droplet size of 122.2 ± 1.079 nm was discovered to be stable and mono-dispersed for 4 months and inhibited the growth of B. subtilis, E. coli, P. aeruginosa, and S. aureus. It also displayed antitumorigenic capabilities in HepG2 cells by arresting the cell cycle in the G2/M phase and upregulating the gene expression levels of Bcl-2-associated X protein (Bax), Caspase 3, 8, and 9, as well as a concomitant concentration-dependent decrease in B-cell leukaemia/lymphoma 2 protein (BCL2). Along with an increase in inducible nitric oxide synthase (iNOS) levels, upregulation of the expression levels of the reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and endoplasmic reticulum (ER) stress pathways was also seen, indicating of ROS formation in the cancer cells.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Meghani
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
31
|
Damyanova T, Dimitrova PD, Borisova D, Topouzova-Hristova T, Haladjova E, Paunova-Krasteva T. An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention. Pharmaceutics 2024; 16:162. [PMID: 38399223 PMCID: PMC10892570 DOI: 10.3390/pharmaceutics16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Tsvetozara Damyanova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Petya D. Dimitrova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Dayana Borisova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. K. Ohridski”, 8 D. Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria;
| | - Tsvetelina Paunova-Krasteva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| |
Collapse
|
32
|
Vojnits K, Mohseni M, Parvinzadeh Gashti M, Nadaraja AV, Karimianghadim R, Crowther B, Field B, Golovin K, Pakpour S. Advancing Antimicrobial Textiles: A Comprehensive Study on Combating ESKAPE Pathogens and Ensuring User Safety. MATERIALS (BASEL, SWITZERLAND) 2024; 17:383. [PMID: 38255551 PMCID: PMC10817529 DOI: 10.3390/ma17020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Antibiotic-resistant bacteria, ESKAPE pathogens, present a significant and alarming threat to public health and healthcare systems. This study addresses the urgent need to combat antimicrobial resistance by exploring alternative ways to reduce the health and cost implications of infections caused by these pathogens. To disrupt their transmission, integrating antimicrobial textiles into personal protective equipment (PPE) is an encouraging avenue. Nevertheless, ensuring the effectiveness and safety of these textiles remains a persistent challenge. To achieve this, we conduct a comprehensive study that systematically compares the effectiveness and potential toxicity of five commonly used antimicrobial agents. To guide decision making, a MULTIMOORA method is employed to select and rank the optimal antimicrobial textile finishes. Through this approach, we determine that silver nitrate is the most suitable choice, while a methoxy-terminated quaternary ammonium compound is deemed less favorable in meeting the desired criteria. The findings of this study offer valuable insights and guidelines for the development of antimicrobial textiles that effectively address the requirements of effectiveness, safety, and durability. Implementing these research outcomes within the textile industry can significantly enhance protection against microbial infections, contribute to the improvement of public health, and mitigate the spread of infectious diseases.
Collapse
Affiliation(s)
- Kinga Vojnits
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Majid Mohseni
- Research and Development Laboratory, PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | | | - Anupama Vijaya Nadaraja
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Ramin Karimianghadim
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Ben Crowther
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| | - Brad Field
- PRE Labs, Inc., Kelowna, BC V1X 7Y5, Canada;
| | - Kevin Golovin
- Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada; (A.V.N.); (K.G.)
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC V6T 1Z2, Canada; (K.V.); (R.K.); (B.C.)
| |
Collapse
|
33
|
Zhang Y, Chung WK, Moon SH, Lee JG, Om AS. Comparison of Antibacterial Activities of Korean Pine ( Pinus densiflora) Needle Steam Distillation Extract on Escherichia coli and Staphylococcus aureus Focusing on Membrane Fluidity and Genes Involved in Membrane Lipids and Stress. Molecules 2023; 29:165. [PMID: 38202748 PMCID: PMC10779765 DOI: 10.3390/molecules29010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The antibacterial activity and mechanism of Pinus densiflora extracts against Escherichia coli and Staphylococcus aureus were investigated. The growth inhibition tests of paper diffusion and optical density exhibited that the extracts have potent antibacterial potentials against foodborne pathogens. The measurement of membrane fluidity by fluorescence polarization has indicated that one of the antibacterial mechanisms involves the disruption of membrane integrity resulting in an increase in the membrane fluidity in both of E. coli and S. aureus. The alteration of fatty acid composition was accompanied by the disturbance of membranes thus shifting the proportion of saturated verses unsaturated fatty acids or trans fatty acids from 1.27:1 to 1.35:1 in E. coli and 1.47:1 to 2.31:1 in S. aureus, most likely to compensate for the increased membrane fluidity by means of a higher proportion of saturated fatty acids which is known to render rigidity in membranes. Realtime q-PCR (polymerase chain reaction) analysis of fatty acid synthetic genes and bacterial stress genes revealed that there was minimal influence of P. densiflora extracts on fatty acid genes except for fab I and the stress rpos in E. coli, and relatively greater impact on fatty acid genes and the stress sigB in S. aureus.
Collapse
Affiliation(s)
| | | | | | | | - Ae-Son Om
- Department of Food and Nutrition, Hanyang University, Seoul 04736, Republic of Korea; (Y.Z.); (W.-K.C.); (S.-H.M.); (J.-G.L.)
| |
Collapse
|
34
|
Lukhele BS, Bassey K, Witika BA. The Utilization of Plant-Material-Loaded Vesicular Drug Delivery Systems in the Management of Pulmonary Diseases. Curr Issues Mol Biol 2023; 45:9985-10017. [PMID: 38132470 PMCID: PMC10742082 DOI: 10.3390/cimb45120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Medicinal plants have been utilized to treat a variety of conditions on account of the bioactive properties that they contain. Most bioactive constituents from plants are of limited effectiveness, due to poor solubility, limited permeability, first-pass metabolism, efflux transporters, chemical instability, and food-drug interactions However, when combined with vesicular drug delivery systems (VDDS), herbal medicines can be delivered at a predetermined rate and can exhibit site-specific action. Vesicular drug delivery systems are novel pharmaceutical formulations that make use of vesicles as a means of encapsulating and transporting drugs to various locations within the body; they are a cutting-edge method of medication delivery that combats the drawbacks of conventional drug delivery methods. Drug delivery systems offer promising strategies to overcome the bioavailability limitations of bioactive phytochemicals. By improving their solubility, protecting them from degradation, enabling targeted delivery, and facilitating controlled release, drug delivery systems can enhance the therapeutic efficacy of phytochemicals and unlock their full potential in various health conditions. This review explores and collates the application of plant-based VDDS with the potential to exhibit protective effects against lung function loss in the interest of innovative and effective treatment and management of respiratory illnesses.
Collapse
Affiliation(s)
| | - Kokoette Bassey
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| |
Collapse
|
35
|
Chand U, Kushawaha PK. Nano-immunomodulators: prospective applications to combat drug resistant bacterial infections and related complications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2577-2597. [PMID: 37938026 DOI: 10.1080/09205063.2023.2265619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023]
Abstract
Antimicrobial resistance (AMR) is a growing problem in our healthcare sector, it can make infections more difficult and expensive to treat and lead to treatment failure and increased risk of death. Currently, at least 700,000 people worldwide die each year from AMR. Alternative methods for mitigating drug-resistant bacterial infections are desperately needed because of the unacceptably low rate of conventional antibiotic discovery. Therefore, the implementation of various therapeutic strategies is necessary to deal with drug-resistant bacteria and immunomodulation is one of them which is highly encouraged through various studies. Immunomodulators are different biological or synthetic substances that possess the capability of inducing, suppressing, or overall modulating the innate and adaptive immune system. Some phytochemicals, including flavonoids, glycosides, polysaccharides, terpenoids, essential oils, peptides, synthetic molecules, and synthetic biomaterials, can play a crucial role in the fight against bacterial infections directly or indirectly by enhancing the activity of existing antibiotics or by boosting immunity. Nanotechnology can be used to modulate immune responses through various fabrication methods and strategies of design and for drug formulation by encapsulating potential compounds/molecules in the form of nanoparticles and by surface modification or capping of nanomaterials. This approach can improve drug solubility, stability, and bioavailability, reduce toxicity, and help to increase the effectiveness of drugs against resistant microorganisms. This review aims to provide current developments in the field of immunomodulators of different origins that can be combined with nanotechnology and exploited as potential future drugs or adjuvants to fight drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, India
| |
Collapse
|
36
|
Sousa M, Afonso AC, Saavedra MJ, Simões LC, Simões M. Hydrocinnamic acid and perillyl alcohol are effective against Escherichia coli biofilms when used alone and combined with antibiotics. J Appl Microbiol 2023; 134:lxad234. [PMID: 37827567 DOI: 10.1093/jambio/lxad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
AIMS The use of phytochemicals to improve the effectiveness of antibiotics is a promising strategy for the development of novel antimicrobials. In this study, the antibiofilm activity of perillyl alcohol and hydrocinnamic acid, both phytochemicals present in several plants, and two antibiotics from different classes (amoxicillin and chloramphenicol) was tested, alone and in combination, against Escherichia coli. METHODS AND RESULTS Each molecule was tested at the minimum inhibitory concentration (MIC), 5 × MIC, and 10 × MIC, and characterized concerning biomass removal, metabolic inactivation, and cellular culturability. The highest percentages of metabolic inactivation (88.5% for 10 × MIC) and biomass reduction (61.7% for 10 × MIC) were obtained with amoxicillin. Interestingly, for 5 × MIC and 10 × MIC, phytochemicals provided a total reduction of colony-forming units (CFUs). Dual and triple combinations of phytochemicals and antibiotics (at MIC and 5 × MIC) demonstrated high efficacy in metabolic inactivation, moderate efficacy in terms of biomass reduction, and total reduction of cellular culturability for 5 × MIC. CONCLUSIONS The results demonstrated the antibiofilm potential of phytochemicals, highlighting the advantage of phytochemical/antibiotic combinations for biofilm control.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Cristina Afonso
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CEB, LABBELS-Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Maria José Saavedra
- CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Lúcia Chaves Simões
- CEB, LABBELS-Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
37
|
Oppedisano F, De Fazio R, Gugliandolo E, Crupi R, Palma E, Abbas Raza SH, Tilocca B, Merola C, Piras C, Britti D. Mediterranean Plants with Antimicrobial Activity against Staphylococcus aureus, a Meta-Analysis for Green Veterinary Pharmacology Applications. Microorganisms 2023; 11:2264. [PMID: 37764109 PMCID: PMC10534841 DOI: 10.3390/microorganisms11092264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health crisis, necessitating the search for innovative strategies to combat infectious diseases. The unique biodiversity of Italian flora offers a treasure trove of plant species and their associated phytochemicals, which hold immense potential as a solution to address AMR. By investigating the antimicrobial properties of Italian flora and their phytochemical constituents, this study aims to shed light on the potential of phyto-complexes as a valuable resource for developing novel or supportive antimicrobial agents useful for animal production.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Rosario De Fazio
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (F.O.); (E.P.)
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China;
| | - Bruno Tilocca
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
| | - Carmine Merola
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Cristian Piras
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, “Magna Græcia University” of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy; (R.D.F.); (B.T.); (D.B.)
- CISVetSUA, University of Catanzaro, Campus Universitario “Salvatore Venuta” Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
38
|
Phytochemical-Based Nanomaterials against Antibiotic-Resistant Bacteria: An Updated Review. Polymers (Basel) 2023; 15:polym15061392. [PMID: 36987172 PMCID: PMC10058650 DOI: 10.3390/polym15061392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Antibiotic-resistant bacteria (ARB) is a growing global health threat, leading to the search for alternative strategies to combat bacterial infections. Phytochemicals, which are naturally occurring compounds found in plants, have shown potential as antimicrobial agents; however, therapy with these agents has certain limitations. The use of nanotechnology combined with antibacterial phytochemicals could help achieve greater antibacterial capacity against ARB by providing improved mechanical, physicochemical, biopharmaceutical, bioavailability, morphological or release properties. This review aims to provide an updated overview of the current state of research on the use of phytochemical-based nanomaterials for the treatment against ARB, with a special focus on polymeric nanofibers and nanoparticles. The review discusses the various types of phytochemicals that have been incorporated into different nanomaterials, the methods used to synthesize these materials, and the results of studies evaluating their antimicrobial activity. The challenges and limitations of using phytochemical-based nanomaterials, as well as future directions for research in this field, are also considered here. Overall, this review highlights the potential of phytochemical-based nanomaterials as a promising strategy for the treatment against ARB, but also stresses the need for further studies to fully understand their mechanisms of action and optimize their use in clinical settings.
Collapse
|
39
|
Maliehe TS, Nqotheni MI, Shandu JS, Selepe TN, Masoko P, Pooe OJ. Chemical Profile, Antioxidant and Antibacterial Activities, Mechanisms of Action of the Leaf Extract of Aloe arborescens Mill. PLANTS (BASEL, SWITZERLAND) 2023; 12:869. [PMID: 36840217 PMCID: PMC9968107 DOI: 10.3390/plants12040869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Aloe arborescens Mill's extracts have been explored for antibacterial and antioxidant efficacies. However, there is limited information on its chemical composition and mechanism of action. The purpose of this study was to assess the chemical composition, antibacterial and antioxidant activities and mechanism of the whole leaf extract of A. arborescens Mill. The phytochemical profile was analysed with gas chromatography mass spectrometry (GC-MS). The antioxidant and antibacterial activities were screened using 1,1diphenyl2picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and micro-dilution assays, respectively. The effects of the extract on the bacterial respiratory chain dehydrogenase, membrane integrity and permeability were analysed using iodonitrotetrazolium chloride, 260 absorbing materials and relative electrical conductivity assays. GC-MS spectrum revealed 26 compounds with N,N'-trimethyleneurea (10.56%), xanthine (8.57%) and 4-hexyl-1-(7-ethoxycarbonylheptyl)bicyclo[4.4.0]deca-2,5,7-triene (7.10%), being the major components. The extract also exhibited antioxidant activity with median concentration (IC50) values of 0.65 mg/mL on DPPH and 0.052 mg/mL on ABTS. The extract exhibited minimum inhibitory concentration (MIC) values ranging from 0.07 to 1.13 mg/mL. The extract inhibited the bacterial growth by destructing the activity of the respiratory chain dehydrogenase, membrane integrity and permeability. Therefore, the leaf extract has the potential to serve as a source of antibacterial and antioxidant compounds.
Collapse
Affiliation(s)
- Tsolanku Sidney Maliehe
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Private Bag X1001, Empangeni 3886, South Africa
- Department of Water and Sanitation, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Mduduzi Innocent Nqotheni
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Private Bag X1001, Empangeni 3886, South Africa
| | - Jabulani Siyabonga Shandu
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Private Bag X1001, Empangeni 3886, South Africa
| | - Tlou Nelson Selepe
- Department of Water and Sanitation, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Peter Masoko
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X1106, Polokwane 0727, South Africa
| | - Ofentse Jacob Pooe
- School of Life Science, Discipline of Biochemistry, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
40
|
Qassadi FI, Zhu Z, Monaghan TM. Plant-Derived Products with Therapeutic Potential against Gastrointestinal Bacteria. Pathogens 2023; 12:pathogens12020333. [PMID: 36839605 PMCID: PMC9967904 DOI: 10.3390/pathogens12020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The rising burden of antimicrobial resistance and increasing infectious disease outbreaks, including the recent COVID-19 pandemic, has led to a growing demand for the development of natural products as a valuable source of leading medicinal compounds. There is a wide variety of active constituents found in plants, making them an excellent source of antimicrobial agents with therapeutic potential as alternatives or potentiators of antibiotics. The structural diversity of phytochemicals enables them to act through a variety of mechanisms, targeting multiple biochemical pathways, in contrast to traditional antimicrobials. Moreover, the bioactivity of the herbal extracts can be explained by various metabolites working in synergism, where hundreds to thousands of metabolites make up the extract. Although a vast amount of literature is available regarding the use of these herbal extracts against bacterial and viral infections, critical assessments of their quality are lacking. This review aims to explore the efficacy and antimicrobial effects of herbal extracts against clinically relevant gastrointestinal infections including pathogenic Escherichia coli, toxigenic Clostridioides difficile, Campylobacter and Salmonella species. The review will discuss research gaps and propose future approaches to the translational development of plant-derived products for drug discovery purposes for the treatment and prevention of gastrointestinal infectious diseases.
Collapse
Affiliation(s)
- Fatimah I. Qassadi
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Zheying Zhu
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Tanya M. Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2RD, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Correspondence:
| |
Collapse
|
41
|
Sousa M, Afonso AC, Teixeira LS, Borges A, Saavedra MJ, Simões LC, Simões M. Hydrocinnamic Acid and Perillyl Alcohol Potentiate the Action of Antibiotics against Escherichia coli. Antibiotics (Basel) 2023; 12:antibiotics12020360. [PMID: 36830271 PMCID: PMC9952493 DOI: 10.3390/antibiotics12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The treatment of bacterial infections has been troubled by the increased resistance to antibiotics, instigating the search for new antimicrobial therapies. Phytochemicals have demonstrated broad-spectrum and effective antibacterial effects as well as antibiotic resistance-modifying activity. In this study, perillyl alcohol and hydrocinnamic acid were characterized for their antimicrobial action against Escherichia coli. Furthermore, dual and triple combinations of these molecules with the antibiotics chloramphenicol and amoxicillin were investigated for the first time. Perillyl alcohol had a minimum inhibitory concentration (MIC) of 256 µg/mL and a minimum bactericidal concentration (MBC) of 512 µg/mL. Hydrocinnamic acid had a MIC of 2048 µg/mL and an MBC > 2048 µg/mL. Checkerboard and time-kill assays demonstrated synergism or additive effects for the dual combinations chloramphenicol/perillyl alcohol, chloramphenicol/hydrocinnamic acid, and amoxicillin/hydrocinnamic acid at low concentrations of both molecules. Combenefit analysis showed synergism for various concentrations of amoxicillin with each phytochemical. Combinations of chloramphenicol with perillyl alcohol and hydrocinnamic acid revealed synergism mainly at low concentrations of antibiotics (up to 2 μg/mL of chloramphenicol with perillyl alcohol; 0.5 μg/mL of chloramphenicol with hydrocinnamic acid). The results highlight the potential of combinatorial therapies for microbial growth control, where phytochemicals can play an important role as potentiators or resistance-modifying agents.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Cristina Afonso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CEB, LABBELS—Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lília Soares Teixeira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Maria José Saavedra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Lúcia Chaves Simões
- CEB, LABBELS—Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
42
|
Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020299. [PMID: 36830210 PMCID: PMC9952808 DOI: 10.3390/antibiotics12020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
Collapse
|
43
|
In silico study of inhibition effects of phytocompounds from four medicinal plants against the Staphylococcus aureus β-lactamase. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
44
|
Vigbedor BY, Osei Akoto C, Neglo D. Isolation and Identification of Flavanone Derivative Eriodictyol from the Methanol Extract of Afzelia africana Bark and Its Antimicrobial and Antioxidant Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9345047. [PMID: 37200890 PMCID: PMC10188263 DOI: 10.1155/2023/9345047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 05/20/2023]
Abstract
Background Afzelia africana is a plant species with well-documented ethnobotanical and medicinal properties. The plant is reported to have various secondary metabolites and had been applied for the treatment of various diseased conditions. Objectives The study objectives include fractionation, isolation, purification, and characterization of eriodictyol from the bark of A. africana, and the determination of its antimicrobial and antioxidant activities. Methodology. The series of methodologies that were employed include fractionations and purification (column chromatography), characterization (HPLC, LC-MS, IR, 1H, 13C, DEPT-135, HSQC, and HMBC), antimicrobial assays (microbroth dilution and checkerboard assay), and antioxidant activities assays (ABTS and DPPH scavenging capacity). Results The study reports the identification and characterization of eriodictyol from the bark of A. africana which exhibited potent antioxidant activities against ABTS and DPPH radicals with scavenging capacities (SC50) of 2.14 ± 0.05 and 2.51 ± 0.06 µg/mL, respectively. The compound exhibited its antimicrobial activity by reporting good bacteriostatic activities (MBC/MIC > 4) against Staphylococcus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), and fluconazole-resistant Candida albicans (CA2). Moreover, a broad spectrum of bactericidal effects (MBC/MIC ≤ 4) was reported against Streptococcus mutans (SM), Escherichia coli (EC), Bacillus subtilis (BS), Klebsiella pneumonia (KP), Pseudomonas aeruginosa (PA), Salmonella typhi (ST), and standard Candida albicans (CA1). The compound further exhibited synergistic effects against EC, KP, ST, and MRSA; ST; and CA2 when combined with ciprofloxacin, tetracycline, and nystatin, respectively. However, antagonistic effects were observed against PA and CA1 when combined with ciprofloxacin and ketoconazole, respectively. Conclusion The study reports for the first time the identification of eriodictyol from the bark of A. africana which exhibited significant antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Bright Yaw Vigbedor
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Clement Osei Akoto
- Department of Chemistry, Faculty of Physical and Computational Sciences, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
45
|
Kováč J, Slobodníková L, Trajčíková E, Rendeková K, Mučaji P, Sychrová A, Bittner Fialová S. Therapeutic Potential of Flavonoids and Tannins in Management of Oral Infectious Diseases-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010158. [PMID: 36615352 PMCID: PMC9821998 DOI: 10.3390/molecules28010158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Medicinal plants are rich sources of valuable molecules with various profitable biological effects, including antimicrobial activity. The advantages of herbal products are their effectiveness, relative safety based on research or extended traditional use, and accessibility without prescription. Extensive and irrational usage of antibiotics since their discovery in 1928 has led to the increasing expiration of their effectiveness due to antibacterial resistance. Now, medical research is facing a big and challenging mission to find effective and safe antimicrobial therapies to replace inactive drugs. Over the years, one of the research fields that remained the most available is the area of natural products: medicinal plants and their metabolites, which could serve as active substances to fight against microbes or be considered as models in drug design. This review presents selected flavonoids (such as apigenin, quercetin, kaempferol, kurarinone, and morin) and tannins (including oligomeric proanthocyanidins, gallotannins, ellagitannins, catechins, and epigallocatechin gallate), but also medicinal plants rich in these compounds as potential therapeutic agents in oral infectious diseases based on traditional usages such as Agrimonia eupatoria L., Hamamelis virginiana L., Matricaria chamomilla L., Vaccinium myrtillus L., Quercus robur L., Rosa gallica L., Rubus idaeus L., or Potentilla erecta (L.). Some of the presented compounds and extracts are already successfully used to maintain oral health, as the main or additive ingredient of toothpastes or mouthwashes. Others are promising for further research or future applications.
Collapse
Affiliation(s)
- Ján Kováč
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, Heydukova 10, 812 50 Bratislava, Slovakia
- Department of Stomatology and Maxillofacial Surgery, St. Elizabeth’s Hospital, Heydukova 10, 812 50 Bratislava, Slovakia
| | - Lívia Slobodníková
- Institute of Microbiology, Faculty of Medicine and the University Hospital in Bratislava, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Eva Trajčíková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Katarína Rendeková
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Pavel Mučaji
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Alice Sychrová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 612 00 Brno, Czech Republic
| | - Silvia Bittner Fialová
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-250-117-206
| |
Collapse
|
46
|
Vigbedor BY, Osei Akoto C, Kwakye R, Osei-Owusu J, Neglo D, Kwashie P. Antioxidant, antibacterial, antifungal activities and gas chromatographic fingerprint of fractions from the root bark of Afzelia africana. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 13:60-76. [PMID: 36721842 PMCID: PMC9884338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/05/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Afzelia africana is a tropical plant with numerous ethno-medicinal benefits. The plant has been used for the treatment of pain, hernia, fever, malaria, inflammation and microbial infections. OBJECTIVES To perform bioassay-guided fractionation, antioxidant and antimicrobial activities of the bark of Afzelia africana. METHODS Column chromatography fractionation, antioxidant activity (% (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 1,1-diphenyl picrylhydrazyl (DPPH) scavenging activity))), antimicrobial activity (microbroth dilution: Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), MBC/MIC ratio), and synergistic activities (Checkerboard assay: Fraction Inhibitory Concentration Index (FICI)). RESULTS Bioassay-guided fractionation of A. africana produced four fractions that displayed promising free radical scavenging activities in the ABTS (54-93)% and the DPPH (35-76)% assays in the ranking order of F1(93-54)>F4(81-58)>F2(74-58)>F3(72-55) and F3(77-42)>F1(64-46)>F4(55-44)>F2(47-35) respectively at a concentration range of 1.0-0.01 mg/mL. The fraction F1 (MBC: 2.5-5.0 mg/mL) and F4 (MBC: 1.25-10.0 mg/mL) exhibited broad spectrum of superior bactericidal effects than F2 (MBC≥100.0 mg/mL) and F3 (MBC: 12.5-100.0 mg/mL) against Staphylococcus mutans, Staphylococcus aureus, Escherichia coli, fluconazole-resistant Candida albicans, methicillin-resistant S. aureus, Bacillus subtilis, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella typhi, and Candida albicans (standard strain). The two most active fractions (F1 and F4) reported synergistic effects (FICI≤0.5) against S. typhi whilst the F4 reported additional synergism against E. coli, K. pneumonia, and S. typhi when combined with ciprofloxacin. Furthermore, the two fractions reported synergistic effects against Escherichia coli, Klebsiella pneumonia, Salmonella typhi, and Pseudomonas aeruginosa when combined with tetracycline whilst F1 reported antifungal synergism against fluconazole resistant Candida albicans when combined with fluconazole and ketoconazole. CONCLUSION The study has confirmed the antioxidant, antimicrobial and synergistic uses of A. africana for the treatment of both infectious and non-infectious disease.
Collapse
Affiliation(s)
- Bright Yaw Vigbedor
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| | - Clement Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and TechnologyKumasi, Ghana
| | - Ralph Kwakye
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable DevelopmentPMB, Somanya, Ghana
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| | - Pius Kwashie
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied SciencesPMB 31, Ho, Ghana
| |
Collapse
|
47
|
Schroder V, Radu N, Cornea PC, Coman OA, Pirvu LC, Mohammed MSO, Stefaniu A, Pintilie L, Bostan M, Caramihai MD, Roman V. Studies Regarding the Antimicrobial Behavior of Clotrimazole and Limonene. Antibiotics (Basel) 2022; 11:antibiotics11121816. [PMID: 36551473 PMCID: PMC9774930 DOI: 10.3390/antibiotics11121816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The paper presents the results of the studies performed to establish the effect of the mixtures between limonene and clotrimazole against microbial pathogens involved in dermatological diseases, such as Candida albicans, Staphyloccocus aureus, and Escherichia coli. Preliminary data obtained from the studies performed in microplates revealed a possible synergism between the mixture of clotrimazole and limonene for Staphylococcus aureus. Studies performed "in silico" with programs such as CLC Drug Discovery Workbench and MOLEGRO Virtual Docker, gave favorable scores for docking each compound on a specific binding site for each microorganism. The tests performed for validation, with the clotrimazole (0.1%) and different sources of limonene (1.9% citrus essential oils), showed a synergistic effect on Staphylococcus aureus in the case of the mixtures between clotrimazole and the essential oils of Citrus reticulata or Citrus paradisi. The studies performed on Staphylococcus aureus MRSA showed a synergistic effect between clotrimazole and the essential oils obtained from Citrus bergamia, Citrus aurantium, or Citrus paradisi. In the case of Pseudomonas aeruginosa, essential oils and clotrimazole used alone did not exhibit antimicrobial activities, but the mixtures between clotrimazole and the essential oils of Citrus bergamia or Citrus sinensis exhibited a synergistic antimicrobial effect.
Collapse
Affiliation(s)
- Verginica Schroder
- Faculty of Pharmacy, University Ovidius of Constanta, 900527 Constanta, Romania
| | - Nicoleta Radu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Department of Biotechnology, National Institute of Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
- Correspondence: (N.R.); (M.B.)
| | - Petruta Calina Cornea
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Oana Andreia Coman
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila of Bucharest, 020021 Bucharest, Romania
| | - Lucia Camelia Pirvu
- Department of Pharmaceutical Biotechnology, National Institute of Chemical Pharmaceutical R&D of Bucharest, 031299 Bucharest, Romania
| | - Mohammed Shaymaa Omar Mohammed
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Amalia Stefaniu
- Department of Pharmaceutical Biotechnology, National Institute of Chemical Pharmaceutical R&D of Bucharest, 031299 Bucharest, Romania
| | - Lucia Pintilie
- Department of Pharmaceutical Biotechnology, National Institute of Chemical Pharmaceutical R&D of Bucharest, 031299 Bucharest, Romania
| | - Marinela Bostan
- Department of Immunology, National Institute of Pathology and Biomedical Sciences R&D “Victor Babeș’’, 050096 Bucharest, Romania
- Center of Immunology, Institute of Virology Stefan S. Nicolau, 030304 Bucharest, Romania
- Correspondence: (N.R.); (M.B.)
| | - Mihai Dan Caramihai
- Faculty of Computer Sciences, Politehnica University of Bucharest, 060042 Bucharest, Romania
| | - Viviana Roman
- Center of Immunology, Institute of Virology Stefan S. Nicolau, 030304 Bucharest, Romania
| |
Collapse
|
48
|
Vigbedor BY, Osei-Owusu J, Kwakye R, Neglo D. Bioassay-Guided Fractionation, ESI-MS Scan, Phytochemical Screening, and Antiplasmodial Activity of Afzelia africana. Biochem Res Int 2022; 2022:6895560. [PMID: 35465443 PMCID: PMC9020990 DOI: 10.1155/2022/6895560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Afzelia africana is a plant species with reported numerous medicinal potentials and secondary metabolites. Various parts of the plant have been applied for the treatment of hernia, rheumatism, pain, lumbago, malaria, etc. The study seeks to evaluate the phytochemical constituents, antiplasmodial, and ESI-MS scan of bioassay-guided fractions from the methanol extract of the bark of the plant. Aims The main aim of the study was to carry out bioassay-guided fractionation of the crude methanol extract of Afzelia africana in order to isolate fractions and to evaluate their antiplasmodial activities and ESI-MS fingerprints. Methods The methods employed include column chromatographic fractionation, phytochemical screening, antiplasmodial activity (malaria SYBER green assay (MSF)), and ESI-MS profile (full ESI-MS scan). Results The column chromatographic fractionation and phytochemical screening of the plant led to the separation of the following four fractions: 1 (flavonoids, phenolics, glycosides, terpenoids, and steroids), 2 (alkaloids, anthraquinones, flavonoids, phenolics, glycosides, terpenoids, and steroids), 3 (anthraquinones, flavonoids, phenolics, glycosides, terpenoids, and steroids), and 4 (alkaloids, flavonoids, phenolics, glycosides, terpenoids, and steroids). The antiplasmodial activities of the fractions were tested against the 3D7 strain of Plasmodium falciparum with reported stronger activities for 1 (IC50: 0.097 ± 0.034 μg/mL) and 3 (IC50: 1.43 ± 0.072 μg/mL), and weaker activities for 2 (IC50: >100 μg/mL) and 4 (IC50: 37.09 ± 6.14 μg/mL). The full ESI-MS fingerprint of fractions 1, 2, 3, and 4 revealed the presence of 14, 24, 34, and 37 major molecular ions or compounds in each fraction, respectively.
Collapse
Affiliation(s)
- Bright Yaw Vigbedor
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB31, Ho, Ghana
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Ralph Kwakye
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB31, Ho, Ghana
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB31, Ho, Ghana
| |
Collapse
|
49
|
Gutierrez J, Bakke A, Vatta M, Merrill AR. Plant Natural Products as Antimicrobials for Control of Streptomyces scabies: A Causative Agent of the Common Scab Disease. Front Microbiol 2022; 12:833233. [PMID: 35154047 PMCID: PMC8828645 DOI: 10.3389/fmicb.2021.833233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
The common scab disease caused by Streptomyces scabies, a soil-dwelling Gram-positive bacterium, is an economically important disease of potatoes and other tuber crops. The lack of effective treatments against this disease accounts for large economic losses globally. Plant extracts were screened to find several that effectively inhibited Streptomyces scabies growth in culture. Seven tinctures showed the greatest inhibition of S. scabies growth by reducing pathogen growth in culture by 75% or more. These extracts were myrrh, garlic, cayenne, barberry, frankincense, wild indigo root, and lavender. Myrrh extract from Commiphora myrrha, a resin made from tree sap, showed strong antibacterial activity by reducing the growth of S. scabies to 13% of the control. Additionally, a flavonoid library was screened to identify several compounds that were effective to control the pathogen growth. The flavonoids that showed the greatest inhibition of Streptomyces scabies growth were sophoraflavanone G, jaceosidin, baicalein, and quercetin. Minimum inhibitory concentrations for the effective flavonoids were calculated to be 6.8 ± 0.4 μM, 100.0 ± 2.1 μM, 202.9 ± 5.3 μM, and 285.2 ± 6.8 μM, respectively. The mean lethal doses for these flavonoids against Streptomyces scabies were 2.0 ± 0.1 μM, 22.6 ± 0.5 μM, 52.9 ± 1.3 μM, and 37.8 ± 1.0 μM, respectively. A live/dead assay showed complete cell death in the presence of sophoraflavanone G indicative of a bactericidal mechanism for flavonoid action on Streptomyces scabies. Scanning electron and transmission electron microscopy imaging showed damaged cell membrane morphologies when Streptomyces scabies was exposed to these flavonoids. Mycelia appeared as flat and deflated structures with contents seen as spewing from branching hyphae with numerous holes and tears in the membrane structure indicative of cell death. Sophoraflavanone G showed the greatest potency and potential as a natural antibiotic from the library of tested flavonoids. These results suggest that these plant compounds act on the pathogen through a bactericidal mechanism involving cell membrane destabilization and disruption leading to cell death.
Collapse
|
50
|
Kemboi VJ, Kipkoech C, Njire M, Were S, Lagat MK, Ndwiga F, Wesonga JM, Tanga CM. Biocontrol Potential of Chitin and Chitosan Extracted from Black Soldier Fly Pupal Exuviae against Bacterial Wilt of Tomato. Microorganisms 2022; 10:microorganisms10010165. [PMID: 35056613 PMCID: PMC8780822 DOI: 10.3390/microorganisms10010165] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 12/29/2022] Open
Abstract
Globally, Ralstonia solanacearum (Smith) is ranked one of the most destructive bacterial pathogens inducing rapid and fatal wilting symptoms on tomatoes. Yield losses on tomatoes vary from 0 to 91% and most control measures are unaffordable to resource-poor farmers. This study investigated the antimicrobial activities of chitin and chitosan extracted from black soldier fly (BSF) pupal exuviae against R. solanacearum. Morphological, biochemical, and molecular techniques were used to isolate and characterize R. solanacearum for in vitro pathogenicity test using disc diffusion technique. Our results revealed that BSF chitosan significantly inhibited the growth of R. solanacearum when compared to treatments without chitosan. However, there was no significant difference in the antibacterial activities between BSF and commercial chitosan against R. solanacearum. Soil amended with BSF-chitin and chitosan demonstrated a reduction in bacterial wilt disease incidence by 30.31% and 34.95%, respectively. Whereas, disease severity was reduced by 22.57% and 23.66%, when inoculated tomato plants were subjected to soil amended with BSF chitin and chitosan, respectively. These findings have demonstrated that BSF pupal shells are an attractive renewable raw material for the recovery of valuable products (chitin and chitosan) with promising ability as a new type of eco-friendly control measure against bacterial wilt caused by R. solanacearum. Further studies should explore integrated pest management options that integrate multiple components including insect-based chitin and chitosan to manage bacterial wilt diseases, contributing significantly to increased tomato production worldwide.
Collapse
Affiliation(s)
- Violah Jepkogei Kemboi
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Carolyne Kipkoech
- Department of Food and Nutritional Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya
- Correspondence:
| | - Moses Njire
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Samuel Were
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Mevin Kiprotich Lagat
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - Francis Ndwiga
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya; (V.J.K.); (M.N.); (S.W.); (M.K.L.); (F.N.)
| | - John Mwibanda Wesonga
- Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-02000, Kenya;
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|